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Abstract. Three-valued models and logics have been recently advo-

cated as being more suitable to reason about automatically-generated

abstractions of reactive systems than traditional \2-valued" models such

as standard Kripke structures or Labeled Transition Systems. Indeed,

abstractions speci�ed in 3-valued models are able to distinguish proper-

ties that are true, false and unknown of the concrete system, and hence

their analysis can yield correctness proofs and counter-examples that can

be both guaranteed to be sound. In this paper, we study several 3-valued

modeling formalisms proposed in the literature and show that they have

the same expressiveness, in the sense that any model speci�ed in any of

these formalisms can be translated into a model speci�ed in any other.

We also show that the complexity of the model checking and generalized

model checking problems does not change from one formalism to the

other.

1 Introduction

Program veri�cation via automatic abstraction and model checking is currently

an active area of research (e.g., [BPR01,DDP99,HJMS02]). This approach con-

sists of automatically extracting a model out of a program by statically analyzing

its code, and then of analyzing this model using model-checking techniques. If

the model-checking results are inconclusive due to too much information being

lost in the current abstraction, the model can then be automatically re�ned into

a more detailed one provided the abstraction process can be parameterized and

adjusted dynamically guided by the veri�cation needs, as is the case with pred-

icate abstraction [GS97] for instance. Current frameworks and tools that follow

the above paradigm (e.g., [BR01,HJMS02]) typically use traditional formalisms

(such as Kripke structures or Labeled Transition Systems) for representing mod-

els, while the soundness of their analysis is based on using a simulation relation

for relating the abstract model to the concrete program being analyzed. Two

well-known drawbacks of these design choices are that the scope of veri�cation

is then limited to universal properties, and that counter-examples are gener-

ally unsound since abstraction usually introduces unrealistic behaviors that may

yield spurious errors being reported when analyzing the model.

Recently [GJ02,GHJ01,HJS01,BG00,BG99], it was shown how automatic ab-

straction can be performed to verify arbitrary formulas of the propositional �-

calculus [Koz83] in such a way that both correctness proofs and counter-examples

?
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are guaranteed to be sound. The key to make this possible is to represent abstract

systems using richer models that distinguish properties that are true, false and

unknown of the concrete system. Examples of such richer modeling formalisms

are partial Kripke structures [BG99] and Modal Transition Systems [LT88]. Rea-

soning about such systems requires 3-valued temporal logics [BG99], i.e., tem-

poral logics whose formulas may evaluate to true, false or ? (\unknown") on

a given model. Then, by using an automatic abstraction process that generates

by construction an abstract model which is less complete than the concrete sys-

tem with respect to a completeness preorder logically characterized by 3-valued

temporal logic, every temporal property � that evaluates to true (resp. false)

on the abstract model automatically holds (resp. does not hold) of the concrete

system, hence guaranteeing soundness of both proofs and counter-examples. In

case � evaluates to ? on the model, generalized model checking [BG00,GJ02]

can be used to check whether there exist concretizations of the abstract model

that satis�es � or violates �; if a negative answer is obtained in either one of

these two tests, � does not hold (resp. holds) of the concrete system. Otherwise,

the analysis is still inconclusive and a more complete (i.e., less abstract) model

is then necessary to provide a de�nite answer concerning this property of the

concrete system. This approach is applicable to check arbitrary formulas of the

propositional �-calculus (thus including negation and arbitrarily nested path

quanti�ers), not just universal properties as with a traditional \conservative"

abstraction that merely simulates the concrete system. It is shown in [GHJ01]

that building a 3-valued abstraction can be done using existing abstraction tech-

niques at the same computational cost as building a conservative abstraction.

See [GJ02] for examples of programs and properties that cannot be veri�ed using

traditional conservation abstraction.

In this paper, we study and compare several 3-valued modeling formalisms

that have been proposed in the literature, namely partial Kripke structures [BG99],

Modal Transition Systems [LT88], and KripkeModal Transition Systems [HJS01].

We de�ne procedures for translating models speci�ed in any of these formalisms

into models speci�ed in any other. As a corollary of these translations, we show

that these modeling formalisms have the same expressiveness. We also study

properties of these translations, and show that the model checking and general-

ized model checking problems can be both reduced from one formalism to any

other. We then conclude by discussing applications and consequences of these

results, as well as why these formalisms complement each other.

2 Background: 3-Valued Modeling Formalisms

In this section we recall the de�nitions of several 3-valued models used in the

literature, as well as of temporal logics interpreted over them.

2.1 Partial Kripke Structures

The �rst 3-valued model we review is the partial Kripke structure as de�ned

in [BG99,BG00]. A partial Kripke structure is simply a Kripke structure whose



atomic propositions can have a third truth value ?, which means \unknown

whether true or false". Formally, we have the following.

De�nition 1. A partial Kripke structure (PKS) M is a tuple (S; P;!; L),

where S is a set of states, P is a set of atomic propositions, !� S � S is

a transition relation on S, and L : S � P ! ftrue;?; falseg is an interpretation

that associates a truth value in ftrue;?; falseg with each atomic proposition in

P for each state in S.

A standard Kripke structure is a special case of partial Kripke structure. We

sometimes refer to standard Kripke structures as complete Kripke structures to

emphasize that no propositions within them take value ?. In what follows, we

often write s! s

0

as shorthand for (s; s

0

) 2!.

Propositional operators are interpreted on PKSs using Kleene's strong 3-

valued propositional logic [Kle87]. Conjunction ^ in this logic is de�ned as the

function that returns true if both of its arguments are true, false if either argu-

ment is false, and ? otherwise. We de�ne negation : using the function `comp'

that maps true to false, false to true, and ? to ?. Disjunction _ is de�ned as

usual using De Morgan's laws: p _ q = :(:p ^ :q). Note that these functions

give the usual meaning of the propositional operators when applied to values

true and false.

Propositional modal logic (PML) is propositional logic extended with the

modal operator AX (which is read \for all immediate successors"). Formulas of

PML have the following abstract syntax: � ::= p j :� j �

1

^ �

2

j AX�, where

p ranges over P . The following 3-valued semantics generalizes the traditional

2-valued semantics for PML.

De�nition 2. The value of a formula � of 3-valued PML in a state s of a PKS

M = (S; P;!; L), written [(M; s) j= �], is de�ned inductively as follows:

[(M; s) j= p] = L(s; p)

[(M; s) j= :�] = comp([(M; s) j= �])

[(M; s) j= �

1

^ �

2

] = [(M; s) j= �

1

] ^ [(M; s) j= �

2

]

[(M; s) j= AX�] =

^

s!s

0

[(M; s

0

) j= �]:

This 3-valued logic can be used to de�ne a preorder on KMTSs that reects

their degree of completeness. Let � be the information ordering on truth values,

in which ? � true, ? � false, x � x (for all x 2 ftrue;?; falseg), and x 6� y

otherwise.

De�nition 3. Let M

1

= (S

1

; P;!

1

; L

1

) and M

2

= (S

2

; P;!

2

; L

2

) be partial

Kripke structures. The completeness preorder � is the greatest relation B �

S

1

� S

2

such that (s

1

; s

2

) 2 B implies the following:

{ 8p 2 P : L

1

(s

1

; p) � L

2

(s

2

; p),

{ if s

1

! s

0

1

then there is some s

0

2

2 S

2

such that s

2

! s

0

2

and (s

0

1

; s

0

2

) 2 B,

{ if s

2

! s

0

2

then there is some s

0

1

2 S

1

such that s

1

! s

0

1

and (s

0

1

; s

0

2

) 2 B.



Intuitively, s

1

� s

2

means that s

1

and s

2

are \nearly bisimilar" except that the

atomic propositions in state s

1

may be less de�ned than in state s

2

. The follow-

ing theorem states that 3-valued PML logically characterizes the completeness

preorder on PKSs [BG99].

Theorem 1. Let M

1

= (S

1

; P;!

1

; L

1

) and M

2

= (S

2

; P;!

2

; L

2

) be partial

Kripke structures such that s

1

2 S

1

and s

2

2 S

2

, and let � be the set of all

formulas of 3-valued PML. Then

s

1

� s

2

i� (8� 2 � : [(M

1

; s

1

) j= �] � [(M

2

; s

2

) j= �]):

In other words, partial Kripke structures that are \more complete" with respect

to � have more de�nite properties with respect to �, i.e., have more properties

that are either true or false. Moreover, any formula � of 3-valued PML that

evaluates to true or false on a partial Kripke structure has the same truth value

when evaluated on any more complete structure. This result also holds for PML

extended with �xpoint operators [BG00], also known as the propositional �-

calculus [Koz83].

2.2 Modal Transition Systems

Modal Transitions Systems are a generalization of Labeled Transition Systems

introduced in [LT88,Lar89].

De�nition 4. A Modal Transition System (MTS) M is a tuple (S;�;

must

�! ;

may

�!

), where S is a set of states, � is a set of action symbols,

must

�!� S �� �S and

may

�!� S �� � S are transition relations such that

must

�!�

may

�!.

An MTS is thus a Labeled Transition System (LTS) with two types of transi-

tions, must and may transitions, with the additional constraint that every must-

transition is also a may-transition. Reasoning about the existence of transitions

of MTSs can be viewed as reasoning with a three-valued logic: transitions that

are necessarily true are true, transitions that are possibly true but not necessar-

ily true are ?, and transitions that are not possibly true are false. Formally, we

can de�ne a 3-valued PML on MTSs, let us denote it PML

Act

, whose abstract

syntax is de�ned recursively as follows: � ::= tt j :� j �

1

^ �

2

j (8a)�, where a

ranges over �. The semantics of these operators can be de�ned as follows.

De�nition 5. The value of a formula � of 3-valued PML

Act

in a state s of

an MTS M = (S;�;

must

�! ;

may

�!), written [(M; s) j= �], is de�ned inductively as

follows:

[(M; s) j= tt] = true

[(M; s) j= :�] = comp([(M; s) j= �])

[(M; s) j= �

1

^ �

2

] = [(M; s) j= �

1

] ^ [(M; s) j= �

2

]

[(M; s) j= (8a)�] =

8

>

<

>

:

true if 8(s; a; s

0

) 2

may

�!: [(M; s

0

) j= �] = true

false if 9(s; a; s

0

) 2

must

�! : [(M; s

0

) j= �] = false

? otherwise



The above semantics is equivalent to the one that appeared in [HJS01,GHJ01].

We use this alternate form to facilitate the comparison with other models in

later sections.

The degree of completeness of MTSs can be measured by the following com-

pleteness preorder (whose inverse is called \re�nement preorder" [LT88]).

De�nition 6. Let M

1

= (S

1

; �;

must

�!

1

;

may

�!

1

) and M

2

= (S

2

; �;

must

�!

2

;

may

�!

2

) be

MTSs. The completeness preorder � is the greatest relation B � S

1

� S

2

such

that (s

1

; s

2

) 2 B implies the following:

{ if (s

1

; a; s

0

1

) 2

must

�!

1

, there is some s

0

2

2 S

2

such that (s

2

; a; s

0

2

) 2

must

�!

2

and

(s

0

1

; s

0

2

) 2 B,

{ if (s

2

; a; s

0

2

) 2

may

�!

2

, there is some s

0

1

2 S

1

such that (s

1

; a; s

0

1

) 2

may

�!

1

and

(s

0

1

; s

0

2

) 2 B.

Again, s

1

� s

2

means that s

1

is more abstract (i.e., less complete) than s

2

.

This de�nition allows to abstract a system M

2

by a more abstract system M

1

by letting must-transitions of M

2

become may-transitions in M

1

, but all may-

transitions of M

2

must be preserved in M

1

. It can be shown that this complete-

ness preorder is logically characterized by 3-valued PML [HJS01,GHJ01].

Theorem 2. Let M

1

= (S

1

; �;

must

�!

1

;

may

�!

1

) and M

2

= (S

2

; �;

must

�!

2

;

may

�!

2

) be

MTSs such that s

1

2 S

1

and s

2

2 S

2

, and let � be the set of all formulas of

3-valued PML

Act

. Then,

s

1

� s

2

i� (8� 2 � : [(M

1

; s

1

) j= �] � [(M

2

; s

2

) j= �]):

2.3 Kripke Modal Transition Systems

A third model we consider here is (a simpli�ed version of) the Kripke Modal

Transition Systems introduced in [HJS01]. This model combines features of both

PKSs and MTSs, although it does not increase their expressiveness as will be

shown later in this paper. Precisely, we de�ne a Kripke Modal Transition System

as follows [GJ02].

De�nition 7. A Kripke Modal Transition System (KMTS) M is a tuple (S; P;

must

�! ;

may

�!; L), where S is a nonempty �nite set of states, P is a �nite set of atomic

propositions,

may

�!� S � S and

must

�!� S � S are transition relations such that

must

�!�

may

�!, and L : S � P ! ftrue;?; falseg is an interpretation that associates

a truth value in ftrue;?; falseg with each atomic proposition in P for each state

in S.

Clearly, KMTSs generalize PKSs since a PKS is a KMTS where

must

�!=

may

�!.

Reasoning about KMTSs can be done using the same 3-valued PML de�ned as

for PKSs provided that we modify the semantics of the AX operator to account

for the presence of must and may transitions as follows:



De�nition 8. The value of a formula � of 3-valued PML in a state s of a KMTS

M = (S; P;

must

�! ;

may

�!; L), written [(M; s) j= �], is de�ned inductively as follows:

[(M; s) j= p] = L(s; p)

[(M; s) j= :�] = comp([(M; s) j= �])

[(M; s) j= �

1

^ �

2

] = [(M; s) j= �

1

] ^ [(M; s) j= �

2

]

[(M; s) j= AX�] =

8

>

<

>

:

true if 8s

0

: s

may

�! s

0

) [(M; s

0

) j= �] = true

false if 9s

0

: s

must

�! s

0

^ [(M; s

0

) j= �] = false

? otherwise

The completeness preorder on KMTSs is then the following.

De�nition 9. Let M

1

= (S

1

; P;

must

�!

1

;

may

�!

1

; L

1

) and M

2

= (S

2

; P;

must

�!

2

;

may

�!

2

; L

2

) be KMTSs. The completeness preorder � is the greatest relation B �

S

1

� S

2

such that (s

1

; s

2

) 2 B implies the following:

{ 8p 2 P : L

1

(s

1

; p) � L

2

(s

2

; p),

{ if s

1

must

�!

1

s

0

1

, there is some s

0

2

2 S

2

such that s

2

must

�!

2

s

0

2

and (s

0

1

; s

0

2

) 2 B,

{ if s

2

may

�!

2

s

0

2

, there is some s

0

1

2 S

1

such that s

1

may

�!

1

s

0

1

and (s

0

1

; s

0

2

) 2 B.

Thus, the completeness preorder on KMTSs also generalizes the completeness

preorder on PKSs. It can be shown that this completeness preorder is logically

characterized by 3-valued PML as de�ned above [GJ02].

Theorem 3. Let M

1

= (S

1

; P;

must

�!

1

;

may

�!

1

); L

1

and M

2

= (S

2

; P;

must

�!

2

;

may

�!

2

; L

2

) be KMTSs such that s

1

2 S

1

and s

2

2 S

2

, and let � be the set of all

formulas of 3-valued PML. Then,

s

1

� s

2

i� (8� 2 � : [(M

1

; s

1

) j= �] � [(M

2

; s

2

) j= �]):

2.4 Model Checking and Generalized Model Checking

Computing the value of [(M; s) j= �] is referred to as the model checking problem

in what follows. As argued in [BG00], the semantics of [(M; s) j= �] returns ?

more often that it should. For instance, consider a KMTS M with two states

s

0

and s

1

such that p = q = true in s

0

and p = q = false in s

1

, and with

a may-transition from s

0

to s

1

. The formula AXp ^ :AXq (which is neither

a tautology nor unsatis�able) is ? at s

0

, yet in all complete structures more

complete than (M

0

; s

0

) the formula is false. This observation is used in [BG00]

to de�ne an alternative 3-valued semantics for modal logics called the thorough

semantics since it does more than the other semantics to discover whether enough

information is present in a model to give a de�nite answer. Let the completions

C(M; s) of a state s of a model M be the set of all states s

0

of complete models

M

0

such that s � s

0

.



De�nition 10. Let � be a formula of any two-valued logic for which a satisfac-

tion relation j= is de�ned on complete models. The truth value of � in a state s of

a model M under the thorough interpretation, written [(M; s) j= �]

t

, is de�ned

as follows:

[(M; s) j= �]

t

=

8

<

:

true if (M

0

; s

0

) j= � for all (M

0

; s

0

) in C(M; s)

false if (M

0

; s

0

) 6j= � for all (M

0

; s

0

) in C(M; s)

? otherwise

By de�nition, we always have [(M; s) j= �] � [(M; s) j= �]

t

. In general, inter-

preting a formula according to the thorough three-valued semantics is equivalent

to solving two instances of the generalized model-checking problem [BG00].

De�nition 11 (Generalized Model-Checking Problem). Given a state s

of a model M and a formula � of a (two-valued) temporal logic L, does there

exist a state s

0

of a complete model M

0

such that s � s

0

and (M

0

; s

0

) j= � ?

In other words, generalized model checking means checking whether there exists a

completion of an abstraction that satis�es a temporal logic formula. This problem

is called generalized model checking since it generalizes both model checking

and satis�ability checking: at one extreme, whenM is completely unknown (i.e.,

unconstrained), all complete models are more complete thanM and the problem

reduces to the satis�ability problem; at the other extreme, when M is complete,

only a single structure needs to be checked and the problem reduces to model

checking. Model checking and generalized model checking are the two main types

of analyses of 3-valued models we consider in what follows.

3 Translation from PKS to MTS

We start by showing how to translate PKSs to MTSs. This can simply be done

as follows.

De�nition 12. For any PKS M = (S; P;!; L), we de�ne an equivalent MTS

M

0

= (S

0

; �;

must

�! ;

may

�!) such that

{ S

0

= S [ fs

new

g,

{ � = P [ fxg,

{

must

�!= f(s; p; s

new

)jL(s; p) = trueg [ f(s; x; s

0

)js! s

0

g, and

{

may

�!= f(s; p; s

new

)jL(s; p) 2 ftrue;?gg [ f(s; x; s

0

)js! s

0

g.

Note that the previous de�nition does indeed generate an MTS since we always

have

must

�!�

may

�! by construction. Given an input PKSM of size O(j ! j+jSj�jP j),

the size of the output MTS M

0

produced by De�nition 12 is O(j

must

�! j+ j

may

�! j)

= O(j ! j+ jSj � jP j), i.e., linear in the size of the input. We can show that the

above translation preserves the completeness preorder.



Theorem 4. Given any two PKSs (M; s

m

) and (N; s

n

), let M

0

and N

0

denote

the corresponding MTSs obtained by applying De�nition 12. Then, we have

(M; s

m

) � (N; s

n

) i� (M

0

; s

m

) � (N

0

; s

n

):

Proof. (Sketch)

1

Assuming (M; s

m

) � (N; s

n

), we de�ne a binary relation R on the

states of M

0

and N

0

such that sRt if s � t or s = t = s

new

; then we show that R

satis�es the conditions of De�nition 6. Conversely, assuming (M

0

; s

m

) � (N

0

; s

n

), we

de�ne a binary relation R on the states of M and N such that sRt if s � t with

s; t 6= s

new

; it can be shown that R satis�es the conditions of De�nition 3.

We can also prove the following.

Lemma 1. Let M be a PKS and M

0

be the corresponding MTS obtained by

applying De�nition 12. If there exists an MTS Q such that (M

0

; s

m

) � (Q; s

q

),

then there exists a PKS N such that (N

0

; s

n

) � (Q; s

q

) and (Q; s

q

) � (N

0

; s

n

),

where N

0

denotes the translation of N by De�nition 12.

Proof. (Sketch) Let Q = (S;�;

must

�! ;

may

�!), let s

new

denote the state of M

0

de�ned

as in De�nition 12, and let S

new

= fs 2 Sjs

new

� sg. Then we de�ne a PKS N =

(S

0

; P;!; L) from Q as follows: S

0

= S n S

new

, P = � n fxg, != f(s; s

0

) 2 (S n

S

new

) � (S n S

new

)j(s; x; s

0

) 2

must

�!g, and L(s; p) = true if 9s

0

2 S

new

: (s; p; s

0

) 2

must

�! ,

or L(s; p) = false if 8s

0

2 S

new

: (s; p; s

0

) 62

may

�!, or L(s; p) =? otherwise. It is then easy

to show that (N

0

; s

n

) � (Q; s

q

) and (Q; s

q

) � (N

0

; s

n

).

PML temporal-logic formulas de�ned on PKSs can be translated into PML

Act

formulas de�ned on MTSs as follows.

De�nition 13. Given any PML formula � de�ned on PKSs with a set P of

atomic propositions, we de�ne an equivalent PML

Act

formula T (�) de�ned on

MTSs with action alphabet � = P [ fxg by applying recursively the following

rewrite rules:

{ for all p 2 P , T (p) = (9p)tt = :(8p):tt,

{ T (:�) = :T (�),

{ T (�

1

^ �

2

) = T (�

1

) ^ T (�

2

),

{ T (AX�) = (8x)T (�).

The next theorem states that the model and formula translations of De�ni-

tions 12 and 13 can be used to reduce (in linear time and logarithmic space) the

model checking and generalized model checking problems from PKSs to MTSs.

Theorem 5. Given any PKSM and formula � de�ned on PKSs, let M

0

denote

the MTS obtained by applying De�nition 12 and let T (�) denote the translated

formula obtained by applying De�nition 13. Then, we have the following:

1. [(M; s) j= �] = [(M

0

; s) j= T (�)]

2. [(M; s) j= �]

t

= [(M

0

; s) j= T (�)]

t

1

Complete proofs are omitted in this extended abstract due to space limitations.



Proof. (Sketch) (1) is proved by induction on the length of �. (2) is proved as follows:

if [(M; s) j= �]

t

= true, i.e., if there exists s

0

2 N such that s � s

0

and [(N; s

0

) j= �] =

true, then (M

0

; s) � (N

0

; s

0

) by Theorem 4 and we have [(N

0

; s

0

) j= T (�)] = true by

(1), hence [(M

0

; s) j= T (�)]

t

= true; conversely, if [(M

0

; s) j= T (�)]

t

= true, i.e., there

exists s

0

2 Q such that (M

0

; s) � (Q; s

0

) and [(Q; s

0

) j= T (�)] = true, then there exists

N such that N

0

� Q and Q � N

0

by Lemma 1 and we also have (M; s) � (N; s

0

) by

Theorem 4 and [(N; s

0

) j= �] = true by (1), hence [(M; s) j= �]

t

= true. The case where

[(M; s) j= �]

t

= false is similar.

4 Translation from MTS to KMTS

The second translation we consider is from MTSs to KMTSs. We present in this

section results of the same nature as those of the previous section. A translation

from MTSs to KMTSs that preserves the completeness preorder can be de�ned

as follows.

De�nition 14. For any MTS M = (S;�;

must

�! ;

may

�!), we de�ne an equivalent

KMTS M

0

= (S

0

; P;

must

�!

0

;

may

�!

0

; L) such that

{ S

0

= S ��,

{ P = �,

{

must

�!

0

= f((s; a); (s

0

; a

0

))j(s; a

0

; s

0

) 2

must

�!g,

{

may

�!

0

= f((s; a); (s

0

; a

0

))j(s; a

0

; s

0

) 2

may

�!g, and

{ 8(s; a) 2 S

0

: 8p 2 P : L((s; a); p) = true if p = a or L((s; a); p) = false

otherwise.

The previous de�nition thus simply replaces transition labels by state labels.

Given an MTS with jSj states and an action set �, the number of states in the

translated KMTSM

0

de�ned by De�nition 14 is at most jSj � j�j. In other words,

each state ofM can be copied at most j�j times in M

0

. For a �xed action set �,

the number of states and transitions in M

0

is nevertheless linear in the number

of states and transitions, respectively, in M .

Note that the above translation only uses atomic propositions p 2 P whose

truth value is always de�ned as either true or false. However, it does not seem

possible to improve this translation by using the third unused value ?. Indeed,

in the particular case of a MTS which is completely de�ned, i.e., such that

must

�!=

may

�!, the above translation then becomes the traditional translation from

LTSs to Kripke structures whose states are pairs of states and actions of the

LTS [MSS99], the latter translation being also similar to the classic translation

from Mealy automata to Moore automata [HU79].

The translation above preserves the completeness preorder.

Theorem 6. Given any two MTSs (M; s

m

) and (N; s

n

), let M

0

and N

0

denote

the corresponding KMTSs obtained by applying De�nition 14. Then, for all a 2

�, we have

(M; s

m

) � (N; s

n

) i� (M

0

; (s

m

; a)) � (N

0

; (s

n

; a)):



Proof. (Sketch) Given (M; s

m

) � (N; s

n

), we de�ne a binary relation R on the states

of M

0

and N

0

such that (s; a)R(t; b) if s � t and a = b; then we show that R satis�es

the conditions of De�nition 9. Conversely, assuming (M

0

; (s

m

; a)) � (N

0

; (s

n

; a)), we

de�ne a binary relation R on the states of M and N such that sRt if (s; a) � (t; a)

with s; t 2 S; R can be shown to satisfy the conditions of De�nition 6.

We also have the following.

Lemma 2. Let M be a MTS and M

0

be the corresponding KMTS obtained by

applying De�nition 14. If there exists a KMTS Q such that (M

0

; s

m

) � (Q; s

q

),

then there exists a MTS N such that N

0

= Q, where N

0

denotes the translation

of N by De�nition 14.

Proof. (Sketch) Let Q = (S; P;

must

�! ;

may

�!; L). Since (M

0

; s

m

) � (Q; s

q

), we know that,

in every state s 2 S, there is exactly one proposition p in P that is true in s while all

other propositions in P are then false in s. We de�ne an MTS N = (S; P;

must

�!

0

;

may

�!

0

)

from the KMTS Q as follows:

must

�!

0

= f(s; p; s

0

)j(s; s

0

) 2

must

�! and L(s

0

; p) = trueg, and

may

�!

0

= f(s; a; s

0

)j(s; s

0

) 2

may

�! and L(s

0

; p) = trueg. Clearly, N

0

= Q.

PML

Act

formulas can be translated into PML formulas as follows.

De�nition 15. Given any formula � de�ned on MTSs with an action set �,

we de�ne an equivalent formula T (�) de�ned on KMTSs with a set P

0

= � of

atomic propositions by applying recursively the following rewrite rules:

{ T (tt) = true,

{ T (:�) = :T (�),

{ T (�

1

^ �

2

) = T (�

1

) ^ T (�

2

),

{ T ((8a)�) = AX((:a) _ T (�)).

The right term of the last rule is thus equivalent to AX(a ) T (�)) where )

denotes logical implication. The correctness of this formula translation is again

de�ned by showing a reduction of the model checking and generalized model

checking problems on MTSs to KMTSs.

Theorem 7. Given any MTSM and formula � de�ned on MTSs, letM

0

denote

the KMTS obtained by applying De�nition 14 and let T (�) denote the translated

formula obtained by applying De�nition 15. Then, for any a 2 �, we have the

following:

1. [(M; s) j= �] = [(M

0

; (s; a)) j= T (�)]

2. [(M; s) j= �]

t

= [(M

0

; (s; a)) j= T (�)]

t

Proof. Similar to the proof of Theorem 5.



5 Translation from KMTS to PKS

The third and last translation we discuss is from KMTSs to PKSs. This trans-

lation is more elaborate than the two previous ones. We start by showing how

to translate a KMTS to a PKS with the goal of reducing model checking and

generalized model checking from KMTSs to PKSs.

De�nition 16. For any KMTS M = (S; P;

must

�! ;

may

�!; L), we de�ne an equiva-

lent PKS M

0

= (S

0

; P

0

;!

0

; L

0

) such that

{ S

0

= S � fmust;mayg,

{ P

0

= P [ fp

must

g,

{ !

0

= f((s; x); (s

0

; x

0

))j(s; s

0

) 2

may

�!; x

0

= must if (s; s

0

) 2

must

�! or x

0

= may

otherwiseg,

{ 8(s; x) 2 S

0

: 8p 2 P : L

0

((s; x); p) = L(s; p), and L

0

((s; x); p

must

) = true if

x = must or L

0

((s; x); p

must

) =? otherwise.

Two examples of KMTSsM and N and their PKS translationsM

0

and N

0

with

the previous de�nition are shown in Figure 1. These KMTSs have a single atomic

proposition p whose value is de�ned in each state as indicated in the �gure. The

dotted transition in M is a may-transition that is not a must-transition.

We now de�ne a translation of temporal-logic formulas on KMTSs to formulas

on PKSs.

De�nition 17. Given any formula � de�ned on KMTSs with a set P of atomic

propositions, we de�ne an equivalent formula T (�) de�ned on PKSs with a set

P

0

= P [ fp

must

g of atomic propositions by applying recursively the following

rewrite rules:

{ for all p 2 P , T (p) = p,

{ T (:�) = :T (�),

{ T (�

1

^ �

2

) = T (�

1

) ^ T (�

2

),

{ T (AX�) = AX(p

must

) T (�)) = AX((:p

must

) _ T (�)).

The next theorem states that model checking and generalized model checking

can be reduced (in linear time and logarithmic space) from KMTSs to PKSs.

Theorem 8. Given any KMTS M and formula � de�ned on KMTSs, let M

0

denote the PKS obtained by applying De�nition 16 and let T (�) denote the trans-

lated formula obtained by applying De�nition 17. Then, we have the following:

1. [(M; s) j= �] = [(M

0

; (s;must)) j= T (�)]

2. [(M; s) j= �]

t

= [(M

0

; (s;must)) j= T (�)]

t

Proof. (Sketch) The proof of (1) is by induction on the length of the formula. To

prove (2), we show that, if (N; t) is a complete KMTS such that (M; s) � (N; t), then

there exists a PKS M

00

such that (M

0

; (s;must)) � (M

00

; r) and [(M

00

; r) j= T (�)] =

[(N

0

; (t;must)) j= T (�)] = [(N; t) j= �]. Next we show that, if (Q; r) is a complete

PKS such that (M

0

; (s;must)) � (Q; r), then there exists a complete KMTS (N; t)

such that the translation N

0

of N by De�nition 16 is equal to the part of Q containing

all the states where p

must

= true; we �nally show that (M; s) � (N; t) and that

[(N; t) j= �] = [(N

0

; (t

0

;must)) j= T (�)] = [(Q; r) j= T (�)].
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Fig. 1. Examples of KMTSs and of their translations. KMTSs M and N (left) are

translated into PKSs M

0

and N

0

(middle) using De�nition 16, and into PKSs M

00

and

N

00

(right) using De�nition 18.

In other words, the model and formula translations of De�nitions 16 and 17 can

be used to reduce (in linear time and logarithmic space) the model checking and

generalized model checking problems from KMTSs to PKSs.

It is worth noticing that the translation from KMTS to PKS of De�nition 16

does not preserve the completeness preorder: for any two KMTSs M and N

and their respective PKS translations M

0

and N

0

obtained by applying the

construction of De�nition 16, M � N does not necessarily imply that M

0

� N

0

.

For instance, consider the KMTSs M and N of Figure 1. Clearly, (M; s

0

) �

(N; s

0

0

) but (M

0

; (s

0

;must)) 6� (N

0

; (s

0

0

;must)) since the second condition of

De�nition 3 is not satis�ed for transition ((s

0

;must); (s

2

;may)) of M

0

which

cannot be matched in N

0

.

However, it is possible to design a translation from KMTS to PKS that does

preserve the completeness preorder. Such a translation is now presented.

De�nition 18. For any KMTS M = (S; P;

must

�! ;

may

�!; L), we de�ne an equiva-

lent PKS M

0

= (S

0

; P

0

;!

0

; L

0

) such that

{ S

0

= S � fmust;mayg [ f(q;?); (q; true)jq 2 2

P

g,

{ P

0

= P [ fp

must

; p

dummy

g,

{ !

0

= f((s; x); (s

0

;may))j(s; s

0

) 2

may

�!g [ f((s; x); (s

0

;must))j(s; s

0

) 2

must

�!g [

f((s; x); (q;?))j(s; x) 2 S � fmust;mayg and q 2 2

P

g [ f((q;?); (q

0

; true));

((q; true); (q

0

; true))jq; q

0

2 2

P

g,

{ 8(s; x) 2 S�fmust;mayg, 8p 2 P : L

0

((s; x); p) = L(s; p), L

0

((s; x); p

dummy

)

=?, L

0

((s; x); p

must

) = true if x = must or L

0

((s; x); p

must

) =? otherwise;

8q 2 2

P

; x 2 f?; trueg, L

0

((q; x); p

dummy

) = true, L

0

((q; x); p

must

) = x and

8p 2 P : L

0

((q; true); p) = true if p 2 q or L

0

((q; true); p) = false otherwise.



Considering again the KMTSs M and N of Figure 1, the previous de�nition

generates the PKSs M

00

and N

00

respectively, where (Q; x) denotes the whole

cluster of states f(q; x)jq 2 2

P

g. The reader can check that (M

00

; (s

0

;must)) �

(N

00

; (s

0

0

;must)). Although the number of states of the form (q; x) is exponential

in jP j, the number of states and transitions in the resulting PKS M

0

is linear in

the number of states and transitions, respectively, of the input KMTS M . The

correctness of the previous translation is de�ned as follows.

Theorem 9. Given any two KMTSs (M; s

m

) and (N; s

n

), letM

0

and N

0

denote

the corresponding PKSs obtained by applying De�nition 18. Then, we have

(M; s

m

) � (N; s

n

) i� (M

0

; (s

m

;must)) � (N

0

; (s

n

;must)):

Proof. Omitted here due to space limitations.

An interesting corollary of the previous theorem is that checking whether M

0

�

N

0

between two PKSs M

0

and N

0

is as hard as checking whether M � N

between two KMTSs. Since the latter problem is itself in general at least as

hard as checking for a simulation relation between M and N (since � reduces

to a simulation relation in the case of KMTSs with no must-transitions), this

implies that checking whetherM

0

� N

0

between two PKSs can be as expensive as

checking the existence of a simulation between them, which may not be obvious

when looking at De�nition 3.

Finally, note that this second more elaborate translation can also be used to

reduce model checking and generalized model checking from KMTSs to PKSs

provided another, more complicated, formula translation T (�) (not presented

here due to space constraints) is used.

6 Applications, Discussion and Other Related Work

The translations and theorems of the previous sections make it possible to derive

several new results concerning the expressiveness and conciseness of the 3-valued

models considered, as well as the complexity of model checking and generalized

model checking for these models.

The �rst result we obtain is that Partial Kripke Structures, Modal Transition

Systems and Kripke Model Transition Systems are all equally expressive. In other

words, any PKS, MTS or KMTS can be translated into any other of these

formalisms using the translations de�ned in Sections 3 to 5, or any combination

of these translations. In what follows, let us denote by \3-valued formalism"

either a PKS, MTS or KMTS.

Second, following Theorems 5 and 7 and 8, any model checking or generalized

model checking problem de�ned on any 3-valued formalism can be reduced to

a model checking or generalized model checking problem, respectively, on any

other of these formalisms. These results hold not only for PML, but also for PML

extended with �xpoint operators, i.e., the propositional �-calculus [Koz83], and

hence all of its fragments (such as LTL, CTL and CTL

�

). This extension to the



�-calculus follows immediately from the facts that the completeness preorder is

logically characterized by both PML and the �-calculus (exactly as bisimula-

tion is logically characterized by both PML and the �-calculus in the 2-valued

case), and that �xpoint operators are left unchanged when translating �-calculus

formulas from one formalism to another (formula translation essentially a�ects

modal operators only).

Third, since the translations of the previous sections require only linear time

and logarithmic space in the size of their inputs and can be applied to translate

any 3-valued formalism into any other in both directions, both upper and lower

complexity bounds for problems de�ned on any of these formalisms carry over

to the other formalisms. In particular, the algorithms and complexity bounds

for the model checking and generalized model checking problems obtained with

PKSs in [BG00] and with KMTSs in [GJ02] apply equally to all three formalisms.

Speci�cally, these translations extend the scope of the results of [BG00] and

formally prove that, for any 3-valued formalism, 3-valued model checking for any

temporal logic L has the same time and space complexity, both in the size of the

model and of the formula, as traditional 2-valued model checking for the logic

L. This new result subsumes the direct model-checking procedures of [GHJ01]

for MTSs and of [Hut02a] for KMTSs.

Concerning the complexity of generalized model checking in the size of the

formula, a similar extension of the results of [BG00] is possible thanks to the

translations: for any 3-valued formalism, in the case of a branching-time temporal

logic L (such as CTL, CTL

�

, the mu-calculus, PML and also propositional logic),

generalized model checking for L has the same complexity in the size of the

formula as satis�ability checking for L, while in the case of linear-time temporal

logic (LTL), generalized model checking is EXPTIME-complete in the size of

the formula, i.e., harder than both satis�ability and model checking (which are

both PSPACE-complete for LTL).

Regarding the complexity of generalized model checking in the size of the

model, we note that the formula translations of Sections 3 to 5 preserve the

co-B�uchi recognizability of formulas: if a property represented by a temporal

formula � is recognizable by an automaton (on in�nite trees or words, depending

if � is a branching or linear property, respectively) with a co-B�uchi acceptance

condition, then the property represented by the temporal property T (�) is also

recognizable by an automaton with a co-B�uchi acceptance condition. Therefore,

the complexity results of [GJ02] can be extended to cover any 3-valued formal-

ism: the worst-case runtime complexity of generalized model checking for the

temporal logics LTL and CTL can be quadratic in the size of the model for any

3-valued formalism, but generalized model checking can be solved in time linear

in the size of the model in the case of persistence properties, i.e., properties

recognizable by co-B�uchi automata.

Notice that one could think at �rst sight that generalized model checking for

KMTSs and MTSs is exponential in the size of the KMTS/MTS M since the

number of possible completions of a set N of may-transitions from any given

state is 2

jN j

. Instead, our linear translation from KMTSs to PKSs presented in



the previous section proves that considering one-by-one the exponentially-many

subsets of N is not necessary, and that generalized model checking can be done

in polynomial time (linear or quadratic) in jN j.

Since PKSs, MTSs and KMTSs are all equally expressive, one can wonder

why three di�erent yet equivalent models have been proposed in the literature.

Let us �rst observe that the equivalence of their expressiveness is not as straight-

forward as one might think (see the results of the previous sections). More impor-

tantly, these di�erent formalisms are useful to facilitate abstraction of di�erent

aspects of reactive systems. PKSs generalize Kripke structures which model state

changes of reactive systems, while MTSs generalize LTSs which model the ex-

ternal behavior of a system (i.e., sequences of actions the system can perform).

Although equivalent themselves, Kripke structures and LTSs provide comple-

mentary views for reasoning about reactive systems, and PKS versus MTS is just

an extension of this duality. Indeed, PKSs conveniently model state abstractions

while MTSs are a natural formalism for representing transition abstractions.

The third 3-valued formalism, KMTSs, was created with the purpose of unify-

ing both views by combining features of both PKSs and MTSs [HJS01], although

without increasing expressiveness as demonstrated by the results of the present

paper. The \syntactic sugaring" provided by KMTSs enables a more nimble

representation of abstractions of reactive systems. We illustrate this claim with

two examples of applications where the use of KMTSs is convenient: predicate

abstraction and shape analysis.

Predicate abstraction (e.g, [GS97]) abstracts a program using a set 	 =

f 

1

; : : : ;  

n

g of n predicates, each of which is typically represented by a quanti�er-

free formula of �rst-order logic (such as (x == y+1)_(x < y�5)) (e.g., [DDP99]).

An abstract state is de�ned as a vector of n truth-values, which identi�es all con-

crete states that satisfy the same set of predicates in 	 . Typically, consistency of

states is checked using theorem-proving techniques for quanti�er-free �rst-order

logic. The resulting abstract transition system can conveniently be represented

by a KMTS: propositions at abstract states corresponding to the predicates in

	 can be 3-valued, with the third value ? modeling a loss of information due to

abstraction or the potential incompleteness of the auxiliary theorem prover; sim-

ilarly, the transition relation is also 3-valued, where may-only transitions can be

used to model transitions from a conditional node (such as program statements

of the form if-then-else) whose guard's evaluation is unknown (e.g., [GHJ01]).

Shape analysis (e.g., [CWZ90]) is a form of pointer analysis where the con-

tents of heap storage is approximated by a graph, whose nodes denote objects

and whose arcs denote the values of the objects' �elds. Local-variable points-to

information can be represented using unary predicates (e.g., x(u

0

) is true at an

object u

0

if variable x points to object u

0

) and binary predicates (next(u

0

; u

1

)

is true if the next �eld of object u

0

points to object u

1

) (e.g., [SRW99]). Again,

KMTSs can conveniently encode such abstractions: a proposition x can be asso-

ciated with each unary predicate x(u

0

) at every node of the graph in such a way

that proposition x has ? for value at object (node) u

0

if it is possible but not

guaranteed for variable x to point to object u

0

in the current heap; similarly,



binary predicates can be modeled as a 3-valued transition relation, where the

arc with label next from u

0

to u

1

is a may-only transition if there is a possibility

but no guarantee for the next �eld of object u

0

to point to u

1

(e.g., [HJS01]).

We conclude by mentioning a few other modeling formalisms closely related

to those considered in this paper. Variants of KMTSs with labeled transitions

and two interpretation functions L

may

and L

must

are de�ned in [HJS01]; it

is straightforward to show by using the translation techniques of our paper

that these simple extensions do not increase expressiveness over the de�ni-

tion of KMTS considered in Section 2. Extended transition systems [Mil81] can

be viewed as a particular class of MTSs [HJS01,BG99]. Mixed transition sys-

tems [Dam96] are MTSs where the constraint

must

�!�

may

�! is removed; eliminating

this constraint makes it possible to specify inconsistent models, i.e., models that

cannot be re�ned by any complete systems [HJS02], and hence increases expres-

siveness compared to the modeling formalisms considered in this paper. Recent

work on 3-valued models for probabilistic systems can be found in [Hut02b].
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