
Project for CS399:

Development and Testing of

Simple Internet Phones

David L. Dill Patrice Godefroid

October 27, 1999

1 Overview

This project will consist of two parts.

� Part 1: Development and testing of a switch for simple internet phones.

� Part 2: Interoperability testing with other switches.

Development will be done in C and following the guidelines below. Testing will be done

using VeriSoft. Precise instructions are presented in the following sections.

2 Simple Internet Phones: Speci�cation

In the �rst part of this project, you will develop a switch implementing the basic signalling

and call processing logic for simple internet phones. This switch will support three features:

basic call, call forwarding busy and conference call.

This section presents the requirements that your switch has to conform to in order to be

a valid solution to the problem. This section is referred to as the \speci�cation" in what

follows.

Note that this speci�cation is not complete, i.e., it does not restrict the solution space to

a unique solution. When several interpretations are possible, use the one that you �nd the

most appropriate. General robust implementations are better than restrictive ad-hoc ones.

Since you cannot control the behavior of the other components in the network, adopting a

defensive style of programming is a good idea (always expect the unexpected).

1



2.1 Overall Architecture

A network is composed of a �nite set of pairs of processes. Each pair consists of a phone

process P

i

and a switch process S

i

, and is identi�ed by an address (\i" in this text). Network

elements (phones and switches) can communicate by sending messages to each other. Since

the communication is asynchronous, message queues (of bounded size) are used to provide

bu�ering.

For this project, a phone process simulates sequences of actions that a telephone user

can perform, such as picking up the phone, dialing a number, hanging up, turning on or o�

features, etc. For testing purposes, this process will be modeled by a simple nondeterministic

C program that can execute any sequence of such actions.

The switch process S

i

associated to a phone process P

i

represents that phone in the

network. All messages from P

i

are sent to S

i

, and all messages to P

i

are sent by S

i

. A switch

S

i

can also send and receive messages from any other switch in the network. In the �rst part

of this project, you will develop the code for such a switch S

i

.

Each phone process P

i

has a single input queue, while each switch process S

i

has two

input queues, one for receiving messages from its phone P

i

and one for receiving messages

from other switches. Phones and Switches communicate with each other according to some

speci�c rules that are now described. (This protocol is inspired by an existing protocol

named Q931).

2.2 Messages

Here is the complete list of messages that can be exchanged between network elements. For

each message sent by a switch (to its associated phone or to another switch), the rule de�ning

when the message should be sent is also presented.

1. From phone to switch:

(a) o�-hook: the phone is o�-hook.

(b) dial(addr): the address \addr" is dialed.

(c) on-hook: the phone is on-hook.

(d) call-forwarding-busy(addr): call-forwarding-busy is turned on with the address

\addr" as the forwarding address if \addr" is nonzero; if \addr" is zero, the call-

forwarding-busy feature is turned o�.

(e) conference-call: used for calls with more than two participants.

2. From switch to phone:

2



(a) dial-tone: sent after receiving \o�-hook" and if the phone is not already ringing

or in a call; also sent after \conference-call" as described in Section 2.5.

(b) start-ringing: sent after receiving \setup(addr)" and if the phone is not already

ringing or in a call.

(c) stop-ringing: sent after receiving \disconnect(addr)" and if the phone is currently

ringing.

(d) ringing-indication: sent after receiving \alerting(addr)" and if the phone is still

o�-hook.

(e) busy-indication: sent after receiving \suspend(addr)" and if the phone is still

o�-hook.

(f) connect-indication: sent after receiving \connect(addr)" or \connect-ack(addr)"

and if the phone is still o�-hook.

(g) disconnect-indication: sent after receiving \disconnect" and if the phone is still

o�-hook.

3. From switch to switch: (note: the argument \addr" in lower-case denotes the sender

of the message for all the following message types)

(a) setup(addr): sent to \ADDR" after receiving \dial(ADDR)" and if no \on-hook"

has been received since sending last \dial-tone".

(b) alerting(addr): sent to \ADDR" after receiving \setup(ADDR)" and if the phone

is not already ringing or in a call.

(c) suspend(addr1,addr2): sent to \ADDR" after receiving \setup(ADDR)" and if

the phone is already ringing or in a call; \addr1" is the address of the sender;

\addr2" is the forwarding address speci�ed by the last message received of the

form \call-forwarding-busy(addr2)".

(d) connect(addr): sent to \ADDR" after receiving \o�-hook" and if last message

sent to \ADDR" was \alerting(addr)".

(e) connect-ack(addr): sent to \ADDR" after receiving \connect(ADDR)" and if the

phone is still o�-hook.

(f) disconnect(addr): sent to \ADDR" after receiving \on-hook" and if last message

sent to \ADDR" was \connect-ack(addr)" or \setup(addr)".

(g) release(addr): sent to \ADDR" after receiving \disconnect(ADDR)".

Here are some additional rules.

1. A phone should never receive \start-ringing" if it is o�-hook.

2. A phone should never receive \dial-tone" or \ringing-indication" or \busy-indication"

or \connect-indication" or \disconnect-indication" when it is on-hook.

3



3. A phone should never receive \stop-ringing" if it is not already ringing (triggered by

\start-ringing") or if it o�-hook.

4. Once a call is established, the callee can never terminate the call: if the callee hangs

up (by sending \on-hook") then picks up the phone again (by sending \o�-hook'), the

call is still on.

5. After a phone sends \on-hook" followed by \o�-hook", the next message sent to the

phone should either be \dial-tone" or \connect-indication", or the phone should be in

a call.

Note that any message that can be sent by a phone to its switch can be sent at any

time. This implies that \o�-hook" and \on-hook" messages do not necessarily alternate:

for instance, a \on-hook" message may follow another \on-hook" message without any \o�-

hook" message occurring in between.

We now present a brief description of the three features that need to be implemented, as

well as illustrative scenarios.

2.3 Basic Call

A basic call involves two phones and their associated switches. Let us denote the originating

phone (caller) by P

1

, its associated switch by S

1

, the terminating phone (callee) by P

2

and

its associated switch S

2

. The standard scenario for successfully making a call follows the

following steps.

1. Initially, P

1

and P

2

are on-hook.

2. P

1

sends \o�-hook" to S

1

.

3. S

1

receives \o�-hook" and sends \dial-tone" to P

1

.

4. P

1

receives \dial-tone" and sends \dial(2)" to S

1

, where \2" is the address of S

2

.

5. S

1

receives \dial(2)" and sends \setup(1)" to S

2

.

6. S

2

receives \setup(1)" and sends \start-ringing" to P

2

and \alerting(2)" to S

1

.

7. S

1

receives \alerting(2)" and sends \ringing-indication" to P

1

.

8. Meanwhile, P

2

sends \o�-hook" to S

2

.

9. S

2

receives \o�-hook" and sends \connect(2)" to S

1

.

10. S

1

receives \connect(2)" and sends \connect-indication" to P

1

and \connect-ack(1)"

to S

2

.

11. S

2

receives \connect-ack(1)" and send \connect-indication" to P

2

.

4



12. The connection (also referred to as \call") is now established and both parties can talk

using P

1

and P

2

.

13. To end the call, P

1

sends \on-hook" to S

1

.

14. S

1

receives \on-hook" and sends \disconnect(1)" to S

2

.

15. S

2

receives \disconnect(1)" and sends \disconnect-indication" to P

2

and \release(2)"

to S

1

.

16. After P

2

sends \on-hook" to S

2

, P

2

is free to make or receive another call.

Note that only the caller P

1

can end the call: for instance, if after Step 12 in the above

scenario, the callee P

2

sends \on-hook" followed by \o�-hook" to S

2

, the call is still on

between P

1

and P

2

.

2.4 Call Forwarding Busy

Calls to a busy phone can be redirected to another phone as follows. A forwarding address

\addr" for a phone can be set by executing \call-forwarding-busy(addr)" on that phone.

When a switch S

1

receives \suspend(2,addr)" from another switch S

2

and when \addr"

is nonzero, S

1

knows that the phone P

2

associated with S

2

is busy and that call-forwarding-

busy is turned on on P

2

with \addr" as the forwarding address. Therefore, S

1

does not send

\busy-indication" to P

1

, but instead sends \setup(1)" to the switch at the address \addr".

The call setup between P

1

, the phone at address \addr" and their associated switches then

proceeds as usual (see previous section).

2.5 Conference Call

This feature allows more than two phones to participate in a call. Once the caller has

successfully established a connection with a �rst callee (for instance, after following the

�rst 12 steps of the scenario described in Section 2.3), the caller P

1

can initiate another

connection by sending \conference-call" to S

1

. S

1

receives \conference-call" and responds

by sending \dial-tone" to P

1

. The call setup with the second callee then proceeds as usual

(see Section 2.3). Once this second connection is established successfully, the 3 parties (the

caller and the two callees) can communicate with each other. This process can be repeated

again by the caller to add one-by-one more participants (callees) to the call.

If the caller P

1

sends a second \conference-call" message to S

1

before the connection to

the second callee is successfully established, the second connection attempt is terminated:

when S

1

receives the second \conference-call" from P

1

, it sends a \disconnect(1)" to the

second callee if it has previously sent a \setup(1)" to this callee. However, this does not

impact the conference call between the caller and the callee(s) previously connected.

5



To end the conference call, the caller P

1

simply sends \on-hook" to S

1

, which then sends

one \disconnect(1)" message to each of the callees in the call. The disconnection phase then

proceeds as usual, following Steps 15 and 16 of the scenario described in Section 2.3.

3 Part 1: Development and Testing

3.1 Description

Develop the code for a switch that conforms to the speci�cation presented in the previous

section. Then, test that switch processes executing your code can communicate with each

other while conforming to the speci�cation.

Testing your code may involve playing scenarios manually using the veriSoft simulator,

writing assertions for testing that rules described in the speci�cation are satis�ed, writing

other phone processes, etc. No speci�c instructions are given concerning the type of testing

that should/need be performed. The only recommendation is to test the correctness of your

code as thoroughly as possible.

To get started, copy the implementation environmemt and test harnesses available on

saga3 in

~patrice1/verisoft/examples/project.

Follow the instructions and explanations given in the README �le in that directory.

Note that you may modify this code as you wish. However, be careful not to modify

the interface (overall architecture and message types) between phone and switch processes,

since this interface needs be preserved in order for your code to communicate with switches

developed by other project participants (see Part 2 below).

3.2 Deliverables (Deadline: November 19)

Code implementing your switch. This code has to be written in C, compilable with gcc on

the machine saga3, and �t into a single self-contained �le. Please leave the �le anonymous

(do not include your name or email address).

Send this �le by email to god@bell-labs.com by Midnight, Friday November 19,

1999. Reception of the �le will be acknowledged via email.

Warnings: this deadline if �rm! Also, only the �rst �le received from each participant will

be accepted! (Subsequent �les will be automatically discarded.)

6



4 Part 2: Interoperability Testing

4.1 Description

The purpose of this part is to test that your switch can communicate with switches developed

by other participants of the project.

By Monday November 22 (midnight), you will receive via email 3 source �les, each �le

corresponding to a switch developed by another participant. Each switch will be identi�ed

by an (anonymous) <identi�cation number> placed in a comment at the beginning of the

�le.

Test the interoperability of these switches combined with your switch in order to detect

any problems, in other switches, in your switch or in the combination of switches. To get

started, use the implementation environment and test harnesses you have already used for

testing your switch in Part 1.

Again, no speci�c instructions are given concerning the type of testing that should/need

be performed. For instance, you are free to test other switches one-by-one, or together,

or both, using the con�gurations (number of network elements) of your choice. The only

recommendation is to try to �nd as many problems (bugs and incompatibilities) as possible.

4.2 Deliverables (Deadline: December 5)

After performing interoperability testing, prepare a short report (3 to 5 pages are su�cient)

summarizing your �ndings. Your report should have �ve sections (in the order of your

choice).

One section for each of the 3 switches coming from other participants that you have tested

against your switch. The title for each of these sections should be \Switch <identi�cation

number>". In each section, start with a grade for the switch: 1 (good), 2 (average), or 3

(poor). Justify your evaluation. (Note: you may give the same grade to more than one

switch, any combination is allowed.)

In the fourth section entitled \My Switch", report any problems detected in your code, if

any. (Don't be shy { problems in your switch detected by others but missed by you are not

good.)

In the �fth section entitled \Miscellaneous", present any comment you may have on any

aspect of this project (for instance, comments on your code, on the speci�cation, on testing

your code, on interoperability testing, on the project, on the course, etc.). Also, tell us

what you think of VeriSoft. (Did you like/hate it? Why? What should be improved? Etc.)

Finally, tell us how much time you have spent on this project and what percentage of this

7



time you have spent on which part (such as design/development, testing, interoperability

testing, report, etc.). Thank you in advance for your feedback.

Note that the grades given by other participants to your code will not determine your

grade. We know several interpretations of the speci�cation are possible, and the most popular

interpretations are not necessarily the \right ones". So, relax and play the game.

The formats accepted for the report are plain (ascii) text, postscript, and pdf. Your

report should �t into a single self-contained �le.

Send this �le by email to god@bell-labs.com by Midnight, Sunday December 5,

1999. Reception of the �le will be acknowledged via email.

Warnings: this deadline if �rm! Also, only the �rst �le received from each participant will

be accepted! (Subsequent �les will be automatically discarded.)

5 Final Remarks

Any questions should be sent to god@bell-labs.com. Questions and answers will be sent

to all the project participants in order to avoid redundant questions.

Please remember to be careful with the IPC resources on the machines on which you run

your code!

8


