LTL Generalized Model Checking Revisited

Patrice Godefroiland Nir Pitermaf*

! Microsoft Research
2 Imperial College London

Abstract. Given a 3-valued abstraction of a program (possibly geadrasing
static program analysis and predicate abstraction) anchparal logic formula,
generalized model checking (GMC) checks whether theregsegiconcretiza-
tion of that abstraction that satisfies the formula. In thapgr, we revisit gen-
eralized model checking for linear time (LTL) propertiestsg we show that
LTL GMC is 2EXPTIME-complete in the size of the formula andypmmial in
the model, where the degree of the polynomial depends orotheufa, instead
of EXPTIME-complete and quadratic as previously believEte standard def-
inition of GMC depends on a definition of concretization whis tailored for
branching-time model checking. We then study a simfifezar completeness
preorder for relating program abstractions. We show that LTL GMC wiitis
weaker preorder is only EXPSPACE-complete in the size ofdhmaula, and can
be solved in linear time and logarithmic space in the sizéhefrhodel. Finally,
we identify classes of formulas for which the model complesf standard GMC
is reduced.

1 Introduction

Generalized model checkif8GO00] is a way to improve precision when reasoning
about partially defined systems. Such systems can be maaeRdalued Kripke struc-
tures where atomic propositions are eithere, false or unknowndenoted by the third
value_ L. Three-valued models are a natural representation of @gnogbstractions gen-
erated automatically [GHJ01,GWCO06] using static programysis and predicate ab-
straction [GS97] for software model checking [BRO1].

Given a 3-valued model/ and a temporal-logic formula, the generalized model-
checking problem is to decide whether there exists a compieattem\/’ that is consis-
tent with M and that satisfies the formufa From a practical point of view, generalized
model checking (GMC) can sometimes [GH05,GCO05] improvéication of program
abstractions. From a theoretical point of view, studying GM arguably interesting in
its own right since GMC generalizes both model checking fwalk proposition val-
ues in the model are known) and satisfiability checking (wakiproposition values
are unknown), probably the two most studied problems reélaieemporal logic and
verification.

In this paper, we revisit GMC fdinear-time temporal-logi€LTL) formulas. First,
we show that LTL GMC is 2EXPTIME-complete in the size of thenfla and polyno-
mial in the model, where the degree of the polynomial dependbe formula, instead

* Supported by the UK EPSRC projegomplete and Efficient Checks for Branching-Time Ab-
stractions(EP/E028985/1).

of EXPTIME-complete and quadratic as previously statedrexously in [BG0O]. The
definition of GMC depends on the exact notion of abstraction,is usually tailored for
branching-time model checking [BG00]. We then study a sanlghear completeness
preorderfor relating program abstractions. We show that LTL GMC wififs weaker
preorder is only EXPSPACE-complete in the size of the foapahd can be solved in
linear time and logarithmic space in the size of the modelaly, we identify classes of
formulas for which the model complexity of GMC defined witle ftandard branching-
time completeness preorder is reduced.
Example. Consider the prograrf:

program P() {

X,y = 1,0;
X,y = 2xf(x), f(y);
X,y = 1,0;
}
wherex andy denotei nt variables,f : int -> int denotes some unknown

function, and the notationx,y = 1, 0" means variablex andy are simultane-
ously assigned valuels and 0, respectively. Letp; denote the LTL formulaF'g, A
G(gz V —gy) with the two predicateg, : “is x odd?” andg, : “is y odd?”, and where
I means “eventually” whileZ means “always”, and lep» denote the LTL formula
Xqy NG(gz V —gy), whereX means“next” (see the next section for formal definitions).

Given such a program and knowing the predicate of intekgstsdg,, predicate
abstraction can be used to automatically generate thesolip3-valued Kripke struc-
ture M (or “Boolean program” [BRO1]) abstracting [GHJO1]:

initial stateso: q. = true, gy = false
next states: G = false, gy = L
next statess: q. = true, qy = false
loop forever ins;

As shown in [GJ02] and discussed later, model checkifgand ¢, againstM re-
turns the value “unknown,” while generalized model cheglkian prove that no con-
cretization of M can possibly satisfy either; or ¢», i.e., no matter how functioh is
implemented.

Although¢, = X ¢, AG(q, Vg,) is an LTL safety formula and hence is within the
scope of predicate-abstraction-based software modekehesuch as SLAM [BRO1]
or BLAST [HIMSO02], these tools cannot prove titatdoes not hold regardless of the
definition of functionf : this result can only be obtained through generalized model
checking. Instead, when confronted with such a progrgrthese tools would attempt
to iteratively refine the abstractia by analyzing the code of functidnif it is avail-
able. This process is in general exponential in the sizesébistraction, since adding a
single predicate in each iteration may double the size oébstraction. Moreover, this
process may not terminate. For the above abstradticand formulap,, the expensive
and unpredictable abstraction-refinement process carbthasoided thanks to GMC.
Although the worst-case complexity of GMC is expensive ia #iize of the (usually

1 In model checkingwe mean normal 3-valued model checking in the sense of [RG99

short) formula (but so is traditional LTL model checking whiis already PSPACE-
complete), GMC can always be done in time polynomial in tize sif the model (lin-
ear or quadratic in many cases as shown later), in contréistabstraction refinement
which is typically exponential in the (usually large) model a

2 Preliminaries

A partial Kripke structure(PKS for short) [BG99] isM = (S, R, L, s'*) whereS is a
nonempty set of state® C S x S is a total image-finite transition relation (i.e., every
state has a non-zero finite number of immediate succesgseskta : S x AP — 3
is a labeling of states that associates a truth valug s {true, L, false} to each
atomic proposition in a finite set P, ands € S is an initial state. For a stateand
propositionp, we say thap is true ins if L(s,p) = true, itis false ins if L(s,p) =
false, and it is unknownl otherwise. A PKS ixompleteif the range ofL is 2 =
{true, false}. We call a complete PKS Kripke Structureor KS. When we want to
stress that a PKS3/ is complete, we denote it by/. Given a states, we denote by
L(s) the functiono : AP — 3 such thair(p) = L(s,p). We use the notatiorg*” =
{0 : AP — 3} and24” = {0 : AP — 2}. Fors € S, we denote by M, s) the PKS
(S, R, L,s).

A computationof M is s, s1, ... such thats, = s™ and foralli > 0 we have
(s, 8i+1) € R. Acomputationr = s, $1, ... inducesdraceL(w) = L(sg)L(s1)--- €
(34P)«. The set of computations df/ is denoted’(M) and the set of traces dff
is denotedZ(M). In general,L(M) C (34F)~. Given a PKSM = (S, R, L,s™),
the unwindingof M into a tree is the PKSU/+ = (ST R/, L/, s™), whereS™ is
the set of nonempty sequences oer?’ = {(s1--8p, 81 Sn * Spi1) € (ST x
ST) | (sn,Sn+1) € R}, andL/(m - s) = L(s). We restrict the sef* to the set of
sequences reachable frat. If M is a Kripke structure then so 18/ .

To interpret temporal logic formulas on PKSs, we extend Ké&®strong 3-valued
propositional logic [Kle87]. Conjunction in this logic is defined as the minimuidin
of its arguments with respect to tiweith ordering<p wherefalse <p 1 <p true.
We extend this function to sets in the obvious way, within() = true. Negation
- is defined using the functiorC'omp’ that mapstrue to false, false to true, and
L to L. DisjunctionV is defined as usual using De Morgan’s laws? ¢ = —(—p A
—q). Propositional modal logic (PML) is propositional logicterded with the modal
operatorAX (which is read “for all immediate successors”). Formula®dfL have
the following abstract syntax) ::= p | =¢ | ¢1 A ¢2 | AX @, wherep ranges over
AP. The following 3-valued semantics generalizes the tradil 2-valued semantics
for PML.

Definition 1. The value of a formula@ of 3-valued PML in a state of a PKSM =
(S, R, L, s™), written [(M, s) = ¢], is defined inductively as follows:
[(M,s) = p] = L(s,p)
(M, s) = =¢] = Comp([(M, 5) = ¢])
[(M, s) ': ¢1 A d2] = Min({[(M, s) = ¢1], [(M, s) |= d2]})
(M, s) E AX¢] = Min({[(M,s') = 9] | (s,s") € R})

We write[M |= ¢] for [(M, s™*) = ¢]. This 3-valued logic can be used to define a pre-
order= on PKSs that reflects their degree of completeness<l;die theinformation
orderingon truth values where is the least element anglue andfalse are maximal
uncomparable elements: <; true, false. For two PKSM; = (S;, R;, L;, si™) with
i = 1,2 the completeness preordés the greatest relatiorr C S; x Sy such that
s1 = s9 implies all the following:

1. Forevenp € AP, we haveL;(s1,p) <; La(s2,p).

2. Forevery(sy, s}) € Ry, there existgss, s5) € Ry such thats) < 5.

3. For every(sy, s5) € Rq, there existgsy, s]) € Ry such thats} =< s5.
We say thatV/, is more complet¢han M, denotedV/; < Ma, if s < si. It can be
shown that 3-valued PML logically characterizes the cotepless preorder.

Theorem 1. [BG99] Let M; and M- be partial Kripke structures, and Idtbe the set of
all formulas of 3-valued PML. Theh/; < Ms iff (Vo € @ : [M; = @] <1 [M> E ¢]).

In other words, partial Kripke structures that are “more ptate” with respect to<
have more definite properties with respecttg, i.e., have more properties that can
be establishedrue or false by model checking. Moreover, any formufeof 3-valued
PML that evaluates torue or false on a partial Kripke structure has the same truth
value when evaluated on any more complete structure.

2.1 Model Checking and Generalized Model Checking

The sets of LTL and CTL formulas are defined as follows.

LTLos=ploAe|-p| X | Uy
CTLou=ploAp|-p| AXp | ApUp | EpUyp

We assume familiarity with the semantics of LTL and CTL anthvtiheir model check-
ing. As usual, we denoteue Uy by Fo, =F-p by Gy and—((—=)U(—¢ A —))
by ¢ Ry. The above grammar includes a complete set of operatorsthadaperators
can be expressed in the usual way. Given a set of propositibhand an LTL formula
¢, the language of, denotedL(yp) is the set of models of in (247)~. Formally,
L(p) = {w € (247)% | w | ¢}. The 3-valued semantics of LTL and CTL path
formulas extend Definition 1 as expected. For instance ngav8-valued infinite word
w = aparaz--- € (34, [w & X¢] = W' = o] with w’ = ajaz--- € (34F)«,
while [w = ©1Ugps] = Maz({Min({la; = ¢1]li < k} U{[ar |= @2]})[k = 0}).
For partial Kripke structuréd/ and a CTL formulap, we denote the value af at state
s by [(M,s) = ¢] € 34T, For the initial states’ of M we denotd(M, s™) = ¢] by
[M = ¢]. If M is a Kripke structure we simply writd/, s = ¢ for [(M, s) E ¢] =
true and M, s [~ o for [(M, s) = ¢] = false. For a Kripke structuréd/ and an LTL
formulay, we say that\l satisfiesp, denotedVI = ¢ if L(M) C L(yp).

In practice, the size of the Kripke structulé can be prohibitively expensive or
even infinite. Instead, a smaller (finitapstraction)/’ can be used: if/’ is generated
in such a way thad/’ < M, then all the properties that can be provedi{ue) or dis-
proved (false) on M’ will also hold onM, by Theorem 1. With static program analysis

and predicate abstraction, generating such abstractidhsr@gpect to the complete-
ness preorder can be done at the same computational cost as computingastind
abstractions that merely simulate (over-approximateythrerete system/ [GHJO01].
Moreover, 3-valued model checking can itself be done at @ineescomputational cost
as regular 2-valued model checking [BGO0O0].

In some cases, precisely characterized in [GHO5] and abependently studied
in [GCO05], all the completions of an abstractibhagree on the satisfaction of a formula
©, yet 3-valued model checking is not accurate enough toiiyethis and still returns
L. For instance, this is the case for the formula —p if p is L. This observation
suggests a more precise version of 3-valued model checB6@(]: the value of a
formula ¢ in a PKS M should be unknown only if some completions &f satisfy
» and some completions ol falsify ¢ [BGOO]. We denote the value af on M
according to thishorough semanticsy [M |= ¢]; € 3.

Generalized model checkiii@MC) can determine the value p¥/ = ¢|: [BGO0O].
Given a PKSM and a formulap, the GMC problem forM and ¢ is to determine
whether there exists a Kripke structuv€ that completed/ and satisfiep. Formally,
we have the following.

M =< ypiff there existsM’ = M such thatM’ |= ¢

The value[M [¢]; can be evaluated with two GMC questions. First, we check
whetherM =< ¢. If the answer is no, then all completionsf do not satisfy, and
[M = ¢]: = false. If the answer is yes, we next check whetliér=< —. If that
answer is no, then we know that all completions\éfsatisfyy and[M = @] = true.
Otherwise[|M | ¢]: = L.

It can be shown that 3-valued model checking is sound witheetsto the thorough
semantics.

Theorem 2. [BGOO] Let M be a PKS andg an LTL or CTL formula.
1. [M = ¢] = true implies[M = ¢]; = true.
2. [M = ¢] = false implies[M = ¢]: = false.

In this paper we revisit LTL generalized model checking amassthat its complex-
ity is greater than what was previously believed. We alscittar specifications (both
in LTL and CTL) for which the model complexity of generalizetbdel checking is
simpler than the general case.

2.2 Automata over Infinite Words

We assume familiarity with the basic notions of alternatimgomata on infinite words,
cf. [GTWO02]. We also refer to tree automata, however, we daleéine them formally.

For an alphabet’, the sety* is the set of finite sequences of elements fran
Forx € X*, we denote the length af by |z|. Given an alphabelE and a setD of
directions, aX-labeled D-treeis a pair(T, 7), whereT C D* is a tree overD and
7 :T — X maps each node @f to a letter inX.

For a finite setX, let B+ (X) be the set of positive Boolean formulas ovéri.e.,
Boolean formulas built from elements K usingA andV), where we also allow the for-
mulastrue andfalse. An alternating word automaton i$ = (¥, Q, ¢;n, 0,), where

X is the input alphabet) is a finite set of states,: Q x > — B*(Q) is a transition
function,q;,, € @ is an initial state, and specifies the acceptance condition. A ruriof
onw = ogoy - - - is aQ-labeledD-tree, (T, T), wherer(¢) = ¢;, and, foreveryr € T,

we have{r(z-71),...,7(x)} F d(7(x), o)) where{z - v1,...,z -y} is the set

of children ofx. A run of A is accepting if all its infinite paths satisfy the acceptance
condition. For a pathr, we denote the set of automaton states visited infinitelgroft
along this path byn f (7). We consider the following three acceptance conditions:

— A path satisfies 8tichiconditiona C Q iff inf(7) Na # 0.

— A pathr satisfies a&o-Bichiconditiona C Q iff inf(7) Na = 0.

— A path 7 satisfies garity conditiona = (Fy,..., F;) whereFy, ... Fj, form a
partition of @ iff for some even we haveinf(r) N F; # 0 and foralli’ < i we
havein f () N F;; = (). We callk the number ofrriorities of «.

For the three conditions, an automaton accepts a word ifétbeists a run that accepts
it. We denote byC(.A) the set of all¥-words thatA accepts.

Below we discuss some special cases of alternating automa¢aalternating au-
tomatonA is nondeterministidf for all the formulas that appear it are disjunctions
over the state§). The automaton! is deterministidf all formulas that appear it are
states fromQ. For a nondeterministic automaton we write Q x X~ — 29 and for a
deterministic automaton we write: @ x X — Q.

We denote each of the different types of automata by an aoreny{ D, N, A} x
{W,B,C, P} x {W, T}, where the first letter describes the branching mode of the au
tomaton (deterministic, nondeterministic, or alterng}jithe second letter describes the
acceptance condition (WedkBiichi, co-Biichi, or parity), and the third letter desesb
the object over which the automaton runs (words or trees)ekample, an ABW is an
alternating Biichi word automata and a DPW is a determinjistrity word automata.

We state the following well known results about automatathei relation to LTL.

Theorem 3. For every LTL formulap of lengthn there exist an NBWV,, with 20(n)

state§VW94] and a DPWD,, with 22°" "’ states an@®(™) priorities [Saf88,Pit07]
such thatL (¢) = L(N,) = L(D,,).

Theorem 4. [Jur00] Given an APWA over a 1-letter alphabet witm states andk

priorities, we can decide whethér(A) = () in time proportional ton®*),

Theorem 5. [SVW87] Given two NBWN;, N, we can decide whethek(N;) C
L(Ns) in space logarithmic inV; and polynomial inVs.

3 LTL Generalized Model Checking

We show that, contrary to previous beliefs, GMC with resgedtnear time logic is
2EXPTIME-complete. Our upper bound combines a DPW for the pfoperty with
the PKS to get an APW over a 1-letter alphabet. The APW is ngitgiiff the GMC
problem holds. For the lower bound, we show a reduction frdrh tealizability to
generalized model checking. LTL realizability is 2EXPTIMiard [PR89] establish-
ing 2EXPTIME-hardness of generalized model checking. T tbgether establish
2EXPTIME-completeness of generalized model checking Tdr. L

2 We delay the definition of weak automata to Section 5.

Theorem 6. LTL generalized model checking =< ¢ can be solved in polynomial
time in the size ol and double exponential time in the sizesof

Proof. Consider an LTL formula. Let |¢| = n. According to Theorem 3 there exists
a DPWD,, with 22" "** ™ states an@®(" priorities such thaf.() = L(D,,).

Let D, = (247, T, ty, p,a) andM = (S, R, L, s"). Consider the following APW
A over a 1-letter alphabet that is obtained from the combmadif A/ and D,,. We
defined = ({a},T x S, (to, s™),n,a’) such that

77((1575)7@): \/ /\ (p(t,a),sl)

o-L(s) (s,8')ER
anda’ = (I, ..., Fy) is obtained fromy = (I, . . ., F,) by settingF} = F; x S.
Lemma 1. A acceptsi iff M =< .

According to Theorem 4 the emptinessdtan be determined in time proportional
(220(71, log 71))20(71,) - 220(71 log n) 0

to
Note that, ifD, was nondeterministic in the previous proof, it could notsely track
simultaneously different matching statesuch thats < s,, in the proof, and therefore
M < ¢ would not necessarily imply that accepts:“. This is in essence the error
in the proof of Theorem 25 of [BGOO], which led to the overlytiogistic EXPTIME
upper-bound.

We now proceed to the lower bound. We start with a definitiobTaf realizability.
Consider a set of propositions”? = TUO of input and output signals, respectively. Let
L be alanguage of infinite words over alphaét’. Therealizability problenfor L is
to decide whether there exists a stratggy(2!)*—2° such that all the computations
generated by are inL. A computationr = (ig,00), (i1,01), . . . IS generated by if
forall j > 0 we haven; = f(ioi1 - - - ;). The realizability problem for an LTL formula
¢ is the realizability problem foL ().

Theorem 7. [PR89] The realizability problem for an LTL formula is 2EXPTIME-
hard in the size of.

Theorem 8. LTL Generalized model checkidd =< ¢ is 2EXPTIME-hard in the size
of .

Proof. We show how to solve realizability of an LTL formula using theneralized
model checking problem. The idea behind the reduction isttieaPKS includes deter-
mined values of the inputs and undetermined values of theutaitThe branching of
the PKS forces all possible assignments to inputs as pessilcicessors of every state.
Thus, every completion of the PKS associates an assignmém butputs with every
possible assignment to inputs and is in essence a stratéiyy.dompletion satisfies the
LTL formula, then so does the strategy. The PKS daslifferent states, each labeled
by the appropriate assignment to the input variables artdtvéinsitions between every
two possible states. We then show how to reduce the PKS to ibme wonstant number
of states andilO| + 2 propositions. O

4 Linear Completeness Preorder

The completeness preordeiused to define generalized model checking is stronger
than necessary for reasoning only about the linear betswfqrartial Kripke structures.
Indeed, the completeness preorder reduces to a bisimutafition in the case of com-
plete Kripke structures, and Kripke structures that satisé same LTL formulas are
not necessarily bisimilar.

In this section, we study a simplinear completeness preordet;,, first suggested
in [BGOQ], that relates partial Kripke structures usingyahleir sets of (3-valued) traces.
Then we show that generalized model checking, defined with respect to this linear
preorder is “only” EXPSPACE-complete.

Given any two infinite 3-valued traces=L(sg)L(s1) - - - andw'=L(s,)L(s}) - - -
in (347)~, we writew <; w' if Vi > 0:Vp € AP : L(s;,p) <1 L(s},p).

Definition 2. For two PKSM; = (S;, R;, L;, si*) with i = 1,2, thelinear complete-
ness preordex, is the greatest relatiorx;, C S7 x S suchthat(sy, s2) € <, implies
all the following.

1. Foreveryw € L£(My, s1) there existav’ € L(Ma, s2) such thatw <; w'.

2. Foreveryw' € L(Ms,, s5) there existsv € L(M, s1) such thatw <; w'.

It is easy to show that 3-valued LTL logically characterities linear completeness
preorder.

Theorem 9. For any two PKSM; and M,, we haveM; < M, iff for every LTL
formulay we haveM; = ¢] <; [Ms E ¢].

Proof. AssumeM; =<, M, and consider any LTL formulea. If [M; | ¢] = L, we
always havéM, = o] <1 [M; = ¢.

If [M1 = ¢] = true, then for allw € L(M), [w = ¢] = true. By point 2 of
Definition 2, for everyw’ € L(My) there existav € L(M;) such thatw <; w’. But
sinceVw € L(M) : [w |= ¢] = true, we havevw’ € L(Ms) : [w' = ¢] = true, and
henceMs | o] = true.

If [My1 | ¢| = false, then3w € L(M;) : [w = ¢] = false. By point 1 of
Definition 2, we havelw’ € L(M3) : w <; w" and hencéw’ |= ¢| = false. Thus
[Ms =] = false, and the first direction of the theorem holds.

Conversely, lek; C so denoteVy € LTL : [(My,s1) E o] <1 [(Ma, s2) E ¢].
Assume thats; C s but thats; A1 so: thus, either point 1 or 2 of Definition 2 is
violated.

Assume point 1 is violateddw € L£L(My,s1) : Vw' € L(Ma,s2) : w £5 w'. Let
w = sYsts? .- with s§ = s1. LetSY = {so} and fork > 0, let Sk = {s € S» | s’ €
SEUA(s',s) € Ry A(Vp € AP : Ly(sh,p) <1 La(s,p))}. SinceVw’ € L(My, s5) :
w £; w', then there must exist a value bfsuch tha‘rS§ = (). In other words, the
corresponding’ in M, denote the first state if/; reachable fromy; alongw whose
label cannot be “matched” (according to the previous fordedinition) by any state of
M, (hence also reachable insteps froms,). By abusing notation, lef5 = {s € S, |
s’ € ST A (s',5) € Ry} (by construction, we know ! + () and since every state
has at least one successor statejs nonempty as well). Thus, for each state S%,

there exists a proposition € AP such thatL,(s¥,p) £; La(s,p). Leto(s) = p
if Li(sY,p) = false and lety(s) = —p otherwise (i.e., wher (s}, p) = true; if
Ly (s¥,p) = L, then trivially L, (s%, p) <; Lo(s,p)). Consider the LTL formula

v=(AX'C AN pr AN) =X\ es)

i<k L(si,p)=true L(s%,p)=false seSk

We have[(M, s1) =] = false (as we knowjw = 1] = false) while [(Ma, s2) E
Y] # false (since the antecedent of the logical implicationtise exactly for finite
paths leading to states Ef‘l and the consequent is eithete or L for all states in
SK). A contradiction withs; C s,.

Assume point 2 is violatediw’ € L£L(Ms, s2) : Yw € L(My,s1) : w £ w'. Using
the same line of reasoning as in the previous casejlelenote the first state in/,
reachable frons, alongw’ whose label cannot be matched by any statgfiof M/, as
defined above. Thus, for each state ST, there exists a propositigne AP such that
Li(s,p) %1 La(sk,p). Letp(s) = pif Li(s,p) = true and letyp(s) = —p otherwise.
Consider the LTL formula

b= (AXC A pr A en A GAe) = X5V els)

i<k L(sk,p)=true L(s%,p)=false L(s%,p)=L seSk

We have[(M;,s1) =] = true (since the antecedent of the logical implication is
eithertrue or L exactly for the finite paths leading to statesSﬁT1 and the consequent
is true for all states inS¥) while [(Ma, s2) |=] # true (since[w’ |= 1] # true). A
contradiction withs; C ss. O

Given a PKSM and an LTL formulap, generalized model checking with respect
to the linear completeness preorder means checking whether every 3-valued trace
of M can be completed to a 2-valued trace that satisfigsormally, we have the fol-
lowing.

M E<, ¢iff Vw € £L(M) : 3 acompletay’ such thatv <; v’ andw’ = ¢

As observed in [GJ02], computing the value[8f = ¢]; for an LTL formulay
can be reduced to one normal (2-valued) model checking @nobhd one generalized
model checking problem, regardless of which completenessrger is used. One can
start by checking whether there exists a completiérof any tracew in M such that
w’ [~ . To do this, one can build a Kripke structulé¢® that guesses all possible
completions of labelings of states &f and thus accepts all the possible completions of
traces ofM. Then, one checks wheth&f® |= ¢ using traditional 2-valued LTL model
checking, which is a PSPACE-complete problemMf = ¢, all possible completions
of M satisfyy, which meansM = ¢|; = true and we stop. Otherwise, one needs
to solve a second, more expensive generalized model cliepkablem to determine
whether there exists some completibf of M whose traces all satisfy.

If one considers the completeness preorgerhecking for such a completiad’ =
M such thatM’ = ¢, i.e., computing =< ¢, is 2EXPTIME-complete as shown in
the previous section. However, if one considers instealirtbar completeness preorder
=<1, we now show that computinly/ =<, ¢ is only EXPSPACE-complete.

Theorem 10. LTL generalized model checking =<, ¢ with respect to the linear
completeness preordet; can be solved in space logarithmic in the sizeléfand
exponential in the size of.

Proof. Consider an LTL formulap. According to Theorem 3 there exists an NBW
N, = (247.Q, qo, p, F) where|Q| = 2°U¢D such thatL(N,,) = L(y).

We modify the NBW above to an NBW over the alphaBéf’ that accepts partial
traces that have a completioni{N,,). Formally, we have the following.

We denote letters i24” by 7 and letters in3*” by 7. Let N’ be the automa-
ton obtained fromV,, by guessing a completion of the read letter. Formaly, =
(347 .Q, qo, p', F) where

pl(svT) = \/ p(S,E)
o7
Now, all that we have to check is whethef)M) C L(N'). From Theorem 5, we know
that this problem can be solved in space logarithmid4rand polynomial inN’. As
N’ is exponential inp, the upper bound follows. a

We now show that using this definition of GMC we can solve an EBRRCE-hard
tiling problem [VEB97]. In tiling problems we get a finite satdifferent types of tiles
and we have to tile a floor of a given dimension. We may use ag/rtil@s as we
want from every given type, however, there are rules thhtigelvhich tiles are allowed
to be next to each other according to vertical and horizoniigs. There are many
different flavors of tiling problems with different compliées. Here we introduce the
EXPSPACE version of the tiling problem. In order to proveltheer bound, we build a
PKS M whose traces are all the possible arrangements of tilesio& tras a completion
that satisfies our LTL formula if the arrangement of tiles is not valid, i.e., it violates
one of the tiling rules. Thatis\/ =<, ¢ iff all possible arrangements of tiles are not
valid, i.e., the tiling problem does not have a solution.

A tiling problemis (T, H,V, s, t, n), whereT is a finite set of tlesH,V C T x T
are horizontal and vertical consistency ruleg; € T are initial and final tiles, and
is a number (in unary). The decision problem is whether tegrgts a numbem and
a functionf : [2"] x [m] — T such thatf(1,1) = s, f(2",m) = t, and foralli, j
we have(f(i,j), f(i + 1,5)) € H and(f(i,7), f(i,j + 1)) € V. Thatis, arrange
the tiles in a2” timesm rectangle such thatis in the bottom left cornet, in the top
right corner, and all neighbors (vertical/horizontal)isfgtthe horizontal and vertical
consistency rules. This problem is EXPSPACE-complete BB

Theorem 11. LTL generalized model checkidg =<, with respect to the linear com-
pleteness preordex ;, is EXPSPACE-hard in the size of

Proof. We start by representing the rectangular arrangementes by a linear se-
guence of tiles. An (infinite) linear sequence of tiles reprds a valid tiling if it starts
with s, hast in locationm?2™ for somem, every adjacent locations (except multiples of
2™ and their successors) satidff; and every two locations whose distance’isatisfy
V.

We construct a simple system that produces all possibleesegs of tiles. The
partial propositions are going to number every tile in thgussmce with a number in

[0..(2™ — 1)]. The LTL formula checks two things. First, that the truthigsments to
partial propositional variables behave like a counters(#livays possible to complete
the values of these propositions in this way). Second, thatyegpossible sequence of
tiles contains one of the following problems: either (a)ded not start irs, or (b) all
locations that are multiples @f* are nott, or (c) the horizontal rule is violated before
t appears in "-multiple location, or (d) the vertical rule is violated beé¢ appears
in a 2”-multiple location. If one of these problems occurs, themtiling is not valid.

If all possible arrangements of tiles are not valid, thentilireg problem does not have
a solution. As before, we show also how to reduce the stra¢tuone with a constant
number of states. O

The next theorem states thétis a stronger relation thaf 7, which in turn helps
explain why checking=< is more expensive than checkipgx, .

Theorem 12. For any partial Kripke structures\/, M’ and LTL formulap, M < M’
impliesM =< M’, and thereforeVl =< ¢ impliesM =<, .

Proof. Immediate from the definitions of and=<;.. O

Note that= is strictly stronger than<, as the converse of the theorem does not hold.
To illustrate this, consider the LTL formula= (p A Xp) V (-p A X—p) and the par-
tial Krlpke structureM = <{SQ, S1, 82}, {(So, 81), (80, 82), (51, 81), (82, 82)}, L, SQ>
labeled with a single atomic propositignsuch thatl(sg,p) = L, L(s1,p) = true

and L(s2,p) = false. It is easy to see thdtM, sg) = ¢] = L. Moreover, we have
(M, so) E=, ¢, as every 3-valued trace generated frah, so) can be completed by
some 2-valued trace that satisfiessHowever,(M, s¢) =< ¢ as there does not exist a
completionM’ such thatM < M’ andM’ |= ¢, as states) wherep = L cannot be
completed to @inglestates such that every trace fromsatisfiesp: if L(s,p) = true,
then the tracesy violatesy, and if L(s, p) = false, then the tracas{ violatesep.

5 Model Complexity

We have seen that LTL generalized model checking definedtgtbtronger branching-
time preorder< is polynomial in the size of the model. The degree of the potgial,
however, is unbounded, and depends on the deterministoation created for the for-
mula. Here we show that for interesting classes of propeittie model complexity can
be restricted to linear or quadratic. The resemblance pdiott between generalized
model checking and realizability in the proof of Theorem 8tiaues here. Indeed, the
same classes of formulas are used to suggest tractabliefimof LTL for realizability
(cf. [RW89,AMPS98,PPS06]).

We start with a few additional definitions and known resuéigarding automata.
Let A = (¥, Q, qin, 0, @) be a Buchi automaton. We say thatis weakif there is a
preorder< on the state s&p such that the following two conditions hold:

1. Foreveryy € Q ando € X, if ¢ appearsin(q, o) theng < ¢'.
2. Foreveryy € Q, if ¢ € athen forall¢’ suchthay < ¢’ andq’ < g we havey’ € a.

We use the acronyms mentioned previously for weak autorRatanstance, an AWT
is an alternating weak tree automaton and an DWW is a deteticiveak word au-
tomaton.

We specialize Theorem 4 to our needs as follows.

Theorem 13. Given an APWA over a 1-letter alphabet, we can decide whethéd) =
(¢ in linear time if A is AWW [KVWO0O0] and in quadratic time i is an ABW, ACW, or
an APW with three priorities [VW86,Jur00].

Consider an LTL formulap. We say thatp is a safety propertyif for every word
w ¢ L(p) there exists a prefix such that foralk’ we haveuv’ ¢ L(p). Letp
andq be Boolean combinations of propositional formulas. Foasulf the formG Fp
or G(¢ — Fp) are calledresponse propertiesand formulas of the forn¥’Gp are
called persistence propertieBVP92]. If ¢ is of the form (p? A ©%) — (©? A ¥9)
wherep? andy? are conjunctions of safety properties agitlandy? are conjunctions
of response properties is callgeneralized reactivity[L][KPPO03]. Alternatively, we
classify LTL properties according to the type of deterntinigutomaton that accepts
the same language. We say thés aweak propertyf there exists a DWW that accepts
the language op. We say thatp is aDBW propertyif there exists a DBW that accepts
the language op. Similarly, we say that is aDCW propertyif there exists a DCW
that accepts the languagef The following theorem links the different types of LTL
properties to the deterministic automata that accept them.

Theorem 14. 1. Forevery safety property, there exists a DWW such thatl.(D) =
L(p).
2. For every response propergy there exists a DBWD such thatZ (D) = L(y).
3. For every persistence propergy there exists a DCVD such thatZ(D) = L(y).
4. For every generalized reactivity[1] property, there exists a DPWD with three
priorities such thatL (D) = L(yp).

The following is a consequence of Theorems 13 and 14 and twf pf Theorem 6.

Theorem 15. LTL generalized model checkidd =< ¢ is linear in M for weak and
safety properties, and quadratic i for response, persistence, and generalized reac-
tivity[1] properties.

Proof. From the proof of Theorem 6 it follows that we combine a detarstic au-
tomaton for the property with the model to get an APW over atiet alphabet. From
Theorem 14 it follows that if the LTL property is a safety orligation property the
DPW, and the resulting APW, are weak. If the LTL property iegponse property, the
DPW is in fact a DBW. If the LTL property is a persistence pndpehe DPW is in fact
a DCW. If the LTL property is a generalized reactivity[1] pegty, the DPW has three
priorities. Recall that the APW is the product of the DPW ahéd inodel. Thus, the
APW is linear in the size of the model. The desired upper bawwd follows directly
from Theorem 13. a

Note that LTL GMC for persistence properties can be solvegladratic time in the
size of the model, instead of in linear time as incorrectyed in Theorem 5 of [GJ02].

The root cause of this error is the same as the one for Theoseof [BGO0O0], as the
proofs of both theorems rely on the same product constrmuatiow corrected in Theo-
rem 6 of this paper.

Finally, we clarify a subtle misconception regarding gatized model checking
of CTL properties. Given a CTL property, we can construcgcliy an NBT that is at
most exponential in the size of the property that acceptesab that satisfy the property
[KVWO0O]. Generalized model checking can then be solved bylziaing this NBT with
the model to obtain an ABW over a 1-letter alphabet [BGOOkd@rding to Theorem 13
the emptiness of this ABW can be established in quadratie.tithus, the complexity of
GMC with respect to CTL properties is exponential in the fatanand quadratic in the
model, which is optimal [BG00]. As with LTL the quadratic cptaxity in the model
follows from the type of acceptance condition used by thematon for the formula.
We are interested in classes of properties for which autenegjuire simpler acceptance
conditions. If the CTL property can be recognized by an NW€, complexity in the
size of the model reduces to linear. In the proof of Theorerh J&J02] it is assumed
that if a CTL property can be recognized by an NCT then it can bk recognized by
an NWT. However, it is currently unknown whether this is tlase (cf. Section 6) and
the proof of that theorem is therefore incomplete.

6 Conclusions

We study generalized model checking for linear time prapsriVe show that the clas-
sical definitions of GMC is 2EXPTIME-complete in the size bétformula and poly-
nomial in the structure. We study a linear version of the cletemess preorder and
show that this preorder induces a GMC problem that is EXP3Ra@nplete in the
size of the formula. We then proceed to show that for intergstlasses of properties
the model complexity can be restricted to a low order polyiabm

We have presented our work in the framework of partial Krigk@ictures. Other
equally expressive 3-valued models [GJO3] include Modahsition Systems [LT88]
and Kripke Modal Transition Systems [HJS01]. The complekibunds given in this
paper carry over to those closely related modeling fornmedis

The proof of Theorem 8 reduces realizability of LTL to GMC.€eTsimilarity ac-
tually goes in both directions. A GMC problem can be trarslab a 2-person game
where the specification (in LTL or in branching-time logi@ncbe translated to the
winning condition. In a 2-person game players verifier affidtez alternate in moving a
token along the edges of a graph. If the infinite path made &yaken satisfies an LTL
formula, verifier wins and otherwise she loses. If the wigriondition is expressed in
terms of branching-time logic, instead of considering dpatthe graph, we consider
the infinite unwinding of the game graph and prune the unwigdio that nodes that
correspond to decisions of verifier have exactly one suoce$he translation of the
GMC problem to such a game is as follows. The game graph iseiimilar to the
model, where decisions of the refuter correspond to thedhiag of the original model
and decisions of the verifier correspond to the values giwamtetermined proposi-
tions. The formula to be checked on the model is translatéiaetovinning condition in
the game. Much like the proofs of the lower bounds above stiégghtforward transla-

tion may result in a game graph that is exponential in the rermabpropositions whose
value is unknown. We can further reduce the number of nod#sergame graph to
a product of the number of propositions whose value is unknamd the size of the
model using the techniques in the proofs of Theorems 8 antt itay be possible to
reduce the number of nodes in the game graph to a constasttira@umber of states
of the model.

We have seen that for interesting classes of LTL and CTL pt@sghe complexity
in term of the model can be restricted to linear or quadr&tie.classify the proper-
ties according to deterministic word automata and nondetestic tree automata that
match these formulas. While most popular types of propedie covered above, char-
acterization of the exact classes of formulas that can beslated to these types of
automata is an interesting problem. That is, what are thetexdsets of LTL that can
be translated to DWW and to DBW? Is there a simple syntactig iwaexpress these
subsets? The same problem for CTL (and other branchingttgies) involves tree
automata. For every CTL property there exist an NBT and an A@€bgnizing the
same set of trees [KVWO00]. What CTL properties can be traedleo NWT? Is there a
syntactic way to express these subsets? We know that if alagdiage can be recog-
nized by a DBW and by a DCW, then it can be recognized by a DWW I[#M]. This
suggests the following natural question: Given a tree lagguhat is accepted by an
NCT and by an NBT, can it be recognized by an NWT? From a pralqgtigint of view,
it could be interesting to study the specific case of CTL prigethat are recognized
by NCT.

AcknowledgementsWe thank Michael Huth for comments on an earlier version and
Orna Kupferman for a discussion of the relative expressoveqs of NBT and NCT.

References

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Quaiier synthesis for timed au-
tomata. InIFAC Symp. on System Structure and Contpalges 469-474. Elsevier,
1998.

[BG99] G.Bruns and P. Godefroid. Model checking partialesepaces with 3-valued tempo-
ral logics. In11th Computer Aided Verificatippages 274-287, 1999.

[BGOO] G. Bruns and P. Godefroid. Generalized model checkiReasoning about partial
state spaces. Ihlth Concurrency Theory.NCS 1877, pages 168-182, 2000.

[BRO1] T. Ball and S. Rajamani. The SLAM Toolkit. h3th Computer Aided Verification
LNCS 2102, pages 260—-264, 2001. Springer-Verlag.

[GCO5] A. Gurfinkel and M. Chechik. How Thorough is Thoroughdigh? In13th Correct
Hardware Design and Verification Methqd2005.

[GHO5] P. Godefroid and M. Huth. Model Checking Vs. Gena®di Model Checking: Se-
mantic Minimizations for Temporal Logics. BOth Logic in Computer Scienggages
158-167, 2005.

[GHJO01] P. Godefroid, M. Huth, and R. Jagadeesan. Abstnad¢iased Model Checking using
Modal Transition Systems. t2th Concurrency TheoryNCS 2154, pages 426—-440,
2001. Springer-Verlag.

[GJ02] P. Godefroid and R. Jagadeesan. Automatic Abstratiising Generalized Model
Checking. In14th Computer Aided VerificatioprLNCS 2404, pages 137-150.
Springer-Verlag, 2002.

[GJ03] P. Godefroid and R. Jagadeesan. On the Expressiveh8sValued Models. I@ith
Verification, Model Checking and Abstract Interpretati&™NCS 2575, pages 206—
222, 2003. Springer-Verlag.

[GS97] S. Graf and H. Saidi. Construction of Abstract StatepBs with PVS. Irbth Com-
puter Aided VerificationLNCS 1254, pages 72-83, 1997. Springer-Verlag.

[GTWO02] E. Gradel, W. Thomas, and T. Wilk&utomata, Logics, and Infinite GamelsNCS
2500. Springer-Verlag, 2002.

[GWCO06] A. Gurfinkel, O. Wei, and M. Chechik. Systematic Cioustion of Abstractions for
Model-Checking. In7th Verification, Model Checking, and Abstract Interpreiaf
LNCS 3855, pages 381-397. Springer-Verlag, 2006.

[HIMSO02] T. Henzinger, R. Jhala, R. Majumdar, and G. SutezylAbstraction. Ir29th Prin-
ciples of Programming Languaggsages 58-70, 2002.

[HJSO01] M. Huth, R. Jagadeesan, and D. Schmidt. Modal Tiiansystems: a Foundation for
Three-Valued Program Analysis. [Oth European Symp. on ProgrammindNCS
2028, Springer-Verlag, 2001.

[Jur00] M. Jurdzihski. Small progress measures for sglygarity games. 117th Theoretical
Aspects of Computer ScientdNCS 1770, pages 290-301. Springer-Verlag, 2000.

[Kle87] S. C. Kleenelntroduction to Metamathematic®lorth Holland, 1987.

[KMMO04] O. Kupferman, G. Morgenstern, and A. Murano. Typssidorw-regular automata.
In 2nd Automated Technology for Verification and AnalyisiCS 3299, pages 324—
338. Springer-Verlag, 2004.

[KPPO3] V. Kesten, N. Piterman, and A. Pnueli. Bridging tlap dpetween fair simulation and
trace containment. 1h5th Computer Aided VerificatiphNCS 2725, pages 381-393.
Springer-Verlag, 2003.

[KVWO00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automateoretic approach to
branching-time model checkingournal of the ACM47(2):312—-360, 2000.

[LT88] K. G. Larsen and B. Thomsen. A Modal Process Logic.3td Logic in Computer
Sciencepages 203-210, 1988.

[MP92] Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systems:
Specification Springer-Verlag, 1992.

[PitO7] N. Piterman. From nondeterministic Buchi and 8trautomata to deterministic par-
ity automata.Logical Methods in Computer Scien&3):5, 2007.

[PPS06] N. Piterman, A. Pnueli, and Y. Saar. Synthesis daftireg(1) designs. I7th Veri-
fication, Model Checking, and Abstract Interpretati&NCS 3855, pages 364—380.
Springer-Verlag, 2006.

[PR89] A.Pnueliand R. Rosner. On the synthesis of a reant@ule. In16th Principles of
Programming Languagegages 179-190, 1989.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discesent systemsIEEE
Transactions on Control Thegry7:81-98, 1989.

[Saf88] S. Safra. Onthe complexity ofautomata. Ir29th Foundations of Computer Science
pages 319-327, 1988.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complentetion problem for Biichi au-
tomata with applications to temporal logi@heoretical Computer Sciencé9:217—
237, 1987.

[VEB97] P.van Emde Boas. The convenience of tilings Cbmplexity, Logic and Recursion
Theory volume 187 otecture Notes in Pure and Applied Mathetaipages 331-363,
1997.

[VW86] M.Y. Vardi and P. Wolper. Automata-theoretic techunés for modal logics of pro-
grams.Journal of Computer and System Scier2®(2):182-221, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite qmuations. Information and
Computation115(1):1-37, 1994.

