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Abstract. We report in this paper how we proved memory safety of
a complex Windows image parser written in low-level C in only three
months of work and using only three core techniques, namely (1) sym-
bolic execution at the x86 binary level, (2) exhaustive program path enu-
meration and testing, and (3) user-guided program decomposition and
summarization. We also used a new tool, named MicroX, for executing
code fragments in isolation using a custom virtual machine designed for
testing purposes. As a result of this work, we are able to prove, for the
first time, that a Windows image parser is memory safe, i.e., free of any
buffer-overflow security vulnerabilities, modulo the soundness of our tools
and several additional assumptions regarding bounding input-dependent
loops, fixing a few buffer-overflow bugs, and excluding some code parts
that are not memory safe by design. In the process, we also discovered
and fixed several limitations in our tools, and narrowed the gap between
systematic testing and verification.

1 Introduction
Systematic dynamic test generation [18, 9] consists of repeatedly running a pro-
gram both concretely and symbolically. The goal is to collect symbolic con-
straints on inputs from predicates in branch statements along the execution,
and then to infer variants of the previous inputs, using a constraint solver, in
order to steer the next execution of the program toward an alternative program
path. By systematically repeating this process, the entire set of execution paths
of a program can, in principle, be explored. This approach to automatic test
generation has become popular over the last several years, and has been im-
plemented in many tools such as EXE [10], jCUTE [33], SAGE [21], Pex [36],
KLEE [8], BitBlaze [34], and Apollo [2] to name a few. These tools vary by the
programming languages, properties, and application domains they target, but
they have all been successful in discovering new bugs missed by more conven-
tional techniques. Notably, SAGE is credited to have found roughly one third
? The work of this author was mostly done while visiting Microsoft Research.



2 Maria Christakis and Patrice Godefroid

of all the security bugs discovered by file fuzzing during the development of Mi-
crosoft’s Windows 7 [6]. Despite their success and popularity, the tools above
have never been used so far for program verification of a non-trivial application,
i.e., for proving the absence of specific classes of bugs.

In this paper, we show how we used and enhanced these techniques to prove
memory safety of the ANI Windows image parser. This parser is responsible for
processing structured graphics files to display “ANImated” cursors and icons on
more than a billion PCs. Such animated icons are ubiquitous in practice (like the
spinning ring or hourglass on Windows), and their domain of use ranges from web
pages and blogs, instant messaging and e-mails, to presentations and video clips.
The ANI parser consists of thousands of lines of low-level C code spread across
hundreds of functions. Yet, this parser is sequential (no concurrency or real-time
constraints). It is also of security interest: in 2007, a critical out-of-band security
patch was released for code in this parser (MS07-017) costing Microsoft and its
users millions of dollars [35, 24]. A motivation for this work was to determine
whether the ANI parser is now free of security-critical buffer overflows.

We show how systematic dynamic test generation can be applied and ex-
tended to program verification. To achieve this, we address the two main limita-
tions of dynamic test generation, namely imperfect symbolic execution and path
explosion. For the former, we extended the tool SAGE to improve its symbolic
execution engine so that it could handle all the x86 instructions of that specific
ANI parser. To deal with path explosion, we used a combination of function
inlining, restricting the bounds of input-dependent loops, and function summa-
rization. We also used a new tool, named MicroX, for executing code fragments
in isolation using a custom virtual machine designed for testing purposes. We
emphasize that the focus of our work is restricted to proving the absence of
attacker-controllable memory-safety violations (as precisely defined in Sect. 3).

At a high-level, the main contributions of this paper are: (1) We report on
the first application of systematic dynamic test generation for verifying a real,
complex, security-critical, entire program. Our work sheds light on the shrinking
gap between systematic testing and verification in a model-checking style. (2) To
our knowledge, this is the first time that an operating-system (Windows or other)
image parser has been proven free of security-critical buffer overflows. (3) We
are also not aware of any past attempts at program verification without using
any static program analysis; all the techniques and tools used in this work are
exclusively dynamic.

This paper is organized as follows. In Sect. 2, we recall basic principles of
systematic dynamic test generation and compositional symbolic execution, and
briefly present the SAGE and MicroX tools used in this work. In Sect. 3, we
precisely define memory safety, show how to verify it compositionally, and discuss
how we used and extended SAGE and MicroX for verification. Sect. 4 presents an
overview of the ANIWindows image parser. In Sect. 5, we present our verification
results in detail. During the course of this work, we discovered several memory-
safety violations in the ANI parser code, which are discussed in Sect. 6. We
review related work in Sect. 7 and conclude in Sect. 8.



Proving Memory Safety of the ANI Windows Image Parser 3

2 Background
2.1 Systematic Dynamic Test Generation
Systematic dynamic test generation [18, 9] consists of repeatedly running a pro-
gram both concretely and symbolically. The goal is to collect symbolic con-
straints on inputs from predicates in branch statements along the execution,
and then to infer variants of the previous inputs, using a constraint solver, in
order to steer the next execution of the program toward an alternative path.

Symbolic execution means executing a program with symbolic rather than
concrete values. Assignment statements are represented as functions of their
(symbolic) arguments, while conditional statements are expressed as constraints
on symbolic values. Side-by-side concrete and symbolic executions are performed
using a concrete store M and a symbolic store S, which are mappings from
memory addresses (where program variables are stored) to concrete and symbolic
values, respectively. For a program path w, a path constraint φw is a logic formula
that characterizes the input values for which the program executes along w. Each
symbolic variable appearing in φw is, thus, a program input. Each constraint is
expressed in some theory3 T decided by a constraint solver, i.e., an automated
theorem prover that can return a satisfying assignment for all variables appearing
in constraints it proves satisfiable.

All program paths can be enumerated by a search algorithm that explores
all possible branches at conditional statements. The paths w for which φw is
satisfiable are feasible, and are the only ones that can be executed by the actual
program provided the solutions to φw characterize exactly the inputs that drive
the program through w. Assuming that the constraint solver used to check the
satisfiability of all formulas φw is sound and complete, this use of symbolic exe-
cution for programs with finitely many paths amounts to program verification.
2.2 Compositional Symbolic Execution
Systematically testing and symbolically executing all feasible program paths
does not scale to large programs. Indeed, the number of feasible paths can be
exponential in the program size, or even infinite in the presence of loops with
an unbounded number of iterations. This path explosion can be alleviated by
performing symbolic execution compositionally [15, 1].

In compositional symbolic execution, a summary φf for a function (or any
program sub-computation) f is defined as a logic formula over constraints ex-
pressed in theory T . Summary φf can be generated by symbolically executing
each path of function f , then generating an input precondition and output post-
condition for each path, and bundling together all path summaries in a disjunc-
tion. Precisely, φf is defined as a disjunction of formulas φwf

of the form
φwf

= prewf
∧ postwf

where wf denotes an intraprocedural path in f , prewf
is a conjunction of con-

straints on the inputs of f , and postwf
a conjunction of constraints on the

outputs of f . An input to a function f is any value that can be read by f , while
3 A theory is a set of logic formulas.
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an output of f is any value written by f . Therefore, φwf
can be computed au-

tomatically when symbolically executing the intraprocedural path wf : prewf
is

the path constraint along path wf but expressed in terms of the function inputs,
while postwf

is a conjunction of constraints, each of the form v′ = S(v), where v′
is a fresh symbolic variable created for each program variable v modified during
the execution of wf (including the return value), and where S(v) denotes the
symbolic value associated with v in the program state reached at the end of wf .
At the end of the execution of wf , the symbolic store is updated so that each
such value S(v) is replaced by v′. When symbolic execution continues after the
function returns, such symbolic values v′ are treated as inputs to the calling
context. Summaries can be re-used across different calling contexts.

For instance, given the function is_positive below,
int is_positive(int x) {

if (x > 0) return 1;
return 0;

}

a summary φf for this function can be
φf = (x > 0 ∧ ret = 1) ∨ (x ≤ 0 ∧ ret = 0)

where ret denotes the value returned by the function.
Symbolic variables are associated with function inputs (like x in the exam-

ple) and function outputs (like ret in the example) in addition to whole-program
inputs. In order to generate a new test to cover a new branch b in some func-
tion, all the previously known summaries can be used to generate a formula φP

symbolically representing all the paths discovered so far during the search. By
construction [15], symbolic variables corresponding to function inputs and out-
puts are all bound in φP , and the remaining free variables correspond exclusively
to whole-program inputs (since only those can be controlled for test generation).

For instance, for the program P below,
#define N 100
void P(int s[N]) { // N inputs

int i, cnt = 0;
for (i = 0; i < N; i++) cnt = cnt + is_positive(s[i]);
if (cnt == 3) error(); // (*)

}

a formula φP to generate a test covering the then branch (*) given the above
summary φf for function is_positive can be

(ret0 + ret1 + . . .+ retN−1 = 3)∧∧
0≤i<N

((s[i] > 0 ∧ reti = 1) ∨ (s[i] ≤ 0 ∧ reti = 0))

where reti denotes the return value of the ith call to function is_positive.
Even though program P has 2N feasible whole-program paths, compositional test
generation can cover symbolically all those paths with at most 4 test inputs: 2
tests to cover both branches in function is_positive plus 2 tests to cover both
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branches of the if statement (*). In this example, compositionality avoids an
exponential number of tests and calls to the constraint solver at the cost of using
more complex formulas with more disjunctions.

When, where, and how compositionality is worth using in practice is still an
open question (e.g., [15, 1, 5, 26]), which we discuss later in this paper.

2.3 SAGE and MicroX

Our ANI verification work was carried out using extensions of two existing tools:
SAGE [21] and MicroX [16]. SAGE is a whitebox fuzzer for security testing,
which implements systematic dynamic test generation and performs dynamic
symbolic execution at the x86 binary level. It is optimized to scale to very
large execution traces (billions of x86 instructions) and programs (like Excel).
SAGE also implements a limited form of summaries [19] as well as specialized
forms of summaries for dealing with floating-point computations [17] and input-
dependent loops [22]. The feature for floating-point computations was not used
in this work as the ANI parser considered here does not include floating-point
instructions, while the latter feature is too limited to deal with all the ANI
input-dependent loops—we handled those differently as explained in Sect. 5.2.

MicroX is a newer tool [16] for executing code fragments in isolation, without
user-provided test drivers or input data, using a custom virtual machine (VM)
designed for testing purposes. Given any user-specified code location in an x86
binary, the MicroX VM starts executing the code at that location, intercepts all
memory operations before they occur, allocates memory on-the-fly in order to
perform those read/write memory operations, and provides input values accord-
ing to a customizable memory policy, which defines what read memory accesses
should be treated as inputs. By default, an input is defined as any value read
from an uninitialized function argument, or through a dereference of a previous
input (recursively) that is used as an address. This memory policy is typically
adequate for testing C functions. No test driver/harness is required: MicroX
discovers automatically and dynamically the input/output signature of the code
being run. Input values are provided as needed along the execution and can be
generated in various ways, e.g., randomly or using some other test-generation
tool like SAGE. When used with SAGE, the very first test inputs are generated
randomly; then, SAGE symbolically executes the code path taken by the given
execution, generates a path constraint for that (concrete) execution, and solves
new alternate path constraints that, when satisfiable, generate new input values
guiding future executions along new paths.

3 Proving Memory Safety
3.1 Defining Memory Safety

To prove memory safety during systematic dynamic test generation, all memory
accesses need to be checked for possible violations. Whenever a memory address
a stored in a program variable v (i.e., a = M(v)) is accessed during execution,
the concrete value a of the address is first checked “passively” to make sure
it points to a valid memory region mra (as done in standard tools like Purify,
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Valgrind and AppVerifier); then, if this address a was obtained by computing an
expression e that depends on an input (i.e., e = S(v)), the symbolic expression
e is also checked “actively” by injecting a new bounds-checking constraint

0 ≤ (e−mra.base) < mra.size

in the path constraint to make sure other input values cannot trigger a buffer
overflow or underflow at this point of the program execution [10, 20]. How to
keep track of the base address mra.base and size mra.size of each valid memory
regionmra during the program execution is discussed in work on precise symbolic
pointer reasoning [14].

As an example, consider the following function:
void buggy(int x) {

char* buf[10];
buf[x] = 1;

}

If this function is run with x=1 as input, the concrete execution is memory
safe as the memory access buf[1] is in bounds. In order to force systematic
dynamic test generation to discover that this program is not memory safe, it is
mandatory to inject the constraint 0 ≤ x < 10 in the current path constraint
when the statement buf[x]=1 is executed. This constraint is later negated and
solved leading to other input values for x, such as -1 or 10, with which the
function will be re-tested and caught violating memory safety.

A program execution w is called attacker memory safe [17] if every mem-
ory access during w in program P , which is extended with bound checks for all
memory accesses, is either within bounds, i.e., memory safe, or input indepen-
dent, i.e., its address has no input-dependent symbolic value, and hence, is not
controllable by an attacker through the untrusted input interface. A program is
called attacker memory safe if all its executions are attacker memory safe.

Thus, the notion of attacker memory safety is weaker than traditional mem-
ory safety: a memory-safe program execution is always attacker memory safe,
while the converse does not necessarily hold. For instance, an attacker-memory-
safe program might perform a flawless and complete validation of all its untrusted
inputs, but might still crash (for instance, by accessing the address NULL) in
error-handling code that is executed exclusively after a trusted system call fails.

Security testing is primarily aimed at checking attacker memory safety since
buffer overflows that cannot be controlled by the attacker are not security critical.
In the rest of this paper, we focus on attacker memory safety, but we will often
refer to it simply as memory safety for convenience.
3.2 Proving Attacker Memory Safety Compositionally
In order to prove memory safety compositionally, bounds-checking constraints
need to be recorded inside summaries and evaluated for each calling context.

Consider the following function bar:
void bar(char* buf, int x) {

if ((0 <= x) && (x < 10)) buf[x] = 1;
}
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If we analyze bar in isolation without knowing the size of the input buffer buf,
we cannot determine whether the buffer access buf[x] is memory safe. When
we summarize function bar, we include in the precondition of the function that
bar accesses the address buf+x when the condition (0 ≤ x) ∧ (x < 10) holds. A
summary for this function executed with, say, x=3 can then be:

(0 ≤ x) ∧ (x < 10) ∧ (0 ≤ x < mrbuf.size) ∧ (buf[x] = 1)
Later, when analyzing higher-level functions calling bar, these bounds-checking
constraints can be checked because the buffer bounds will then be known. For
instance, consider the following function foo that calls bar:

void foo(int x) {
char *buf = malloc(5);
bar(buf, x);

}

If foo calls bar with x=3, the precondition of the above path summary for bar is
satisfied. The bounds-checking constraint can be simplified with mrbuf.size = 5
in this calling context and negated to obtain the new path constraint,

(0 ≤ x) ∧ (x < 10) ∧ ¬(0 ≤ x < 5)
which after simplification is

(0 ≤ x) ∧ (x < 10) ∧ ((x < 0) ∨ (x ≥ 5))
This constraint is satisfiable with, say, x = 7, and running foo and bar with
that new input value will then detect a memory-safety violation in bar.

To sum up, the procedure we use for proving memory safety compositionally
is as follows. We record bounds-checking constraints in the preconditions of
intraprocedural path-constraint summaries. Whenever a path summary is used
in a specific calling context, we check whether its precondition contains any
bounds-checking constraint. If so, we check whether the size of the memory
region appearing in the bounds-checking constraint is known. If this is the case,
we generate a new alternate path constraint defined as the conjunction of the
current path constraint and the negation of the bounds-checking constraint,
where the size of the memory region is replaced by the current size. We then
attempt to solve this alternate path constraint with the constraint solver, which
then generates a new test if the constraint is satisfiable.

For real C functions, the logic representations of their pre- and postconditions
can quickly become very complex and large. We show later in this paper that,
by using summarization sparingly and at well-behaved function interfaces, these
representations remain tractable.

We have implemented in SAGE the compositional procedure for proving
memory safety described in this section.
3.3 Verification with SAGE and MicroX
In order to use SAGE for verification, we turned on maximum precision for
symbolic execution: all runtime checkers (for buffer overflows and underflows,
division by zero, etc.) were turned on as well as precise symbolic pointer rea-
soning [14], any x86 instruction unhandled by symbolic execution was reported,
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every path constraint was checked to be satisfiable before negating constraints,
we checked that our constraint solver, the Z3 automated theorem prover [13],
never timed out on any constraint, and we also checked the absence of any diver-
gence, which occurs whenever a new test generated by SAGE does not follow the
expected program path. When all these options are turned on and all the above
checks are satisfied, symbolic execution of an individual path has perfect preci-
sion: path constraint generation and solving is sound and complete (Sect. 2.1).

Moreover, we turned off all the unsound state-space pruning techniques and
heuristics implemented in SAGE to limit path explosion, such as limiting the
number of constraints generated for each program branch and constraint sub-
sumption, which eliminates constraints logically implied by other constraints
injected at the same program branch (most likely due to successive iterations of
an input-dependent loop) using a cheap syntactic check [21]. How we dealt with
path explosion in this work is discussed in Sect. 5.2 and 5.3.

As we describe in Sect. 5, we also used MicroX in conjunction with SAGE in
order to prove memory safety of individual ANI functions in isolation. Memory
safety of a function is proven for any calling context (soundly and completely) by
MicroX and SAGE if all possible function input values are considered, symbolic
execution of every function path is sound and complete, all function paths can
be enumerated and tested in a finite (and small enough) amount of time, and
all the checks defined above are satisfied for all executions. Instead of manually
writing a unit test driver that explicitly identifies all input parameters (and their
types) for each function, MicroX provided this functionality automatically [16].

During this work, many functions were not verified at first for various reasons:
we discovered and fixed several x86 instructions unhandled by SAGE’s symbolic
execution engine, we also fixed several root causes of divergences (by provid-
ing custom summaries for nondeterministic-looking functions, like malloc and
memcpy, whose execution paths depend on memory alignment), and we fixed a
few imprecision bugs in SAGE’s code. These SAGE limitations were much more
easily identified when verifying small functions in isolation with MicroX rather
than during whole-application fuzzing. After removing those limitations, we were
able to verify that many individual ANI functions are memory safe (Sect. 5.1).
The remaining functions could not be verified so easily mostly because of path
explosion due to input-dependent loops (Sect. 5.2) or due to too many paths in
functions lower in the callgraph (Sect. 5.3).

4 The ANI Windows Parser
The ANI Windows parser is written mostly in C, while the remaining code is
written in x86 assembly. The implementation involves at least 350 functions de-
fined in 5 Windows DLLs. The parsing of input bytes from an ANI file takes
place in at least 110 functions defined in 2 DLLs, namely in user32.dll, which
is responsible for 80% of the parsing code, and in gdi32.dll, which is responsi-
ble for the remaining 20%4. user32.dll creates and manages the Windows user

4 These percentages were obtained by comparing the number of constraints on sym-
bolic values that were generated by SAGE for each of the 2 DLLs.
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Fig. 1. The callgraph of the 47 user32.dll functions implementing the ANI parser
core. Functions are grouped based on the architectural component of the parser to
which they belong. The different shades and lines of the boxes denote the verifica-
tion strategy we used to prove memory safety of each function. The boxes with the
lighter shade and dotted lines indicate functions verified with the bottom-up strategy
(Stage 1), the medium shade and single solid line functions verified by restricting the
bounds of input-dependent loops (Stage 2), and the darker shade and double solid
lines functions verified with the top-down strategy (Stage 3). Functions are annotated
with the number of their execution paths. A + indicates that a function contains too
many execution paths to be exhaustively enumerated within 12 hours without using
additional techniques for controlling path explosion.

interface, such as windows, mouse events and menus. Many functions defined in
user32.dll call into gdi32.dll, which is the graphics device interface associ-
ated with drawing and handling two-dimensional objects as well as managing
fonts. There are 47 functions defined in user32.dll that implement functional-
ity of the ANI parser. These functions alone compile to approximately 3,050 x86
instructions. More details on the ANI parser, including the file format it handles
and its high-level callgraph, can be found in the appendix.

5 Verification Results
We proved memory safety of the ANI Windows image parser by targeting the
47 functions that are defined in user32.dll and are responsible for 80% of the
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parsing code (Sect. 4). The remaining 20% refers to at least 63 gdi32.dll func-
tions that are called (directly or indirectly) by the 47 user32.dll functions. In
addition to those user32.dll and gdi32.dll functions, the parser also exercises
code in at least 240 other functions (for a total of at least 350 functions). As
shown by sound and complete symbolic execution, all these other functions do
not (directly or indirectly) parse any input bytes from an ANI file and are by def-
inition attacker memory safe. For the purpose of this work, the gdi32.dll and
all these other functions can be viewed as inlined to the user32.dll functions,
which are the top-level functions of the parser. Verifying those 47 user32.dll
functions while inlining all remaining sub-functions is, thus, equivalent to prov-
ing attacker memory safety of the entire ANI parser. The callgraph of the 47
user32.dll functions is shown in Fig. 1. The functions are grouped depending
on the architectural component of the parser to which they belong. Note that
there is no recursion in this callgraph.

In this section, we describe how we proved memory safety of the ANI parser
using compositional exhaustive testing. Our verification results were obtained
with a 32bit Windows 7 version of the parser and are presented in three stages.
5.1 Stage 1: Bottom-Up Strategy
For verifying the ANI parser, we started with a bottom-up strategy with respect
to the callgraph of Fig. 1. We wanted to know how many functions of a real
code base can be proven memory safe for any calling context by simply using
exhaustive path enumeration. Our setup for this verification strategy consisted
in attempting to verify each user32.dll function (one at a time) using MicroX
with SAGE starting from the bottom of the callgraph. If all execution paths
of the function were explored in a reasonable amount of time, i.e., less than 12
hours, and no bugs or other incompleteness-check violations were ever detected
(Sect. 3.3), we marked the function as memory safe. To our surprise, 34 of the
47 functions shown in Fig. 1 could already be proven memory safe this way, and
are shown with the lighter shade and dotted lines in the figure.

An exception was the StringCchPrintfW function of the Bitmap conversion
component. This function writes formatted data to a specified string, which
is stored in a destination buffer. Exploring all execution paths of function
StringCchPrintfW that may be passed a destination buffer of any length and
a format string with any number of format specifiers does not complete in 12
hours, and is actually very complex.

Inlining. To deal with this function, we just inlined it to each of its callers.
Inlining a function means replacing the call sites of the function with the function
body. In our context, inlining a function means that the function being inlined
is no longer treated as an isolated unit that we attempt to verify for any (all)
calling contexts, but instead, it is being included in the unit defined by its
caller function(s) and proven only for the specific calling context defined in these
caller function(s). For instance, function LoadICSLibrary, which takes no input
arguments, calls function StringCchPrintfW. By inlining StringCchPrintfW to
LoadICSLibrary, we can exercise the single execution path in LoadICSLibrary
and prove attacker memory safety of both functions.
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Verification results.With the simple bottom-up strategy of this section, we
were already able to prove attacker memory safety of 34 user32.dll functions
out of 47, or 72% of the top-level functions of the ANI Windows parser. So far, we
had to inline only one function, namely StringCchPrintfW to LoadICSLibrary
of the Bitmap conversion component. The gdi32.dll functions (not shown in
Fig. 1), which are called by the 47 user32.dll functions of Fig. 1, were also
inlined (recursively) in those user32.dll functions. The boxes with the lighter
shade and dotted lines of Fig. 1 represent the 34 functions that were verified with
the bottom-up strategy. All these functions, except for those that were inlined,
were verified in isolation for any calling context. This implies that all bounds for
all loops (if any) in all those functions either do not depend on function inputs,
or are small enough to be exhaustively explored within 12 hours. Recall that
accesses to function input buffers are not yet proven memory safe (Sect. 3.2).
5.2 Stage 2: Input-Dependent Loops
For the remaining 13 user32.dll functions of the ANI parser, path explosion
is too brutal and exhaustive path enumeration does not terminate in 12 hours.
Therefore, during the second stage of the verification process, we decided to
identify and restrict the bounds of input-dependent loops that might have been
preventing us from verifying functions higher in the callgraph of the parser in
Stage 1. We define an input-dependent loop as a loop whose number of iterations
depends on bytes read from an ANI file, i.e., whole-program inputs. In contrast,
when the number of iterations of a loop inside a function depends on function
inputs that are not whole-program inputs, path explosion due to that loop can
be eliminated by inlining that function to its caller(s).

Restricting input-dependent loop bounds. In order to control path
explosion due to input-dependent loops, we manually fixed the bounds, i.e., the
number of iterations, of those loops by assigning a concrete value to the program
variable(s) containing the input bound(s). We extended MicroX for the user to
easily fix the value of arbitrary x86 registers or memory addresses. Naturally,
fixing an input value to a specific concrete value is like specifying an input
precondition, and the verification of memory safety becomes restricted to calling
contexts satisfying that precondition.

As an example, consider function CreateAniIcon of the ANI creation com-
ponent of the parser. CreateAniIcon calls functions NtUserCallOneParam and
NtUserDestroyCursor, which have one execution path each, as well as func-
tion _SetCursorIconData, which has two execution paths as shown in Fig. 1.
Despite the very small number of paths in its callees, function CreateAniIcon
contains too many paths to be explored in 12 hours, which is indicated by the
+ in Fig. 1. This path explosion is due to two input-dependent loops inside that
function. By fixing the bounds of these loops to any value from 1 to 232, the
number of execution paths in the loops of function CreateAniIcon is always 4.
Thus, we can prove memory safety of CreateAniIcon for any such fixed number
of iterations of these loops. More details can be found in the appendix.

Verification results. During this stage of the verification process, we proved
memory safety of only one additional user32.dll function of the ANI parser,
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Type of Component Maximum
loop bound loop bound

Frames 5 232
(4 bytes)
Steps 5 232

(4 bytes)
Images/frame 3 1(2 bytes/frame)

File size 1 110
Tab. 1. All the input-dependent loop bounds fixed during the verification of the ANI
parser. For each loop bound, the table shows the corresponding number of bytes in an
ANI input file, the component of the parser containing loops with this bound (numbered
as in Fig. 1), and the maximum value of the bound that we could verify in 12 hours.

namely CreateAniIcon. The box in Fig. 1 with the medium shade and single
solid line represents function CreateAniIcon that was verified in Stage 2.

Tab. 1 presents a complete list of the input-dependent loop bounds that we
fixed during the entire verification of the ANI parser. As described above, to
verify memory safety of function CreateAniIcon of the ANI creation compo-
nent (component 5 of Fig. 1), we had to fix two input-dependent loops using two
whole-program input parameters (namely, frames and steps). In the remainder of
this work (Sect. 5.3), we also had to fix two other whole-program input parame-
ters to control a few other input-dependent loops. First, in the Reading icon guts
component (component 3 of Fig. 1), there are three other input-dependent loops,
located in functions ReadIconGuts and GetBestImage. The number of iterations
of all those loops depends on the number of images contained in each icon, which
corresponds to 2 bytes per frame of an ANI file. (A single icon may consist of
multiple images of different sizes and color depths.) To limit path explosion due
to those three loops, we had to fix the number of images per icon of the animated
cursor to a maximum of 1. Second, in the Reading and validating file compo-
nent (component 1 of Fig. 1), there are two input-dependent loops, located in
functions LoadCursorIconFromFileMap and LoadAniIcon, whose number of it-
erations depends on the size of the input file, which we had to restrict to a
maximum of 110 bytes.

It is perhaps surprising that the number of input-dependent loop bounds in
the entire parser is limited to a handful of input parameters read from an ANI
file, for a total of around 10 bytes (plus the input file size) as shown in Tab. 1.

5.3 Stage 3: Top-Down Strategy

For the remaining 12 user32.dll functions still to be verified in the higher-level
part of the callgraph of Fig. 1, path explosion was still too severe even after using
inlining and fixing input-dependent loops. Therefore, we adopted a different, top-
down strategy using sub-function summaries in order to prove memory safety
compositionally as described in Sect. 2.2 and 3.

Summarization. As we explained earlier, summarizing sub-functions can
alleviate path explosion in those sub-functions at the expense of computing re-
usable logic summaries that capture function pre- and postconditions expressed
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in terms of function inputs and outputs, respectively. For this trade-off to be
attractive, it is therefore best to summarize sub-functions (1) that contain many
execution paths and (2) whose input/output interfaces with respect to higher-
level functions are not too complex so that the logic encoding of their summaries
remains tractable. Moreover, to prove memory safety of a sub-function with
respect to its input buffers, all bounds-checking constraints inside that sub-
function must be included in the precondition of its summary (Sect. 3.2).

Verification results. To verify the remaining 12 top-level user32.dll func-
tions, we manually devised the following summarization strategy based on the
previous data about the numbers of paths in verified sub-functions (i.e., the num-
bers of paths in the boxes of Fig. 1) and by examining the input/output interfaces
of the remaining functions. Specifically, we verified one by one the top-level func-
tion of each remaining component of the parser, namely function ReadIconGuts
of the Reading icon guts component, ConvertDIBIcon of the Bitmap conversion
component, and LoadCursorIconFromFileMap of the Reading and validating file
component as follows (since the Chunk extraction and ANI creation components
had already been verified during the previous stages).

Verification of ReadIconGuts. (Reading icon guts component) We fixed
the bounds of the input-dependent loops of this component to a single loop iter-
ation (Tab. 1) as discussed in Sect. 5.2, and summarized function MatchImage.
This function only returns an integer (a “score”) that does not influence the
control-flow execution of its caller GetBestImage for one loop iteration, so its
visible postcondition postf is very simple. Moreover, MatchImage takes only one
buffer as input, therefore the precondition of its summary includes only bounds-
checking constraints for that buffer. In its caller GetBestImage, the size of this
buffer is always constant and equal to the size of a structure, so MatchImage is at-
tacker memory safe. Overall, when restricting the bounds of the input-dependent
loops in the Reading icon guts component, summarizing MatchImage, and inlin-
ing all the other functions below it in the callgraph, ReadIconGuts contained
468 execution paths that are explored by our tools in 21m 53s.

Verification of ConvertDIBIcon. (Bitmap conversion component) In a sim-
ilar way, we verified this function after summarizing sub-function CopyDibHdr,
whose summarization is also tractable in practice (details not shown here). Af-
ter summarization, ConvertDIBIcon contains 28 execution paths exercised in
1m 58s. Note that, in the Bitmap conversion component, there are no input-
dependent loops; although sub-function ConvertPNGToDIBIcon has loops whose
numbers of iterations depend on this function’s inputs and therefore could not
be verified in isolation, inlining it to its caller ConvertDIBIcon eliminated this
source of path explosion and it was then proven to be attacker memory safe.

Verification of LoadCursorIconFromFileMap. (Reading and validating file
component) This is the very top-level function of the parser and the final piece of
the verification puzzle. Since this final step targets the verification of the entire
parser, it clearly requires the use of summarization to alleviate path explosion.

Fortunately, and perhaps surprisingly, after closely examining the implemen-
tation of the ANI parser’s components, we realized that it is common for their
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Fig. 2. The number of execution paths in the top-level function
LoadCursorIconFromFileMap of the ANI parser and the time (in seconds) it
takes to exercise these paths versus the number of input bytes when summarizing
components Reading icon guts, Bitmap conversion, and ANI creation.

output to be a single “success” or “failure” value. In case “failure” is returned,
the higher-level component typically terminates. In case “success” is returned,
the parsing proceeds but without reading any other sub-component outputs and
with reading other higher-level inputs (such as other bytes that follow in the
input file), i.e., completely independently of the specific path taken in the sub-
component being summarized. Therefore, the visible postcondition of function
summaries with such interfaces is very simple: a success/failure value. This is
the case for the top-level functions of the lower-level components Reading icon
guts, Bitmap conversion, and ANI creation. This was not the case for the Chunk
extraction component, which mainly consists of auxiliary functions but does not
significantly contribute to path explosion and was not summarized.

More specifically, for the verification of LoadCursorIconFromFileMap, we
used three summaries for the following top-level functions of sub-components:
– ReadIconGuts, which returns a pointer to a structure that is checked for

nullness in its callers. Then, caller LoadCursorIconFromFileMap returns null
when this pointer is null. In caller ReadIconFromFileMap, in case the pointer
is non-null, it is passed as argument to ConvertDIBIcon, which has already
been verified for any calling context as described above.

– ConvertDIBIcon: case similar to ReadIconGuts.
– CreateAniIcon, which also returns a pointer to a structure. If this pointer

is null, the parser fails and caller LoadAniIcon emits an error message:
if (frames != 0) ani = CreateAniIcon(...);
if (ani == NULL) EMIT_ERROR("Invalid icon");

Otherwise, the pointer is returned by LoadAniIcon and subsequently by the
top-level function of the parser.
Function LoadCursorIconFromFileMap also has an input-dependent loop

whose number of iterations depends on the size of the input file being read
and containing the ANI file to be parsed. By summarizing the top-level function
of the above three lower-level components and fixing the file size, we were able
to prove memory safety of the parser up to a file size of 110 bytes in less than
12 hours. Fig. 2 shows the number of execution paths in the parser as well as
the time it takes to explore these paths when summarizing components Reading
icon guts, Bitmap conversion, and ANI creation and controlling the file size.
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6 Memory-Safety Bugs
In reality, the verification of the ANI Windows parser was slightly more compli-
cated than presented in the previous section because the ANI parser is actually
not memory safe! Specifically, we found three types of memory-safety violations
during the course of this work:
– real bugs (fixed in the latest version of Windows),
– harmless bugs (off-by-one non-exploitable buffer overflows),
– code parts not memory safe by design.

We briefly discuss each of these memory-safety violations. Details are omitted
on purpose.

Real bugs. We found several buffer overflows all related to the same root
cause. Function ReadIconGuts of the Reading icon guts component allocates
memory for storing a single icon extracted from the input file and returns a
pointer to this memory. The allocated memory is then cast to a structure, whose
fields are read for accessing sub-parts of the icon, such as its header. However,
the size of an icon, and therefore the size of the allocated memory, depends on
the (untrusted) declared size of the images that make up the icon. These sizes
are declared in the ANI file and might not correspond to the actual image sizes.
Consequently, if the declared size of the images is too small, then the size of the
allocated memory is too small, and there are buffer overflows when accessing
the fields of the structure located beyond the allocated memory for the icon.
These buffer overflows have been fixed in the latest version of Windows, but are
believed to be hard to exploit and hence not security critical.

Harmless bugs. We also found several harmless buffer overflows related
to the bugs described above. For instance, function ConvertPNGToDIBIcon of
the Bitmap conversion component converts an icon in PNG format to DIB
(Device Independent Bitmap), and also takes as argument a pointer to the
above structure for the icon. To determine whether an icon is in PNG format,
ConvertPNGToDIBIcon checks whether the icon contains the 8-byte PNG signa-
ture. However, the allocated memory for the icon may be smaller than 8 bytes,
in which case there can be a buffer overflow. Still, on Windows, every memory
allocation (call to malloc) always results in the allocation of a reserved memory
block of at least 8 bytes. So technically, accessing any buffer buf of size less than
8 up to buf+7 bytes is not a buffer overflow according to the Windows runtime
environment—such buffer overflows are harmless to both reliability and security.

Code parts not memory safe by design. Finally, we found memory-
safety violations that were expected and caught as runtime exceptions using
try/except statements. For instance, CopyDibHdr of the Bitmap conversion
component copies and converts an icon header to a common header format. The
size of the memory that is allocated in CopyDibHdr for copying the icon header
depends on color information defined in the header itself. This color information
is read from the input file, and is therefore untrusted. Specifically, it can make
the parser allocate a huge amount of memory, which is often referred to as a
memory spike. Later, the actual header content is copied into this memory. To
check whether the declared size matches the actual size, CopyDibHdr uses a try
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statement to probe the icon header in chunks of 4K bytes, i.e., the minimum page
size, to ensure that the memory is readable and properly initialized. While prob-
ing the icon header inside the try statement, the parser may access unallocated
memory beyond the bounds of the header, which is a memory-safety violation.
However, this violation is expected to be caught in an except statement, which
aborts parsing in higher-level functions.

The verification results of Sect. 5 were obtained after fixing or ignoring the
memory-safety bugs discussed in this section. Those results are therefore sound
only with respect to these additional assumptions.

7 Other Related Work
Traditional interactive program verification, based on static program analy-
sis, verification-condition generation, and theorem proving, provides a broader
framework for proving more complex properties of a larger class of programs but
at the expense of more work from the user. For instance, the VCC [12] project
verified the functional correctness, including memory safety and race freedom, of
the Microsoft Hyper-V hypervisor [27], a piece of concurrent software (100K lines
of C, 5K lines of assembly), and required more than 13.5K lines of source-code
annotations for specifying contracts, loop invariants, and ghost state in about
350 functions by a team of more than 10 people and over a period of several years.
As another impressive example, the seL4 project [25] designed and verified the C
code of a microkernel using the interactive theorem prover Isabelle/HOL [31] and
requiring about 200K lines of Isabelle scripts and 20 years of research in devel-
oping and automating the proofs. Also recently, Typed Assembly Language [29]
(TAL) and the Boogie program verifier [4] were used to prove type and memory
safety of (part of) the Verve operating system [37] (a total of 20 functions imple-
mented in approximately 1.5K lines of x86 assembly), manually annotated with
pre-/postconditions, loop invariants, and external function stubs for a total of
1,185 lines of annotations in about nine months of work.

In contrast, our verification project required only three months of work, no
program annotations, no static program analysis, and no external function stubs,
although our scope was more focused (attacker memory safety only), our appli-
cation domain was different (sequential image parser versus concurrent/reactive
operating-system code), and we did require several key manual verification steps,
including fixing a few input-dependent loop bounds, as discussed in Sect. 5. Note
that our purely dynamic techniques and x86-based tools can handle ANI x86
code patterns such as stack-modifying compiler-injected code for structured ex-
ception handling (SEH prologue and epilogue code for try/except statements)
and stack-guard protection, which most static-analysis tools cannot handle.

Static-analysis-based software model checkers, like SLAM [3], BLAST [23],
and Yogi [32], can automatically prove control-oriented API properties of specific
classes of programs (specifically, device drivers). These tools rely on (predicate)
abstraction in order to scale, and are not engineered to reason precisely about
pointers, memory alignment, and aliasing. They were not designed and cannot
be used as-is for proving (attacker) memory safety of an application as large and
complex as the ANI Windows parser.
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SAT/SMT-based bounded model checkers, as CBMC [11], are another class of
static-analysis tools for automatic program verification. For loop-free programs
and when symbolic execution has perfect precision, the program’s logic repre-
sentation generated by such model checkers is similar to verification-condition
generation and captures both data and control dependencies on all program vari-
ables, which is similar to eagerly summarizing (as in Sect. 2.2) every program
block and function. Even excluding all loops, such a monolithic whole-program
logic encoding would not scale to accurately represent the entire ANI parser.

As shown in Sect. 5, systematic dynamic test generation also does not scale
to the entire ANI parser without the selective use of function summarization and
fixing a few input-dependent loop bounds. These crucial steps were performed
manually in our work. Algorithms and heuristics for automatic program sum-
marization have been proposed before [15, 1, 26] as well as other closely related
techniques [5, 28] and heuristics [21], which can be viewed as approximations
of sub-program summarization. However, none of this prior work on automatic
summarization has ever been applied to verify an application as large and com-
plex as the parser considered here.

We emphasize that we are not aware of any automatic tool that, today, could
prove (attacker) memory safety of an application like the ANI parser. We do not
know which parts of the ANI code are in the subset of C for which tools like
CCured [30] or Prefix [7] are sound, or how many memory-safety checks could be
removed in those parts with such a sound static analysis. However, we do know
that Prefix was run on this code for years, yet bugs remained, which is precisely
why fuzzing is performed later [6].

Proving attacker memory safety, even more so compositionally, is novel: we
prove that an attacker cannot trigger buffer overflows, but ignore other buffer
overflows (for instance, due to the failure of trusted system calls). This requires
a whole-program taint analysis to focus on what the attacker can control, per-
formed using symbolic execution and the top-down strategy of Sect. 5.3. In con-
trast, other approaches like verification-condition generation, bounded model
checking or traditional static analysis lack this global taint view and treat all
program statements alike, without prioritizing the analysis towards parts closest
to the attack surface, which hampers scalability and relevance to security.

8 Concluding Remarks
We showed how to prove attacker memory safety of an entire operating-system
image parser using compositional exhaustive testing, i.e., no static analysis what-
soever. These results required a high-level of automation in our tools and veri-
fication process although key steps were performed manually, like fixing input-
dependent loop bounds, guiding the summarization strategy, and fixing and
avoiding memory-safety violations. Also, the scope of our work was only to
prove attacker memory safety, not general memory safety or functional correct-
ness, and the ANI parser is a purely sequential program. Finally, the verification
guarantees provided by our work are valid only with respect to some important
assumptions we had to make, mostly regarding input-dependent loop bounds.
Overall, after this work, we are now confident that the presence of any remaining
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security-critical (i.e., attacker-controllable) buffer overflows in the ANI Windows
parser is unlikely, but those conclusions are subject to the assumptions we made.

Here are some interesting findings that we did not expect:
– many ANI functions are loop free and were easy to verify (Sect. 5.1);
– all the input-dependent loops in the entire ANI parser are controlled by the

values of about 10 bytes only in any ANI file plus the file size (Sect. 5.2);
– the remaining path explosion can be controlled by using only 5 function

summaries with very simple interfaces (Sect. 5.3).
Our work suggests future directions for automating further several of the

steps that were done manually (e.g., dealing with few but critical input-dependent
loops and program decomposition at cost-effective interfaces). Perhaps future
tools will perform those steps intelligently and automatically.
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A The ANI Windows Parser
The ANI Windows parser handles a structured graphics file format for reading
and storing animated cursors like the spinning ring or hourglass on Windows.
Such animated icons are ubiquitous in practice, and their domain of use ranges
from web pages and blogs, instant messaging and e-mails, to presentations and
video clips. In addition, there are many applications for creating, editing, and
converting these icons to and from different file formats, such as GIF or CUR.

We chose to prove memory safety of this ANI parser as it is one of the smallest
image parsers embedded in Windows. The implementation of the parser is also
within the scope of our tools since it is neither concurrent nor subject to real-time
constraints. Despite this, there are still significant challenges in proving memory
safety of the ANI parser including reasoning about memory dereferences and
exception handling code. Our choice was also motivated by the fact that in 2007
a critical out-of-band security patch was released for code in this parser (MS07-
017) costing Microsoft and its users millions of dollars. This vulnerability was
similar to an earlier one reported in 2005 (MS05-002) meaning that many details
of the ANI parser have already been made public over the years [35, 24]. This
parser is included in all distributions of Windows, i.e., it is used on more than
a billion PCs, and has been fuzzed for years (with SAGE among other tools).
Given the ubiquity of animated icons, our goal was to determine whether the
ANI parser is now free of security-critical buffer overflows.

The general format of an ANI file is shown in Fig. 3. It is based on the
generic Resource Interchange File Format (RIFF) for storing various types of
data in tagged chunks, such as video (AVI) or digital audio (WAV). RIFF has a
hierarchical structure in which each chunk might contain data or a list of other
chunks. Animated icons contain the following information:
– a RIFF chunk, whose header has the identifier ACON, specifies the type of the

file,
– an optional LIST chunk, whose header has the identifier INFO, contains in-

formation about the file, such as the name of the artist,
– an anih header chunk contains information about the animation including

the number of frames, i.e., Windows icons, and the number of steps, i.e., the
total number of times the frames are displayed,

– an optional seq chunk defines the order in which the frames are displayed,
– an optional rate chunk determines the display rate for each frame in the

sequence, and
– a LIST chunk, whose header has the identifier fram, contains a list of icons.

This file format already provides an indication of the size and complexity of the
ANI parser.

The high-level callgraph of the parser code is shown in Fig. 4. The main
component of the architecture, Reading and validating file, reads and validates
each chunk of an ANI file. If an extracted chunk is a LIST fram, the Reading
icon guts component is invoked to read and validate the first icon in the list. In
case the icon is valid, it is converted to a physical bitmap object by the Bitmap
conversion component. Once this process has been repeated for all the icons
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RIFF ACON
[ LIST INFO

IART <artist >
ICOP <copyright >
INAM <name >

]
anih <anihdr >
[ seq <seqinfo > ]
[ rate <rateinfo > ]
LIST fram icon <iconfile > ...

Fig. 3. ANI file format (partial description).

2. Chunk 
extraction 

1. Reading and 
validating file 

4. Bitmap 
conversion 

3. Reading 
icon guts 

5. ANI 
creation 

Fig. 4. High-level callgraph of the ANI parser.

for (i = 0; i < frames ; i++) frameArrT [i] = frameArr [i];
for (i = 0; i < steps; i++) {

if ( rateArr == NULL) rateArrT [i] = rate;
else rateArrT [i] = rateArr [i];
if ( stepArr == NULL) stepArrT [i] = i;
else stepArrT [i] = stepArr [i];

}

Fig. 5. The input-dependent loops in function CreateAniIcon (code fragment). Vari-
ables frames, steps, rateArr, and stepArr are inputs to CreateAniIcon. All arrays
are allocated such that their length is greater than the corresponding loop bound, and
therefore, there are no buffer overflows in this code.

in the list, the animated icon is created from their combination (ANI creation
component).

B Input-Dependent Loops in Function CreateAniIcon
The path explosion in function CreateAniIcon is due its input-dependent loops
shown in Fig. 5. The loop bounds frames, which refers to the number of frames
in an animated cursor, and steps, which refers to the number of steps, are
both inputs to CreateAniIcon, and so are the values of variables rateArr and
stepArr. Since frames and steps are of type int (4 bytes), each loop may
iterate up to 232 times, which leads to the exploration of 232 possible execution
paths in CreateAniIcon, and is intractable in practice. Consequently, to control
path explosion and verify this function, we fixed the values of frames and steps.
For any fixed value of frames, the first loop of Fig. 5 has only 1 execution path,
while for any fixed value of steps, the second loop has always 4 execution paths
due to the tests on the other inputs rateArr and stepArr. Thus, by fixing these
loop bounds to any value from 1 to 232, the number of execution paths in the
loops of Fig. 5 is always 4. Tab. 2 summarizes how the number of paths in
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Input values Number of paths
frames steps

0 0 1
1 0 1

any fixed 0 1
0 1 4
0 any fixed 4

any fixed any fixed 4
Tab. 2. The number of paths in the loops of CreateAniIcon (shown in Fig. 5) changes
when fixing the input-dependent loop bounds frames and steps to different values.

the loops of CreateAniIcon changes when fixing frames and steps to different
values. As Tab. 2 shows, we can prove memory safety of function CreateAniIcon
for any fixed number of frames and steps in an animated cursor.


