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Abstract. Given a 3-valued abstraction of a program (possibly generated using
static program analysis and predicate abstraction) and a temporal logic formula,
generalized model checking (GMC) checks whether there exists a concretiza-
tion of that abstraction that satisfies the formula. In this paper, we revisit gen-
eralized model checking for linear time (LTL) properties. First, we show that
LTL GMC is 2EXPTIME-complete in the size of the formula and polynomial in
the model, where the degree of the polynomial depends on the formula, instead
of EXPTIME-complete and quadratic as previously believed.The standard def-
inition of GMC depends on a definition of concretization which is tailored for
branching-time model checking. We then study a simplerlinear completeness
preorder for relating program abstractions. We show that LTL GMC withthis
weaker preorder is only EXPSPACE-complete in the size of theformula, and can
be solved in linear time and logarithmic space in the size of the model. Finally,
we identify classes of formulas for which the model complexity of standard GMC
is reduced.

1 Introduction

Generalized model checking[BG00] is a way to improve precision when reasoning
about partially defined systems. Such systems can be modeledas 3-valued Kripke struc-
tures where atomic propositions are eithertrue, false or unknown, denoted by the third
value⊥. Three-valued models are a natural representation of program abstractions gen-
erated automatically [GHJ01,GWC06] using static program analysis and predicate ab-
straction [GS97] for software model checking [BR01].

Given a 3-valued modelM and a temporal-logic formulaφ, the generalized model-
checking problem is to decide whether there exists a complete systemM ′ that is consis-
tent withM and that satisfies the formulaφ. From a practical point of view, generalized
model checking (GMC) can sometimes [GH05,GC05] improve verification of program
abstractions. From a theoretical point of view, studying GMC is arguably interesting in
its own right since GMC generalizes both model checking (when all proposition val-
ues in the model are known) and satisfiability checking (whenall proposition values
are unknown), probably the two most studied problems related to temporal logic and
verification.

In this paper, we revisit GMC forlinear-time temporal-logic(LTL) formulas. First,
we show that LTL GMC is 2EXPTIME-complete in the size of the formula and polyno-
mial in the model, where the degree of the polynomial dependson the formula, instead
⋆ Supported by the UK EPSRC projectComplete and Efficient Checks for Branching-Time Ab-

stractions(EP/E028985/1).



of EXPTIME-complete and quadratic as previously stated erroneously in [BG00]. The
definition of GMC depends on the exact notion of abstraction,and is usually tailored for
branching-time model checking [BG00]. We then study a simpler linear completeness
preorderfor relating program abstractions. We show that LTL GMC withthis weaker
preorder is only EXPSPACE-complete in the size of the formula, and can be solved in
linear time and logarithmic space in the size of the model. Finally, we identify classes of
formulas for which the model complexity of GMC defined with the standard branching-
time completeness preorder is reduced.

Example.Consider the programP :

program P() {
x,y = 1,0;
x,y = 2*f(x),f(y);
x,y = 1,0;

}

wherex andy denoteint variables,f : int -> int denotes some unknown
function, and the notation “x,y = 1,0” means variablesx and y are simultane-
ously assigned values1 and0, respectively. Letφ1 denote the LTL formulaFqy ∧
G(qx ∨ ¬qy) with the two predicatesqx : “is x odd?” andqy : “is y odd?”, and where
F means “eventually” whileG means “always”, and letφ2 denote the LTL formula
Xqy ∧G(qx∨¬qy), whereX means“next” (see the next section for formal definitions).

Given such a program and knowing the predicate of interestsqx andqy, predicate
abstraction can be used to automatically generate the following 3-valued Kripke struc-
tureM (or “Boolean program” [BR01]) abstractingP [GHJ01]:

initial states0: qx = true , qy = false

next states1: qx = false, qy = ⊥
next states2: qx = true , qy = false

loop forever ins2

As shown in [GJ02] and discussed later, model checking1 φ1 andφ2 againstM re-
turns the value “unknown,” while generalized model checking can prove that no con-
cretization ofM can possibly satisfy eitherφ1 or φ2, i.e., no matter how functionf is
implemented.

Althoughφ2 = Xqy∧G(qx∨¬qy) is an LTL safety formula and hence is within the
scope of predicate-abstraction-based software model checkers such as SLAM [BR01]
or BLAST [HJMS02], these tools cannot prove thatφ2 does not hold regardless of the
definition of functionf: this result can only be obtained through generalized model
checking. Instead, when confronted with such a programP , these tools would attempt
to iteratively refine the abstractionM by analyzing the code of functionf if it is avail-
able. This process is in general exponential in the size of the abstraction, since adding a
single predicate in each iteration may double the size of theabstraction. Moreover, this
process may not terminate. For the above abstractionM and formulaφ2, the expensive
and unpredictable abstraction-refinement process can thusbe avoided thanks to GMC.
Although the worst-case complexity of GMC is expensive in the size of the (usually

1 In model checking, we mean normal 3-valued model checking in the sense of [BG99].



short) formula (but so is traditional LTL model checking which is already PSPACE-
complete), GMC can always be done in time polynomial in the size of the model (lin-
ear or quadratic in many cases as shown later), in contrast with abstraction refinement
which is typically exponential in the (usually large) model. ⊓⊔

2 Preliminaries

A partial Kripke structure(PKS for short) [BG99] isM = 〈S,R,L, sin〉 whereS is a
nonempty set of states,R ⊆ S × S is a total image-finite transition relation (i.e., every
state has a non-zero finite number of immediate successor states),L : S × AP → 3

is a labeling of states that associates a truth value in3 = {true,⊥, false} to each
atomic proposition in a finite setAP , andsin ∈ S is an initial state. For a states and
propositionp, we say thatp is true ins if L(s, p) = true, it is false ins if L(s, p) =
false , and it is unknown⊥ otherwise. A PKS iscompleteif the range ofL is 2 =
{true, false}. We call a complete PKS aKripke Structureor KS. When we want to
stress that a PKSM is complete, we denote it byM . Given a states, we denote by
L(s) the functionσ : AP → 3 such thatσ(p) = L(s, p). We use the notations3AP =
{σ : AP → 3} and2

AP = {σ : AP → 2}. Fors ∈ S, we denote by(M, s) the PKS
〈S,R,L, s〉.

A computationof M is s0, s1, . . . such thats0 = sin and forall i ≥ 0 we have
(si, si+1) ∈ R. A computationπ = s0, s1, . . . induces atraceL(π) = L(s0)L(s1) · · · ∈
(3AP )ω . The set of computations ofM is denotedC(M) and the set of traces ofM
is denotedL(M). In general,L(M) ⊆ (3AP )ω. Given a PKSM = 〈S,R,L, sin〉,
the unwindingof M into a tree is the PKSM+ = 〈S+, R′, L′, sin〉, whereS+ is
the set of nonempty sequences overS, R′ = {(s1 · · · sn, s1 · · · sn · sn+1) ∈ (S+ ×
S+) | (sn, sn+1) ∈ R}, andL′(π · s) = L(s). We restrict the setS+ to the set of
sequences reachable fromsin. If M is a Kripke structure then so isM+.

To interpret temporal logic formulas on PKSs, we extend Kleene’s strong 3-valued
propositional logic [Kle87]. Conjunction∧ in this logic is defined as the minimumMin
of its arguments with respect to thetruth ordering≤T wherefalse ≤T ⊥ ≤T true.
We extend this function to sets in the obvious way, withMin(∅) = true. Negation
¬ is defined using the function ‘Comp’ that mapstrue to false , false to true, and
⊥ to ⊥. Disjunction∨ is defined as usual using De Morgan’s laws:p ∨ q = ¬(¬p ∧
¬q). Propositional modal logic (PML) is propositional logic extended with the modal
operatorAX (which is read “for all immediate successors”). Formulas ofPML have
the following abstract syntax:φ ::= p | ¬φ | φ1 ∧ φ2 | AXφ, wherep ranges over
AP . The following 3-valued semantics generalizes the traditional 2-valued semantics
for PML.

Definition 1. The value of a formulaφ of 3-valued PML in a states of a PKSM =
〈S,R,L, sin〉, written [(M, s) |= φ], is defined inductively as follows:

[(M, s) |= p] = L(s, p)

[(M, s) |= ¬φ] = Comp([(M, s) |= φ])

[(M, s) |= φ1 ∧ φ2] = Min({[(M, s) |= φ1], [(M, s) |= φ2]})

[(M, s) |= AXφ] = Min({[(M, s′) |= φ] | (s, s′) ∈ R})



We write[M |= φ] for [(M, sin) |= φ]. This 3-valued logic can be used to define a pre-
order� on PKSs that reflects their degree of completeness. Let≤I be theinformation
orderingon truth values where⊥ is the least element andtrue andfalse are maximal
uncomparable elements:⊥ ≤I true, false. For two PKSMi = 〈Si, Ri, Li, s

in
i 〉 with

i = 1, 2 the completeness preorderis the greatest relation� ⊆ S1 × S2 such that
s1 � s2 implies all the following:
1. For everyp ∈ AP , we haveL1(s1, p) ≤I L2(s2, p).
2. For every(s1, s′1) ∈ R1, there exists(s2, s′2) ∈ R2 such thats′1 � s′2.
3. For every(s2, s′2) ∈ R2, there exists(s1, s′1) ∈ R1 such thats′1 � s′2.

We say thatM2 is more completethanM1, denotedM1 � M2, if sin
1 � sin

2 . It can be
shown that 3-valued PML logically characterizes the completeness preorder.

Theorem 1. [BG99]LetM1 andM2 be partial Kripke structures, and letΦ be the set of
all formulas of 3-valued PML. ThenM1 �M2 iff (∀φ ∈ Φ : [M1 |= φ] ≤I [M2 |= φ]).

In other words, partial Kripke structures that are “more complete” with respect to�
have more definite properties with respect to≤I , i.e., have more properties that can
be establishedtrue or false by model checking. Moreover, any formulaφ of 3-valued
PML that evaluates totrue or false on a partial Kripke structure has the same truth
value when evaluated on any more complete structure.

2.1 Model Checking and Generalized Model Checking

The sets of LTL and CTL formulas are defined as follows.

LTL ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ

CTL ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | AXϕ | AϕUϕ | EϕUϕ

We assume familiarity with the semantics of LTL and CTL and with their model check-
ing. As usual, we denotetrue Uϕ by Fϕ, ¬F¬ϕ by Gϕ and¬((¬ψ)U(¬ϕ ∧ ¬ψ))
by ϕRψ. The above grammar includes a complete set of operators and other operators
can be expressed in the usual way. Given a set of propositionsAP and an LTL formula
ϕ, the language ofϕ, denotedL(ϕ) is the set of models ofϕ in (2AP )ω. Formally,
L(ϕ) = {w ∈ (2AP )ω | w |= ϕ}. The 3-valued semantics of LTL and CTL path
formulas extend Definition 1 as expected. For instance, given a 3-valued infinite word
w = a0a1a2 · · · ∈ (3AP )ω, [w |= Xϕ] = [w′ |= ϕ] with w′ = a1a2 · · · ∈ (3AP )ω,
while [w |= ϕ1Uϕ2] = Max({Min({[ai |= ϕ1]|i < k} ∪ {[ak |= ϕ2]})|k ≥ 0}).
For partial Kripke structureM and a CTL formulaφ, we denote the value ofφ at state
s by [(M, s) |= φ] ∈ 3

AP . For the initial statesin of M we denote[(M, sin) |= φ] by
[M |= φ]. If M is a Kripke structure we simply writeM, s |= ϕ for [(M, s) |= ϕ] =
true andM, s 6|= ϕ for [(M, s) |= ϕ] = false. For a Kripke structureM and an LTL
formulaϕ, we say thatM satisfiesϕ, denotedM |= ϕ if L(M) ⊆ L(ϕ).

In practice, the size of the Kripke structureM can be prohibitively expensive or
even infinite. Instead, a smaller (finite)abstractionM ′ can be used: ifM ′ is generated
in such a way thatM ′ � M , then all the propertiesφ that can be proved (true) or dis-
proved (false) onM ′ will also hold onM , by Theorem 1. With static program analysis



and predicate abstraction, generating such abstractions with respect to the complete-
ness preorder� can be done at the same computational cost as computing standard
abstractions that merely simulate (over-approximate) theconcrete systemM [GHJ01].
Moreover, 3-valued model checking can itself be done at the same computational cost
as regular 2-valued model checking [BG00].

In some cases, precisely characterized in [GH05] and also independently studied
in [GC05], all the completions of an abstractionM agree on the satisfaction of a formula
ϕ, yet 3-valued model checking is not accurate enough to identify this and still returns
⊥. For instance, this is the case for the formulap ∨ ¬p if p is ⊥. This observation
suggests a more precise version of 3-valued model checking [BG00]: the value of a
formulaϕ in a PKSM should be unknown only if some completions ofM satisfy
ϕ and some completions ofM falsify ϕ [BG00]. We denote the value ofϕ on M
according to thisthorough semanticsby [M |= ϕ]t ∈ 3.

Generalized model checking(GMC) can determine the value of[M |= ϕ]t [BG00].
Given a PKSM and a formulaϕ, the GMC problem forM andϕ is to determine
whether there exists a Kripke structureM ′ that completesM and satisfiesϕ. Formally,
we have the following.

M |=� ϕ iff there existsM ′ �M such thatM ′ |= ϕ

The value[M |= ϕ]t can be evaluated with two GMC questions. First, we check
whetherM |=� ϕ. If the answer is no, then all completions ofM do not satisfyϕ and
[M |= ϕ]t = false . If the answer is yes, we next check whetherM |=� ¬ϕ. If that
answer is no, then we know that all completions ofM satisfyϕ and[M |= ϕ]t = true.
Otherwise,[M |= ϕ]t = ⊥.

It can be shown that 3-valued model checking is sound with respect to the thorough
semantics.

Theorem 2. [BG00] LetM be a PKS andϕ an LTL or CTL formula.
1. [M |= ϕ] = true implies[M |= ϕ]t = true.
2. [M |= ϕ] = false implies[M |= ϕ]t = false.

In this paper we revisit LTL generalized model checking and show that its complex-
ity is greater than what was previously believed. We also consider specifications (both
in LTL and CTL) for which the model complexity of generalizedmodel checking is
simpler than the general case.

2.2 Automata over Infinite Words

We assume familiarity with the basic notions of alternatingautomata on infinite words,
cf. [GTW02]. We also refer to tree automata, however, we do not define them formally.

For an alphabetΣ, the setΣ∗ is the set of finite sequences of elements fromΣ.
For x ∈ Σ∗, we denote the length ofx by |x|. Given an alphabetΣ and a setD of
directions, aΣ-labeledD-tree is a pair〈T, τ〉, whereT ⊆ D∗ is a tree overD and
τ : T → Σ maps each node ofT to a letter inΣ.

For a finite setX , letB+(X) be the set of positive Boolean formulas overX (i.e.,
Boolean formulas built from elements inX using∧ and∨), where we also allow the for-
mulastrue andfalse . An alternating word automaton isA = 〈Σ,Q, qin, δ, α〉, where



Σ is the input alphabet,Q is a finite set of states,δ : Q × Σ → B+(Q) is a transition
function,qin ∈ Q is an initial state, andα specifies the acceptance condition. A run ofA
onw = σ0σ1 · · · is aQ-labeledD-tree,〈T, τ〉, whereτ(ǫ) = qin and, for everyx ∈ T ,
we have{τ(x · γ1), . . . , τ(x · γk)} |= δ(τ(x), σ|x|) where{x · γ1, . . . , x · γk} is the set
of children ofx. A run ofA is accepting if all its infinite paths satisfy the acceptance
condition. For a pathπ, we denote the set of automaton states visited infinitely often
along this path byinf(π). We consider the following three acceptance conditions:

– A pathπ satisfies aBüchiconditionα ⊆ Q iff inf(π) ∩ α 6= ∅.
– A pathπ satisfies aco-Büchiconditionα ⊆ Q iff inf(π) ∩ α = ∅.
– A pathπ satisfies aparity conditionα = 〈F0, . . . , Fk〉 whereF0, . . . Fk form a

partition ofQ iff for some eveni we haveinf(π) ∩ Fi 6= ∅ and foralli′ < i we
haveinf(π) ∩ Fi′ = ∅. We callk the number ofpriorities of α.

For the three conditions, an automaton accepts a word iff there exists a run that accepts
it. We denote byL(A) the set of allΣ-words thatA accepts.

Below we discuss some special cases of alternating automata. The alternating au-
tomatonA is nondeterministicif for all the formulas that appear inδ are disjunctions
over the statesQ. The automatonA is deterministicif all formulas that appear inδ are
states fromQ. For a nondeterministic automaton we writeδ : Q ×Σ → 2Q and for a
deterministic automaton we writeδ : Q×Σ → Q.

We denote each of the different types of automata by an acronym in {D,N,A} ×
{W,B,C, P} × {W,T }, where the first letter describes the branching mode of the au-
tomaton (deterministic, nondeterministic, or alternating), the second letter describes the
acceptance condition (Weak,2 Büchi, co-Büchi, or parity), and the third letter describes
the object over which the automaton runs (words or trees). For example, an ABW is an
alternating Büchi word automata and a DPW is a deterministic parity word automata.

We state the following well known results about automata andtheir relation to LTL.

Theorem 3. For every LTL formulaϕ of lengthn there exist an NBWNϕ with 2O(n)

states[VW94] and a DPWDϕ with 22O(n logn)

states and2O(n) priorities [Saf88,Pit07]
such thatL(ϕ) = L(Nϕ) = L(Dϕ).

Theorem 4. [Jur00] Given an APWA over a 1-letter alphabet withn states andk
priorities, we can decide whetherL(A) = ∅ in time proportional tonO(k).

Theorem 5. [SVW87] Given two NBWN1, N2 we can decide whetherL(N1) ⊆
L(N2) in space logarithmic inN1 and polynomial inN2.

3 LTL Generalized Model Checking

We show that, contrary to previous beliefs, GMC with respectto linear time logic is
2EXPTIME-complete. Our upper bound combines a DPW for the LTL property with
the PKS to get an APW over a 1-letter alphabet. The APW is not empty iff the GMC
problem holds. For the lower bound, we show a reduction from LTL realizability to
generalized model checking. LTL realizability is 2EXPTIME-hard [PR89] establish-
ing 2EXPTIME-hardness of generalized model checking. The two together establish
2EXPTIME-completeness of generalized model checking for LTL.

2 We delay the definition of weak automata to Section 5.



Theorem 6. LTL generalized model checkingM |=� ϕ can be solved in polynomial
time in the size ofM and double exponential time in the size ofϕ.

Proof. Consider an LTL formulaϕ. Let |ϕ| = n. According to Theorem 3 there exists

a DPWDϕ with 22O(n log n)

states and2O(n) priorities such thatL(ϕ) = L(Dϕ).
LetDϕ = 〈2AP , T, t0, ρ, α〉 andM = 〈S,R,L, sin〉. Consider the following APW

A over a 1-letter alphabet that is obtained from the combination of M andDϕ. We
defineA = 〈{a}, T × S, (t0, s

in), η, α′〉 such that

η((t, s), a) =
∨

σ�L(s)

∧

(s,s′)∈R

(ρ(t, σ), s′)

andα′ = 〈F ′
0, . . . , F

′
k〉 is obtained fromα = 〈F0, . . . , Fk〉 by settingF ′

j = Fj × S.

Lemma 1. A acceptsaω iff M |=� ϕ.

According to Theorem 4 the emptiness ofA can be determined in time proportional
to (22O(n log n)

)2
O(n)

= 22O(n log n)

. ⊓⊔

Note that, ifDϕ was nondeterministic in the previous proof, it could not precisely track
simultaneously different matching statess such thats � sn in the proof, and therefore
M |=� ϕ would not necessarily imply thatA acceptsaω. This is in essence the error
in the proof of Theorem 25 of [BG00], which led to the overly optimistic EXPTIME
upper-bound.

We now proceed to the lower bound. We start with a definition ofLTL realizability.
Consider a set of propositionsAP = I∪O of input and output signals, respectively. Let
L be a language of infinite words over alphabet2

AP . Therealizability problemfor L is
to decide whether there exists a strategyf : (2I)+→2O such that all the computations
generated byf are inL. A computationπ = (i0, o0), (i1, o1), . . . is generated byf if
for all j ≥ 0 we haveoj = f(i0i1 · · · ij). The realizability problem for an LTL formula
ϕ is the realizability problem forL(ϕ).

Theorem 7. [PR89] The realizability problem for an LTL formulaϕ is 2EXPTIME-
hard in the size ofϕ.

Theorem 8. LTL Generalized model checkingM |=� ϕ is 2EXPTIME-hard in the size
ofϕ.

Proof. We show how to solve realizability of an LTL formula using thegeneralized
model checking problem. The idea behind the reduction is that the PKS includes deter-
mined values of the inputs and undetermined values of the outputs. The branching of
the PKS forces all possible assignments to inputs as possible successors of every state.
Thus, every completion of the PKS associates an assignment to the outputs with every
possible assignment to inputs and is in essence a strategy. If the completion satisfies the
LTL formula, then so does the strategy. The PKS has2I different states, each labeled
by the appropriate assignment to the input variables and with transitions between every
two possible states. We then show how to reduce the PKS to one with a constant number
of states and|O| + 2 propositions. ⊓⊔



4 Linear Completeness Preorder

The completeness preorder� used to define generalized model checking|=� is stronger
than necessary for reasoning only about the linear behaviors of partial Kripke structures.
Indeed, the completeness preorder reduces to a bisimulation relation in the case of com-
plete Kripke structures, and Kripke structures that satisfy the same LTL formulas are
not necessarily bisimilar.

In this section, we study a simplerlinear completeness preorder�L, first suggested
in [BG00], that relates partial Kripke structures using only their sets of (3-valued) traces.
Then we show that generalized model checking|=�L

defined with respect to this linear
preorder is “only” EXPSPACE-complete.

Given any two infinite 3-valued tracesw=L(s0)L(s1) · · · andw′=L(s′0)L(s′1) · · ·
in (3AP )ω, we writew ≤I w

′ if ∀i ≥ 0 : ∀p ∈ AP : L(si, p) ≤I L(s′i, p).

Definition 2. For two PKSMi = 〈Si, Ri, Li, s
in
i 〉 with i = 1, 2, the linear complete-

ness preorder�L is the greatest relation�L ⊆ S1×S2 such that(s1, s2) ∈ �L implies
all the following.
1. For everyw ∈ L(M1, s1) there existsw′ ∈ L(M2, s2) such thatw ≤I w

′.
2. For everyw′ ∈ L(M2, s2) there existsw ∈ L(M1, s1) such thatw ≤I w

′.

It is easy to show that 3-valued LTL logically characterizesthe linear completeness
preorder.

Theorem 9. For any two PKSM1 andM2, we haveM1 �L M2 iff for every LTL
formulaϕ we have[M1 |= ϕ] ≤I [M2 |= ϕ].

Proof. AssumeM1 �L M2 and consider any LTL formulaϕ. If [M1 |= ϕ] = ⊥, we
always have[M1 |= ϕ] ≤I [M2 |= ϕ].

If [M1 |= ϕ] = true, then for allw ∈ L(M1), [w |= ϕ] = true. By point 2 of
Definition 2, for everyw′ ∈ L(M2) there existsw ∈ L(M1) such thatw ≤I w

′. But
since∀w ∈ L(M1) : [w |= ϕ] = true, we have∀w′ ∈ L(M2) : [w′ |= ϕ] = true, and
hence[M2 |= ϕ] = true.

If [M1 |= ϕ] = false, then∃w ∈ L(M1) : [w |= ϕ] = false . By point 1 of
Definition 2, we have∃w′ ∈ L(M2) : w ≤I w

′ and hence[w′ |= ϕ] = false . Thus
[M2 |= ϕ] = false, and the first direction of the theorem holds.

Conversely, lets1 ⊑ s2 denote∀ϕ ∈ LTL : [(M1, s1) |= ϕ] ≤I [(M2, s2) |= ϕ].
Assume thats1 ⊑ s2 but thats1 6�L s2: thus, either point 1 or 2 of Definition 2 is
violated.

Assume point 1 is violated:∃w ∈ L(M1, s1) : ∀w′ ∈ L(M2, s2) : w 6≤I w
′. Let

w = s01s
1
1s

2
1 · · · with s01 = s1. LetS0

2 = {s2} and fork > 0, letSk
2 = {s ∈ S2 | s′ ∈

Sk−1
2 ∧ (s′, s) ∈ R2 ∧ (∀p ∈ AP : L1(s

k
1 , p) ≤I L2(s, p))}. Since∀w′ ∈ L(M2, s2) :

w 6≤I w′, then there must exist a value ofk such thatSk
2 = ∅. In other words, the

correspondingsk
1 in M1 denote the first state inM1 reachable froms1 alongw whose

label cannot be “matched” (according to the previous formaldefinition) by any state of
M2 (hence also reachable ink steps froms2). By abusing notation, letSk

2 = {s ∈ S2 |
s′ ∈ Sk−1

2 ∧ (s′, s) ∈ R2} (by construction, we knowSk−1
2 6= ∅ and since every state

has at least one successor state,Sk
2 is nonempty as well). Thus, for each states ∈ Sk

2 ,



there exists a propositionp ∈ AP such thatL1(s
k
1 , p) 6≤I L2(s, p). Let ϕ(s) = p

if L1(s
k
1 , p) = false and letϕ(s) = ¬p otherwise (i.e., whenL1(s

k
1 , p) = true; if

L1(s
k
1 , p) = ⊥, then triviallyL1(s

k
1 , p) ≤I L2(s, p)). Consider the LTL formula

ψ = (
∧

i<k

(X i(
∧

L(si
1,p)=true

p ∧
∧

L(si
1,p)=false

¬p))) ⇒ Xk
∨

s∈Sk
2

ϕ(s)

We have[(M1, s1) |= ψ] = false (as we know[w |= ψ] = false) while [(M2, s2) |=
ψ] 6= false (since the antecedent of the logical implication istrue exactly for finite
paths leading to states inSk−1

2 and the consequent is eithertrue or ⊥ for all states in
Sk

2 ). A contradiction withs1 ⊑ s2.
Assume point 2 is violated:∃w′ ∈ L(M2, s2) : ∀w ∈ L(M1, s1) : w 6≤I w

′. Using
the same line of reasoning as in the previous case, letsk

2 denote the first state inM2

reachable froms2 alongw′ whose label cannot be matched by any state inSk
1 ofM1 as

defined above. Thus, for each states ∈ Sk
1 , there exists a propositionp ∈ AP such that

L1(s, p) 6≤I L2(s
k
2 , p). Letϕ(s) = p if L1(s, p) = true and letϕ(s) = ¬p otherwise.

Consider the LTL formula

ψ = (
∧

i<k

(X i(
∧

L(si
2,p)=true

p∧
∧

L(si
2,p)=false

¬p∧
∧

L(si
2,p)=⊥

(p∧¬p)))) ⇒ Xk
∨

s∈Sk
1

ϕ(s)

We have[(M1, s1) |= ψ] = true (since the antecedent of the logical implication is
eithertrue or⊥ exactly for the finite paths leading to states inSk−1

1 and the consequent
is true for all states inSk

1 ) while [(M2, s2) |= ψ] 6= true (since[w′ |= ψ] 6= true). A
contradiction withs1 ⊑ s2. ⊓⊔

Given a PKSM and an LTL formulaϕ, generalized model checking with respect
to the linear completeness preorder�L means checking whether every 3-valued trace
of M can be completed to a 2-valued trace that satisfiesϕ. Formally, we have the fol-
lowing.

M |=�L
ϕ iff ∀w ∈ L(M) : ∃ a completew′ such thatw ≤I w

′ andw′ |= ϕ

As observed in [GJ02], computing the value of[M |= ϕ]t for an LTL formulaϕ
can be reduced to one normal (2-valued) model checking problem and one generalized
model checking problem, regardless of which completeness preorder is used. One can
start by checking whether there exists a completionw′ of any tracew in M such that
w′ 6|= ϕ. To do this, one can build a Kripke structureM c that guesses all possible
completions of labelings of states ofM and thus accepts all the possible completions of
traces ofM . Then, one checks whetherM c |= ϕ using traditional 2-valued LTL model
checking, which is a PSPACE-complete problem. IfM c |= ϕ, all possible completions
of M satisfyϕ, which means[M |= ϕ]t = true and we stop. Otherwise, one needs
to solve a second, more expensive generalized model checking problem to determine
whether there exists some completionM ′ ofM whose traces all satisfyϕ.

If one considers the completeness preorder�, checking for such a completionM ′ �
M such thatM ′ |= ϕ, i.e., computingM |=� ϕ, is 2EXPTIME-complete as shown in
the previous section. However, if one considers instead thelinearcompleteness preorder
�L, we now show that computingM |=�L

ϕ is only EXPSPACE-complete.



Theorem 10. LTL generalized model checkingM |=�L
ϕ with respect to the linear

completeness preorder�L can be solved in space logarithmic in the size ofM and
exponential in the size ofϕ.

Proof. Consider an LTL formulaϕ. According to Theorem 3 there exists an NBW
Nϕ = 〈2AP , Q, q0, ρ, F 〉 where|Q| = 2O(|ϕ|) such thatL(Nϕ) = L(ϕ).

We modify the NBW above to an NBW over the alphabet3
AP that accepts partial

traces that have a completion inL(Nϕ). Formally, we have the following.
We denote letters in2AP by σ and letters in3AP by τ . Let N ′ be the automa-

ton obtained fromNϕ by guessing a completion of the read letter. Formally,N ′ =
〈3AP , Q, q0, ρ

′, F 〉 where

ρ′(s, τ) =
∨

σ�τ

ρ(s, σ)

Now, all that we have to check is whetherL(M) ⊆ L(N ′). From Theorem 5, we know
that this problem can be solved in space logarithmic inM and polynomial inN ′. As
N ′ is exponential inϕ, the upper bound follows. ⊓⊔

We now show that using this definition of GMC we can solve an EXPSPACE-hard
tiling problem [vEB97]. In tiling problems we get a finite setof different types of tiles
and we have to tile a floor of a given dimension. We may use as many tiles as we
want from every given type, however, there are rules that tell us which tiles are allowed
to be next to each other according to vertical and horizontalrules. There are many
different flavors of tiling problems with different complexities. Here we introduce the
EXPSPACE version of the tiling problem. In order to prove thelower bound, we build a
PKSM whose traces are all the possible arrangements of tiles. A trace has a completion
that satisfies our LTL formulaϕ if the arrangement of tiles is not valid, i.e., it violates
one of the tiling rules. That is,M |=�L

ϕ iff all possible arrangements of tiles are not
valid, i.e., the tiling problem does not have a solution.

A tiling problemis 〈T,H, V, s, t, n〉, whereT is a finite set of tiles,H,V ⊆ T × T
are horizontal and vertical consistency rules,s, t ∈ T are initial and final tiles, andn
is a number (in unary). The decision problem is whether thereexists a numberm and
a functionf : [2n] × [m] → T such thatf(1, 1) = s, f(2n,m) = t, and foralli, j
we have(f(i, j), f(i + 1, j)) ∈ H and (f(i, j), f(i, j + 1)) ∈ V . That is, arrange
the tiles in a2n timesm rectangle such thats is in the bottom left corner,t in the top
right corner, and all neighbors (vertical/horizontal) satisfy the horizontal and vertical
consistency rules. This problem is EXPSPACE-complete [vEB97].

Theorem 11. LTL generalized model checkingM |=�L
with respect to the linear com-

pleteness preorder�L is EXPSPACE-hard in the size ofϕ.

Proof. We start by representing the rectangular arrangement of tiles by a linear se-
quence of tiles. An (infinite) linear sequence of tiles represents a valid tiling if it starts
with s, hast in locationm2n for somem, every adjacent locations (except multiples of
2n and their successors) satisfyH , and every two locations whose distance is2n satisfy
V .

We construct a simple system that produces all possible sequences of tiles. The
partial propositions are going to number every tile in the sequence with a number in



[0..(2n − 1)]. The LTL formula checks two things. First, that the truth assignments to
partial propositional variables behave like a counter (it is always possible to complete
the values of these propositions in this way). Second, that every possible sequence of
tiles contains one of the following problems: either (a) it does not start ins, or (b) all
locations that are multiples of2n are nott, or (c) the horizontal rule is violated before
t appears in a2n-multiple location, or (d) the vertical rule is violated beforet appears
in a 2n-multiple location. If one of these problems occurs, then the tiling is not valid.
If all possible arrangements of tiles are not valid, then thetiling problem does not have
a solution. As before, we show also how to reduce the structure to one with a constant
number of states. ⊓⊔

The next theorem states that� is a stronger relation than�L, which in turn helps
explain why checking|=� is more expensive than checking|=�L

.

Theorem 12. For any partial Kripke structuresM,M ′ and LTL formulaϕ, M � M ′

impliesM �L M ′, and thereforeM |=� ϕ impliesM |=�L
ϕ.

Proof. Immediate from the definitions of� and�L. ⊓⊔

Note that� is strictly stronger than�L, as the converse of the theorem does not hold.
To illustrate this, consider the LTL formulaϕ = (p ∧Xp) ∨ (¬p ∧X¬p) and the par-
tial Kripke structureM = 〈{s0, s1, s2}, {(s0, s1), (s0, s2), (s1, s1), (s2, s2)}, L, s0〉
labeled with a single atomic propositionp such thatL(s0, p) = ⊥, L(s1, p) = true

andL(s2, p) = false. It is easy to see that[(M, s0) |= ϕ] = ⊥. Moreover, we have
(M, s0) |=�L

ϕ, as every 3-valued trace generated from(M, s0) can be completed by
some 2-valued trace that satisfiesϕ. However,(M, s0) 6|=� ϕ as there does not exist a
completionM ′ such thatM � M ′ andM ′ |= ϕ, as states0 wherep = ⊥ cannot be
completed to asinglestates such that every trace froms satisfiesϕ: if L(s, p) = true,
then the tracessω

2 violatesϕ, and ifL(s, p) = false, then the tracessω
1 violatesϕ.

5 Model Complexity

We have seen that LTL generalized model checking defined withthe stronger branching-
time preorder� is polynomial in the size of the model. The degree of the polynomial,
however, is unbounded, and depends on the deterministic automaton created for the for-
mula. Here we show that for interesting classes of properties, the model complexity can
be restricted to linear or quadratic. The resemblance pointed out between generalized
model checking and realizability in the proof of Theorem 8 continues here. Indeed, the
same classes of formulas are used to suggest tractable fractions of LTL for realizability
(cf. [RW89,AMPS98,PPS06]).

We start with a few additional definitions and known results regarding automata.
Let A = 〈Σ,Q, qin, δ, α〉 be a Büchi automaton. We say thatA is weakif there is a
preorder≤ on the state setQ such that the following two conditions hold:
1. For everyq ∈ Q andσ ∈ Σ, if q′ appears inδ(q, σ) thenq ≤ q′.
2. For everyq ∈ Q, if q ∈ α then forallq′ such thatq ≤ q′ andq′ ≤ q we haveq′ ∈ α.



We use the acronyms mentioned previously for weak automata.For instance, an AWT
is an alternating weak tree automaton and an DWW is a deterministic weak word au-
tomaton.
We specialize Theorem 4 to our needs as follows.

Theorem 13. Given an APWA over a 1-letter alphabet, we can decide whetherL(A) =
∅ in linear time ifA is AWW [KVW00] and in quadratic time ifA is an ABW, ACW, or
an APW with three priorities [VW86,Jur00].

Consider an LTL formulaϕ. We say thatϕ is a safety propertyif for every word
w /∈ L(ϕ) there exists a prefixu such that forallv′ we haveuv′ /∈ L(ϕ). Let p
andq be Boolean combinations of propositional formulas. Formulas of the formGFp
or G(q → Fp) are calledresponse properties, and formulas of the formFGp are
called persistence properties[MP92]. If ϕ is of the form(ϕa

s ∧ ϕa
r) → (ϕg

s ∧ ϕg
r)

whereϕa
s andϕg

s are conjunctions of safety properties andϕa
r andϕg

r are conjunctions
of response properties is calledgeneralized reactivity[1][KPP03]. Alternatively, we
classify LTL properties according to the type of deterministic automaton that accepts
the same language. We say thatϕ is aweak propertyif there exists a DWW that accepts
the language ofϕ. We say thatϕ is aDBW propertyif there exists a DBW that accepts
the language ofϕ. Similarly, we say thatϕ is aDCW propertyif there exists a DCW
that accepts the language ofϕ. The following theorem links the different types of LTL
properties to the deterministic automata that accept them.

Theorem 14. 1. For every safety propertyϕ, there exists a DWWD such thatL(D) =
L(ϕ).

2. For every response propertyϕ, there exists a DBWD such thatL(D) = L(ϕ).
3. For every persistence propertyϕ, there exists a DCWD such thatL(D) = L(ϕ).
4. For every generalized reactivity[1] propertyϕ, there exists a DPWD with three

priorities such thatL(D) = L(ϕ).

The following is a consequence of Theorems 13 and 14 and the proof of Theorem 6.

Theorem 15. LTL generalized model checkingM |=� ϕ is linear inM for weak and
safety properties, and quadratic inM for response, persistence, and generalized reac-
tivity[1] properties.

Proof. From the proof of Theorem 6 it follows that we combine a deterministic au-
tomaton for the property with the model to get an APW over a 1-letter alphabet. From
Theorem 14 it follows that if the LTL property is a safety or obligation property the
DPW, and the resulting APW, are weak. If the LTL property is a response property, the
DPW is in fact a DBW. If the LTL property is a persistence property, the DPW is in fact
a DCW. If the LTL property is a generalized reactivity[1] property, the DPW has three
priorities. Recall that the APW is the product of the DPW and the model. Thus, the
APW is linear in the size of the model. The desired upper boundnow follows directly
from Theorem 13. ⊓⊔

Note that LTL GMC for persistence properties can be solved inquadratic time in the
size of the model, instead of in linear time as incorrectly stated in Theorem 5 of [GJ02].



The root cause of this error is the same as the one for Theorem 25 of [BG00], as the
proofs of both theorems rely on the same product construction, now corrected in Theo-
rem 6 of this paper.

Finally, we clarify a subtle misconception regarding generalized model checking
of CTL properties. Given a CTL property, we can construct directly an NBT that is at
most exponential in the size of the property that accepts alltrees that satisfy the property
[KVW00]. Generalized model checking can then be solved by combining this NBT with
the model to obtain an ABW over a 1-letter alphabet [BG00]. According to Theorem 13
the emptiness of this ABW can be established in quadratic time. Thus, the complexity of
GMC with respect to CTL properties is exponential in the formula and quadratic in the
model, which is optimal [BG00]. As with LTL the quadratic complexity in the model
follows from the type of acceptance condition used by the automaton for the formula.
We are interested in classes of properties for which automata require simpler acceptance
conditions. If the CTL property can be recognized by an NWT, the complexity in the
size of the model reduces to linear. In the proof of Theorem 7 of [GJ02] it is assumed
that if a CTL property can be recognized by an NCT then it can also be recognized by
an NWT. However, it is currently unknown whether this is the case (cf. Section 6) and
the proof of that theorem is therefore incomplete.

6 Conclusions

We study generalized model checking for linear time properties. We show that the clas-
sical definitions of GMC is 2EXPTIME-complete in the size of the formula and poly-
nomial in the structure. We study a linear version of the completeness preorder and
show that this preorder induces a GMC problem that is EXPSPACE-complete in the
size of the formula. We then proceed to show that for interesting classes of properties
the model complexity can be restricted to a low order polynomial.

We have presented our work in the framework of partial Kripkestructures. Other
equally expressive 3-valued models [GJ03] include Modal Transition Systems [LT88]
and Kripke Modal Transition Systems [HJS01]. The complexity bounds given in this
paper carry over to those closely related modeling formalisms.

The proof of Theorem 8 reduces realizability of LTL to GMC. The similarity ac-
tually goes in both directions. A GMC problem can be translated to a 2-person game
where the specification (in LTL or in branching-time logic) can be translated to the
winning condition. In a 2-person game players verifier and refuter alternate in moving a
token along the edges of a graph. If the infinite path made by the token satisfies an LTL
formula, verifier wins and otherwise she loses. If the winning condition is expressed in
terms of branching-time logic, instead of considering a path in the graph, we consider
the infinite unwinding of the game graph and prune the unwinding so that nodes that
correspond to decisions of verifier have exactly one successor. The translation of the
GMC problem to such a game is as follows. The game graph itselfis similar to the
model, where decisions of the refuter correspond to the branching of the original model
and decisions of the verifier correspond to the values given to undetermined proposi-
tions. The formula to be checked on the model is translated tothe winning condition in
the game. Much like the proofs of the lower bounds above, thisstraightforward transla-



tion may result in a game graph that is exponential in the number of propositions whose
value is unknown. We can further reduce the number of nodes inthe game graph to
a product of the number of propositions whose value is unknown and the size of the
model using the techniques in the proofs of Theorems 8 and 10.It may be possible to
reduce the number of nodes in the game graph to a constant times the number of states
of the model.

We have seen that for interesting classes of LTL and CTL properties the complexity
in term of the model can be restricted to linear or quadratic.We classify the proper-
ties according to deterministic word automata and nondeterministic tree automata that
match these formulas. While most popular types of properties are covered above, char-
acterization of the exact classes of formulas that can be translated to these types of
automata is an interesting problem. That is, what are the exact subsets of LTL that can
be translated to DWW and to DBW? Is there a simple syntactic way to express these
subsets? The same problem for CTL (and other branching-timelogics) involves tree
automata. For every CTL property there exist an NBT and an AWTrecognizing the
same set of trees [KVW00]. What CTL properties can be translated to NWT? Is there a
syntactic way to express these subsets? We know that if a wordlanguage can be recog-
nized by a DBW and by a DCW, then it can be recognized by a DWW [KMM04]. This
suggests the following natural question: Given a tree language that is accepted by an
NCT and by an NBT, can it be recognized by an NWT? From a practical point of view,
it could be interesting to study the specific case of CTL properties that are recognized
by NCT.
Acknowledgements.We thank Michael Huth for comments on an earlier version and
Orna Kupferman for a discussion of the relative expressive power of NBT and NCT.
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tomata with applications to temporal logic.Theoretical Computer Science, 49:217–
237, 1987.

[vEB97] P. van Emde Boas. The convenience of tilings. InComplexity, Logic and Recursion
Theory, volume 187 ofLecture Notes in Pure and Applied Mathetaics, pages 331–363,
1997.

[VW86] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of pro-
grams.Journal of Computer and System Science, 32(2):182–221, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, 1994.


