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Symmetry reduction methods exploit symmetry in a system in order to efficiently verify its temporal
properties. Two problems may prevent the use of symmetry reduction in practice: (1) the property
to be checked may distinguish symmetric states and hence not be preserved by the symmetry, and
(2) the system may exhibit little or no symmetry. In this article, we present a general framework
that addresses both of these problems. We introduce “Guarded Annotated Quotient Structures”
for compactly representing the state space of systems even when those are asymmetric. We then
present algorithms for checking any temporal property on such representations, including non-
symmetric properties.
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about Programs—mechanical verification
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1. INTRODUCTION

In the last few years, there has been much interest in symmetry-based reduc-
tion methods for model checking concurrent systems [Ip and Dill 1993; Clarke
et al. 1993; Emerson and Sistla 1996, 1997; Gyuris and Sistla 1999; Clarke
and Jha 1995]. These methods exploit automorphisms of the system’s global
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state graph induced by permutations on process indices and variables. Given a
correctness property specified by a temporal formula φ, existing symmetry-
reduction methods for verifying φ can be broadly classified into two cate-
gories: the first class of methods [Clarke et al. 1993; Emerson and Sistla
1996; Ip and Dill 1993; Clarke and Jha 1995] consider only those automor-
phisms that preserve the atomic predicates appearing in φ, construct a Quo-
tient Structure (QS), and check the formula φ on the QS using traditional
model-checking algorithms; the second class of methods [Emerson and Sistla
1997] consider all automorphisms induced by process/variable permutations,
construct an Annotated Quotient Structure (AQS), and unwind it to verify the
formula φ.

In this article, we generalize symmetry-based reduction in several ways.
First, the mathematical framework used to formalize symmetry reduction sup-
ports any automorphism on the system’s state graph; for example, automor-
phisms induced by permutations on variable-value pairs can be considered
in addition to those induced by permutations on process indices and vari-
ables. Thus, this framework allows for more automorphisms and hence greater
reduction.

Second, we introduce the notion of Guarded Annotated Quotient Structure
(GQS) to represent, in a very compact way, the state graph of systems with
little or even no symmetry. In a nutshell, a GQS is an AQS whose edges are
also associated with a guard representing the condition under which the cor-
responding original program transition is executable. Given a program P and
its reachability graph G, by adding edges to G (via a transformation of P ), we
obtain an expanded graph H that has more symmetry than G, and hence can
be represented more compactly. A GQS for G can be viewed as an AQS for H
whose edges are labeled with guards in such a way that the original edges of G
can be recovered from the representation of H. To verify a temporal formula φ,
the GQS is unwound as needed, by tracking the values of the atomic predicates
in φ and the guards of the GQS, so that only edges in G are considered. The GQS
of G can be much smaller than its QS because it is defined from a larger set of
automorphisms: a GQS is derived by considering all the automorphisms of H,
which exhibits more symmetry than G, including those automorphisms that
do not preserve the atomic predicates in φ. We show that unwinding the GQS
on-demand, in order to verify a property φ, can be done without ever generating
a structure larger than the corresponding QS.

Third, we present two new techniques for further optimizing the model-
checking procedure using GQSs. These techniques minimize the amount of
unwinding necessary to check a formula φ and may yield an exponential im-
provement in performance. The first technique, called formula decomposition,
consists of decomposing φ into sets of top-level subformulas that contain corre-
lated atomic predicates; the satisfaction of φ can then be checked by checking
each set of subformulas separately, which in turn can be done by successively
unwinding the GQS with respect to only the predicates appearing in the subfor-
mulas of that set separately; therefore, unwinding the GQS with respect to all
the atomic predicates appearing in φ simultaneously can be avoided. The second
technique, called subformula tracking, consists of identifying a good maximal

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 4, July 2004.



704 • A. P. Sistla and P. Godefroid

set of “independent” subformulas of φ and unwinding the GQS by tracking
these subformulas only. A good maximal independent set contains symmetric
or near symmetric subformulas. Thus, subformula tracking allows us to exploit
symmetries in the subformulas to contain the size of the unwound structure.
This is a generalization of formula symmetry, originally considered in Emerson
and Sistla [1996], and it allows us to exploit symmetries in the formula more
widely. Formula decomposition and subformula tracking are complementary
techniques and can be applied recursively.

We also present an alternative method that does not construct the GQS.
Instead, it simply constructs the AQS for the expanded graph H as defined
above, and modifies the correctness property to include the guards associated
with the edges of the GQS. The modified correctness property asserts that the
original correctness property be satisfied on those paths of H that are also paths
in G. Note that formula decomposition can also be used with this method, as
well as with the traditional method employing the QS.

We call the method involving the construction of the QS from the original
graph G the QS-based method and, similarly, the methods involving the con-
struction of the GQS and the AQS from the expanded graph H are called the
GQS-based and the AQS-based methods, respectively. We present experimen-
tal results comparing these three methods. To do this, we extended the SMC
model-checker [Sistla et al. 2000] to handle priorities by using the GQS-based
method. Our experiments are performed using a standard resource-controller
example and a real-world example, the Fire-wire protocol [IEEE 1995]. These
experiments show that the GQS-based method outperforms the other two meth-
ods most of the time. They also show that formula decomposition can improve
performance significantly.

This article is organized as follows. Section 2 introduces background defini-
tions and notations. Section 3 describes the GQS-based method and the model-
checking procedure using it. Section 4 presents the techniques based on formula
decomposition and sub-formula tracking. Section 5 describes the extension of
the SMC system to handle priorities and presents experimental results compar-
ing the three methods mentioned above. Section 6 contains concluding remarks
and discusses related work.

2. BACKGROUND

A Kripke structure K is a tuple (S, E, P, L) where S is a set of states, E ⊆ S×S
is a set of edges, P is a set of atomic propositions and L : S→ 2P is a function
that associates a subset of P with each state in S. CTL∗ is a logic for specifying
temporal properties of concurrent programs (e.g., see [Emerson 1990]). It in-
cludes the temporal operators U (until), X (next-time) and the existential path
quantifier E. Two types of CTL∗ formulas are defined inductively: path formu-
las and state formulas. Every atomic proposition is a state formula as well as a
path formula. If p and q are state formulas (respectively, path formulas) then
p ∧ q and ¬p are also state formulas (respectively, path formulas). If p and q
are path formulas then pUq, Xp are path formulas and E(p) is a state formula.
Every state formula is also a path formula. We use the abbreviation EF(p) for

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 4, July 2004.



Symmetry and Reduced Symmetry In Model Checking • 705

E(TrueUp) and AG(p) for ¬(EF¬p). A CTL∗ formula is a state formula. CTL is
the fragment of CTL∗ where all path formulas are of the form pUq or of the form
Xp where p, q are state formulas. CTL∗ formulas are interpreted over Kripke
structures (e.g, see Emerson [1990] for a detailed presentation of the semantics
of CTL∗). The nesting depth of a CTL∗ formula is the nesting depth of the path
quantifiers within the formula. For example, the nesting depth of the formula
E(PUQ) ∧ E F (Q) is one, while that of E(PUE(QUR)) is two.

Let K = (S, R, P, L) and K ′ = (S′, R ′, P, L′) be two Kripke structures with
the same set of atomic propositions. A bisimulation between K and K ′ is a
binary relation U ⊆ S × S′ such that, for every (s, s′) ∈ U , the following con-
ditions are all satisfied: (1) L(s) = L′(s′); (2) for every t such that (s, t) ∈ R,
there exists t ′ ∈ S′ such that (t, t ′) ∈ U and (s′, t ′) ∈ R ′; and (3) for every t ′ such
that (s′, t ′) ∈ R ′, there exists t ∈ S such that (t, t ′) ∈ U and (s, t) ∈ R. We say
that a state s ∈ S is bisimilar to a state s′ ∈ S′ if there exists a bisimulation U
between K and K ′ such that (s, s′) ∈ U . It is well known that bisimilar states
satisfy the same CTL∗ formulas.

We define a predicate over a set S as a subset of S. Let f be a bijection on S,
that is, a one-to-one mapping from S to S. Let C be a predicate over S. Let f (C)
denote the set { f (x) : x ∈ C}. Let f −1 denote the inverse of the bijection f . If
f , g are two bijections, then we let f g denote their composition in that order;
note that f g is also a bijection. Throughout the article, we use the following
identity relating the inverse and composition operators: ( f g )−1 = g−1 f −1.

Let G = (S, E) be the reachability graph of a concurrent program where S
denotes a set of nodes/states and E ⊆ S × S. An automorphism f of G is a
bijection on S such that, for all s, t ∈ S, (s, t) ∈ E iff ( f (s), f (t)) ∈ E. We say
that an automorphism f respects a predicate C over S if f (C) = C. The set of
all automorphisms of a graph forms a group Aut(G). Given a set P1, . . . , Pk of
predicates over S, the set of automorphisms of G that respect P1, . . . , Pk form
a subgroup of Aut(G).

Let G be a group of automorphisms of G. We say that states s, t ∈ S are
equivalent, denoted by s ≡G t, if there exists some f ∈ G such that t = f (s).
As observed in Clarke et al. [1993], Emerson and Sistla [1996], and Ip and
Dill [1993], ≡G is an equivalence relation. A quotient structure of G with re-
spect to G is a graph (S̄, Ē) where S̄ contains exactly one node in each equiv-
alence class of ≡G and (s̄, t̄) ∈ Ē iff there exists some t such that t ≡G t̄ and
(s̄, t) ∈ E. Each state s̄ ∈ S̄ represents all states in S that belong to its equiv-
alence class. Different quotient structures can be defined by choosing different
representatives for each equivalence class. However, all these structures are
isomorphic. We denote by rep(s, G) the representative element of the equiva-
lence class to which s belongs. In what follows, Q S(G, G) denotes the quotient
structure obtained by choosing a unique representative for each equivalence
class.

A predicate P on the edges of G is a subset of S × S. We say that an edge
(s, t) in E, satisfies P if (s, t) ∈ P . Let True denote the set S × S. For an edge
predicate P and automorphism f on states, let f (P ) = {( f (s), f (t)) : (s, t) ∈ P}.
Given a group G of automorphisms of G, we can extend the equivalence relation
≡G from states in S to edges in E as follows: two edges e = (s, t) and e′ = (s′, t ′)
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are equivalent (written as e ≡G e′) if there exists some g ∈ G such that s′ = g (s)
and t ′ = g (t). It is easy to see that≡G on E is an equivalence relation [Godefroid
1999].

3. MODEL CHECKING USING GUARDED ANNOTATED
QUOTIENT STRUCTURES

3.1 Guarded Quotient Structures

In this section, we introduce Guarded Annotated Quotient Structures (GQSs)
as extensions of Annotated Quotient Structures considered in Emerson and
Sistla [1996, 1997]. These structures can be defined with respect to arbitrary
automorphisms and can compactly represent the state space of systems that
contain little symmetry. For example, consider a resource allocation system
composed of a resource controller and three identical user processes, named
a, b and c. When multiple user processes request the resource at the same
time, the controller process allocates it to one of the requesting users according
to the following priority scheme: user a is given highest priority while users
b and c have the same lower priority. This system exhibits some symmetry
since users b and c are “interchangeable”. Now consider a similar system but
where the three user processes are given equal priority. This system exhibits
more symmetry since all three users are now “interchangeable”. Thus, the sys-
tem without priorities has more symmetry than the system with priorities. A
guarded annotated quotient structure allows us to verify systems with reduced
symmetry (e.g., a system with priorities) by treating these as if they had more
symmetry (e.g., a system without priorities) and without compromising the ac-
curacy of the verification results. For instance, in the state graph G of the above
resource allocation system with priorities, a state s where all three users have
requested the resource has only one outgoing edge (granting the resource to
user a). By adding two other edges from s (granting the resource to the two
other user processes), the state graph H of the system without priorities can
be defined. Since H exhibits more symmetry than G, it can be verified more
efficiently using symmetry reduction. Thus, by viewing G as H extended with
guards so that G can be re-generated if needed, model checking can be done
more efficiently.

Formally, let H = (S, F ) be a graph such that F ⊇ E and Aut(G) ⊆ Aut(H),
that is, H is obtained by adding edges to G = (S, E) such that every automor-
phism of G is also an automorphism of H.1 LetH, G be groups of automorphisms
of H and G, respectively, such that H ⊇ G. As indicated earlier, ≡H defines
equivalence relations on the nodes and edges of H. For any edge e ∈ F , let
Class(e,H) denote the set of edges in the equivalence class of e defined by ≡H.
Let Q = {Q1, . . . , Ql } be a set of predicates on S such that each automorphism
in G respects all the predicates in Q. Let Q S(G, G) = (Ū , Ē) be the quotient
structure of G with respect to G as defined earlier.

1Our results can easily be extended to allow the addition of nodes as well as edges. Note that adding
edges/nodes to a graph may sometimes reduce symmetry.
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A Guarded Annotated Quotient Structure of H = (S, F ) with respect to H,
denoted by GQ S(H,H), is a triple (V̄ , F̄ , C) where V̄ ⊆ S is a set of states that
contains one representative for each equivalence class of states defined by ≡H
on S, F̄ ⊆ V̄ × V̄ × H is a set of labeled edges such that, for every s̄ ∈ V̄
and t ∈ S such that (s̄, t) ∈ F , there exists an element (s̄, t̄, f ) ∈ F̄ such that
f (t̄) = t, and C is a function that associates an edge predicate C(e) with each
labeled edge e ∈ F̄ satisfying the two following conditions: (1) let e = (s̄, t̄, f )
and e′ = (s̄, f (t̄)); at the time when we unwind the GQS, we will need to
unwind only the edges in Class(e′,H) that are edges in G; we chose to encode
this information using the predicate C(e) which we define as a predicate that
contains all the edges of Class(e′,H) that are in E; formally, we thus require
that C(e) satisfies the condition: C(e)∩Class(e′,H) = E ∩Class(e′,H); (2) for all
g ∈ G, g (C(e)) = C(e) (i.e., g respects the edge predicate C(e)).

For a labeled edge e = (s̄, t̄, f ) ∈ F̄ , let Class(e,H) simply denote Class(e′,H)
where e′ = (s̄, f (t̄)). For the labeled edge e = (s̄, t̄, f ) ∈ F̄ , f ∈ H is called
the label of e and denotes an automorphism that can be used to obtain the cor-
responding original edge in F ; the edge predicate C(e) can in turn be used to
determine whether this edge is also an edge of G. Labels of edges in F̄ and the
edge predicate C are used to unwind GQS(H,H) when necessary during model
checking, as described later. Note that edge predicates, given by C, that satisfy
the above conditions always exist: for instance, taking C(e) = E always satis-
fies the definition. In practice, a compact representation of an edge predicate C
satisfying the conditions above can be obtained directly from the description of
the concurrent program. For example, in the case of the prioritized resource al-
location system, the edge predicate C(e) is defined as follows: if the labeled edge
e denotes the allocation of the resource to a user, then C(e) asserts that if there
is a request from user a then a is allocated the resource; for all other labeled
edges, C(e) is the predicate True. Similarly, the automorphisms labeling edges
in F̄ can also have succinct implicit representations. For example, any automor-
phism induced by permutations of n process indices as considered in Emerson
and Sistla [1996, 1997], and Gyuris and Sistla [1999] can be represented by
an array of n variables ranging over n. Tools like SMC [Sistla et al. 2000] and
Murphi [Ip and Dill 1993] include optimized algorithms for representing and
manipulating such sets of permutations.

Figure 1 shows the reachability graph G of a 2-process mutual exclusion
algorithm where process 1 has priority. The nodes of G are elements belonging
to {N1, T1, C1}×{N2, T2, C2}. We also consider each node of G to be a two element
set. For any such node s, if Ni ∈ s or Ti ∈ s or Ci ∈ s (for i = 1, 2) this intuitively
denotes that process i is in the noncritical section or in the trying section or
in the critical section, respectively. We add an edge from the node (T1, T2) to
(T1, C2) to make it symmetric and obtain H. The GQS corresponding to H is
shown in Figure 2. In the GQS only two edges have non-trivial guards. Here
Flip is the permutation which interchanges processes 1 and 2; it defines an
automorphism on the nodes of H that maps a node {Di, E j } (where D, E are
any of the symbols N , T, C and 1 ≤ i, j ≤ 2) to the node {DFlip(i), EFlip( j )}.
Here id is the identity permutation defining the identity automorphism. For
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Fig. 1. Global transition graph.

Fig. 2. Guarded annotated quotient structure.

any F in {N1, N2, T1, T2, C1, C2}, we let F -nodes denote the set of nodes in H
that contains the element F . The edge predicate T1 ∧ C′1 denotes the set of
edges in H from a T1-node to a C1-node; it is expressed as a formula stating
that the current state satisfies T1 and that the next state satisfies C1 (the clause
C′1 states that C1 should be satisfied in the next state). There is only one edge
labeled by this predicate: this edge is from the node (T1, T2) to the node (C1, T2).

3.2 Relationship between the Different Structures

Given a set Q of predicates over S that are all respected by the automor-
phisms in G, we have already define three Kripke structures K Stru(G,Q),
QS Stru(G, G,Q) and GQS Stru(H,H,Q) derived from G = (S, E), QS(G, G) =
(Ū , Ē) and GQS(H,H)= (V̄ , F̄ , C), respectively. We show that these three Kripke
structures are pairwise bisimilar, and hence can all be used for CTL∗ model
checking. Since G is a subgroup of H, each equivalence class of ≡H is a union
of smaller equivalence classes defined by ≡G . Thus, the number of equivalence
classes of ≡H is smaller than those of ≡G , and GQS(H,H) contains (possibly
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exponentially) fewer nodes than QS(G, G). QS(G, G) itself can be much smaller
than G.

For each predicate Q j (1 ≤ j ≤ l ) in Q, we introduce an atomic proposition
denoted qj . Let X = {qi : 1 ≤ i ≤ l }. Let K Stru(G,Q) denote the Kripke
structure (S, E, X , L) where for any s ∈ S, L(s) = {qj : s ∈ Q j }. The Kripke
structure QS Stru(G, G,Q) is given by (Ū , Ē, X , M ) where M (s̄)= {qj : s̄ ∈ Q j }.
The following theorem has been proved in Emerson and Sistla [1996], Clarke
et al. [1993], and Ip and Dill [1993].

THEOREM 1. There exists a bisimulation between the structures K Stru
(G,Q) and QS Stru(G, G,Q) such that every state s ∈ S is bisimilar to its rep-
resentative in Ū .

Therefore, any CTL∗ formula over atomic propositions in X is satisfied at
a state s in K Stru(G,Q) iff it is satisfied at its representative rep(s, G) in
QS Stru(G, G,Q).

If C in the structure GQS(H,H) = (V̄ , F̄ , C) is implicitly represented by a col-
lection of edge predicates 21, . . . ,2r , the Kripke structure GQS Stru(H,H,Q)
is obtained from GQS(H,H) by partially unwinding it and by tracking the
node predicates in Q (i.e., the predicates Q1, . . . , Ql ) and the edge predicates
21, . . . ,2r during this unwinding process. In other words, the unwinding is
performed with respect to the predicates Q1, . . . , Ql and 21, . . . ,2r , not with
respect to the states of G, in order to limit the unwinding as much as possi-
ble. This partial unwinding is a generalization of the unwinding process de-
scribed in [Emerson and Sistla 1996, 1997]. Precisely, the Kripke structure
GQS Stru(H,H,Q) is the tuple (W, T, X , N ) where W, T and N are defined as
follows:

—For all s̄ ∈ V̄ , (s̄, Q1, . . . , Ql , 21, . . . ,2r ) ∈ W .
—Let u = (s̄, X 1, . . . , X l ,81, . . . ,8r ) be any state in W , e = (s̄, t̄, f ) be a labeled

edge in F̄ and j be the unique integer such that2 j is the edge predicate C(e).
If the edge (s̄, f (t̄)) satisfies the predicate 8 j , the node v = (t̄, f −1(X 1), . . . ,
f −1(X l ), f −1(81), . . . , f −1(8r )) is in W and the edge (u, v) is in T .

—For all u = (s̄, X 1, . . . , X l ,81, . . . ,8r ) ∈ W , N (u) = {qi : s̄ ∈ X i}.
For the sake of brevity, many times we may only be referring to unwinding
with respect to the predicates in Q; however, in all these cases it should be
understood that the unwinding is being done with respect to edge predicates
also.

Consider the example of Figures 1 and 2. Let G be the graph shown in
Figure 1, and H be its extension obtained by adding the edge from (T1, T2)
to (T1, C2). H is the group {id, Flip}. The predicate 21 = T1 ∧ C′1 is the only
edge predicate. Let Q be the set containing the two node predicates T1-nodes
and C1-nodes, that is, 21 = T1-nodes and 22 = C1-nodes. We let X = {T1, C1},
i.e., q1 = T1 and q2 = C1. Note that each node u in GQS Stru is of the form
(s̄, X 1, X 2,81) where X 1, X 2 are the tracked values of the node predicates and
81 is the tracked value of the edge predicate. Notice that in GQS(H,H), there
are two types of paths from the initial node (N1, N2) to all other nodes: those
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Fig. 3. Unwound guarded quotient structure.

Fig. 4. Reduced structure.

with the product of all permutations on the edges being equal to id and Flip,
respectively. As a consequence, for every node s̄ in GQS(H,H), there will be two
nodes in GQS Stru(H,H,Q) given by u1 = (s̄, T1-nodes, C1-nodes , T1 ∧C′1) and
u2 = (s̄, T2-nodes, C2-nodes , T2∧C′2). We call u1, u2 the s̄-nodes. The labels N (u1)
and N (u2) are defined as follows: T1 ∈ N (u1) iff T1 ∈ s̄, T1 ∈ N (u2) iff T2 ∈ s̄;
similarly C1 ∈ N (u1) iff C1 ∈ s̄, C1 ∈ N (u2) iff C2 ∈ s̄. The GQS Stru(H,H,Q) is
shown in Figure 3. In each node the tracked edge predicate is shown, but the
tracked node predicates are not shown. Notice that each of the (T1, T2)-nodes
has only one successor. Although GQS Stru(H,H,Q) has more nodes than G,
it can be further reduced to a smaller structure Reduced Stru(H,H,Q), shown
in Figure 4, defined later (see Theorem 3). Note that if we had considered a
similar mutual exclusion example for three or more processes then the the size
of the corresponding GQS Stru would be much smaller than the reachability
graph G.

The following theorem states that QS Stru(G, G,Q) and GQS Stru(H,H,Q)
are bisimilar. Recall that G = (S, E), H = (S, F ) where F ⊇ E, G is a group
of automorphisms of G that respect all the predicates in Q, and H is a group
of automorphisms of H such that H ⊇ G. Further, GQS(H,H) = (V̄ , F̄ , C) and
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for every e ∈ F̄ all the automorphisms in G respect the edge predicate C(e),
QS Stru(G, G,Q)= (Ū , Ē, X , M ) and GQS Stru(H,H,Q)= (W, T, X , N ).

THEOREM 2. Given QS Stru(G, G,Q) and GQS Stru(H,H,Q) as previously
defined, let Z = {(s, u) : s ∈ Ū , u ∈ W and there exists an automorphism f ∈ H
such that u = ( f (s), f (Q1), . . . , f (Ql ), f (21), . . . , f (2r ))}. Then, the following
properties hold:

(1) Z is a bisimulation between QS Stru(G, G,Q) and GQS Stru(H,H,Q).
(2) If G is the maximal subgroup of H that respects Q1, . . . , Ql , then no two

nodes in Ū are related to the same node in W through Z .
(3) For all u ∈ W, there exists a node s ∈ Ū such that (s, u) ∈ Z .
(4) Two nodes u = (t, X 1, . . . , X l ,81, . . . ,8r ) and u′ = (t ′, Y1, . . . , Yl ,11, . . . ,

1r ) of GQS Stru(H,H,Q) are related to a single node s of QS Stru(G, G,Q)
through Z iff t = t ′ and there exists some h in H such that h(t) = t and
X i = h(Yi) for all i = 1, . . . , l , and 8 j = h(1 j ) for all j = 1, . . . , r.

PROOF. First, we show that Z is a bisimulation. Let (s, u) ∈ Z where u =
(t, X 1, . . . , X l ,81, . . . ,8r ). By the definition of Z , we know that there exists an
automorphism f ∈ H such that t = f (s) and X i = f (Qi) for each i = 1, . . . , l
and 8 j = f (2 j ) for each j = 1, . . . , r. For each i = 1, . . . , l , qi ∈ N (u) iff t ∈ X i
iff t ∈ f (Qi) iff s = f −1(t) ∈ Qi iff qi ∈ M (s). From these observations, we see
that M (s) = N (u).

Now, suppose (s, s′) ∈ Ē, i.e., it is an edge in QS Stru(G, G,Q). We show that
there exists u′ such that (s′, u′) ∈ Z and (u, u′) is an edge in GQS Stru(H,H,Q),
that is, (u, u′) ∈ T . From the definition of QS(G, G), it follows that there ex-
ists an automorphism g ∈ G such that (s, g (s′)) ∈ E. Let e′ denote the edge
(s, g (s′)). Since f ∈ H, f (e′) = (t, f g (s′)) ∈ F . From the construction of
GQS(H,H), we see that there exist t ′ ∈ V̄ and h ∈ H, such that (t, t ′, h) ∈ F̄
and h(t ′) = f g (s′). Let e denote the labeled edge (t, t ′, h). Let j be the inte-
ger such that 2 j is the edge predicate C(e). Clearly, e′ ∈ Class( f (e′),H) and
hence e′ ∈ E ∩ Class( f (e′),H). From the definition of GQS(H,H), we have
2 j ∩ Class( f (e′),H) = E ∩ Class( f (e′),H). Hence e′ ∈ 2 j . From this we see
that f (e′) = (t, h(t ′)) ∈ f (2 j ), i.e., (t, h(t ′)) ∈ 8 j . From the construction of
GQS Stru(G,H,Q), we see that there is an edge from u to u′ in T , i.e. (u, u′) ∈ T ,
where u′ = (t ′, Y1, . . . , Yl ,11, . . . ,1r ) and Yi = h−1(X i) for 1 ≤ i ≤ l and
1 j = h−1(8 j ) for 1 ≤ j ≤ r. Now we show that (s′, u′) ∈ Z . Let h′ =h−1 f g . Also
let k be any integer such that 1 ≤ k ≤ l . Now, we have h′(Qk)=h−1 f g (Qk).
Since g ∈ G and g respects Qk , it follows that h′(Qk)=h−1 f (Qk). From the fact
that f (Qk) = X k and h−1(X k) = Yk , we see that h′(Qk) = Yk . Thus, for each
k = 1, . . . , l , h′(Qk) = Yk . Using similar arguments and the fact that every
automorphism in G respects the edge predicates 21, . . . ,2r , it can be shown
that h′(2i) = 1i for each i = 1, . . . , r. From this, we see that (s′, u′) ∈ Z .

Now, suppose (u, u′) is any edge in GQS Stru(H,H,Q), that is, (u, u′) ∈ T . We
show that there exists an edge (s, s′) ∈ Ē such that (s′, u′) ∈ Z . Assume that u′ =
(t ′, Y1, . . . , Yl ,11, . . . ,1r ). From the construction of GQS Stru(H,H,Q), we see
that there exists an automorphism h ∈ H such that the labeled edge e = (t, t ′, h)
is in F̄ and the following properties are satisfied: e′ = (t, h(t ′)) ∈ 8 j where j
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is the unique integer such that 2 j is the edge predicate C(e); Yi = h−1(X i) for
i = 1, . . . , l ; 1k = h−1(8k) for k = 1, . . . , r. From the definition of GQS(H,H),
we see that e′ ∈ F and f −1(e′) ∈ Class(e′,H). Since e′ ∈ 8 j , we see that f −1(e′) ∈
f −1(8 j ). Since 8 j = f (2 j ), it follows that f −1(e′) ∈ 2 j ∩ Class(e′,H). Since
2 j ∩ Class(e′,H) = E ∩ Class(e′,H), it follows that f −1(e′) ∈ E. From this
observation and the facts that t = f (s), f −1(e′) = ( f −1(t), f −1h(t ′)), it follows
that (s, f −1h(t ′)) ∈ E. From the construction of QS Stru(G, G,Q), we see that
there exists s′ ∈ Ū and g ∈ G such that (s, s′) ∈ Ē and g (s′) = f −1h(t ′). Now,
we show that (s′, u′) ∈ Z . Let h′ = h−1 f g . Clearly, h′(s′) = t ′. Let i be any
integer such that 1 ≤ i ≤ l . Now, h′(Qi) = h−1 f g (Qi). Since g respects Qi, we
have h′(Qi) = h−1 f (Qi). Since f (Qi) = X i and h−1(X i) = Yi, it follows that
(h′) (Qi) = Yi. Thus, for each i = 1, . . . , l , we have (h′)(Qi) = Yi. Using similar
arguments as in the previous paragraph, it can be shown that h′(2k) = 1k for
each k = 1, . . . , r. From these arguments, we see that (s′, u′) ∈ Z . Hence, Z is
a bisimulation.

Now we prove part (2) of the theorem by contradiction. First, assume that
G is the maximal subgroup of H such that all automorphisms in it respect
Q1, . . . , Ql . Contrary to part (2) of the theorem, assume that there exist two
distinct elements s, s′ in Ū and an element u ∈ W such that (s, u) ∈ Z and
(s′, u) ∈ Z . Let u = (t, X 1, . . . , X l ,81, . . . ,8r ). From the definition of Z , we see
that there exist f , g ∈ H satisfying the following properties: t = f (s), t = g (s′)
and X i = f (Qi) = g (Qi) for i = 1, . . . , l . Now, it is easy to see that s = f −1 g (s′).
Furthermore, for each i = 1, . . . , l , Qi = f −1 g (Qi). Hence, the automorphism
f −1 g respects Q1, . . . , Ql . Clearly, f −1 g ∈ H. Since G is the maximal subgroup
of H that respect Q1, . . . , Ql , it follows that f −1 g ∈ G. Since s = f −1 g (s′), s
and s′ belong to the same equivalence class induced by ≡G . This means that we
have two representatives from the same equivalence class in Ū . This contradicts
our construction where we pick only one representative from each equivalence
class.

Now, we prove part (3) of the theorem. Let u = (t, X 1, . . . , X l , 81, . . . ,8r ) be
any node in W . From the construction, it is not difficult to see that there exists
some f ∈ H such that X i = f −1(Qi) for each i = 1, . . . , l , and8 j = f −1(2 j ) for
each j = 1, . . . , r. Now consider f (t). There exists a state s ∈ Ū and g ∈ G such
that g (s) = f (t). Let h = f −1 g . Thus, t = h(s). Now, for each i = 1, . . . , l , we see
that h(Qi) = f −1 g (Qi). Since, g ∈ G, it respects Qi for each i = 1, . . . , l . Hence
h(Qi) = f −1(Qi) = X i. Similarly, it can be shown that h(2 j ) = f −1(2 j ) = 8 j
for each j = 1, . . . , r. From this, we obtain that (s, u) ∈ Z .

We prove part (4) of the theorem as follows. Let u = (t, X 1, . . . , X l ,81, . . . ,8r )
and u′ = (t ′, Y1, . . . , Yl ,11, . . . ,1r ) be two nodes such that (s, u), (s, u′) ∈ Z . This
implies that there exist f , g in H such that t = f (s), t ′ = g (s) and X i = f (Qi)
and Yi = g (Qi) for i = 1, . . . , l , and 8 j = f (2 j ) and 1 j = g (2 j ) for j =
1, . . . , r. This implies that t = f g−1(t ′) and X i = f g−1(Yi) for 1 ≤ i ≤ l , and
8 j = f g−1(1 j ) for j = 1, . . . , r. From this, it follows that t = t ′ since t, t ′ belong
to the same equivalence class of ≡H and we have only one representative state
from each such equivalence class in V̄ . By taking h = f g−1, we see that part
(4) of the theorem holds in one direction. The other direction can be proved in
a similar way.
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From the previous theorem, we see that multiple nodes in GQS Stru
(H,H,Q) can be related through Z to a single node in QS Stru(G, G,Q). Hence,
in principle, GQS Stru(H,H,Q) can have more nodes than QS Stru(G, G,Q).
The following construction can be used to further reduce the number of nodes
in GQS Stru(H,H,Q) so that the reduced structure has never more nodes than
QS Stru(G, G,Q). First, observe that all the nodes in GQS Stru(H,H,Q) that
are related through Z to a single node s in QS Stru(G, G, Q) can be repre-
sented by a single node since they are all bisimilar to each other. The algorithm
for generating GQS Stru(H,H,Q) can thus be modified to apply this reduc-
tion to construct a smaller Kripke structure Reduced Stru(H,H,Q). Nodes in
GQS Stru(H,H,Q) that are related to a single node in QS Stru(G, G,Q) can be
detected by evaluating the condition stated in part (4) of Theorem 2.

Now consider the 2-process mutual-exclusion example whose reachability
graph G is given in Figure 1. The corresponding GQS and GQS Stru are
given in Figures 2 and 3 respectively. The bisimulation relation Z relates the
nodes of G and GQS Stru as follows: node (N1, N2) (in G) is related to the two
(N1, N2)-nodes (in GQS Stru), the (T1, T2) node to the two (T1, T2)-nodes, the
(T1, N2) node to the (T1, N2)-node with the tracked edge predicate T1 ∧ C′1,
the (N1, T2) node to the (T1, N2)-node with tracked edge predicate T2 ∧C′2, etc.
The structure Reduced Stru is shown in Figure 4; it identifies the two (N1, N2)-
nodes and the two (T1, T2)-nodes, and hence has the same number of nodes
as G.

If G is the maximal subgroup of H consisting of all automorphisms of G that
respect Q1, . . . , Ql , then, from part (2) of the above theorem, we see that no two
nodes in QS Stru(G, G,Q) are related to a single node in Reduced Stru(H,H,Q)
through Z . Hence, Z defines a bijection from Ū to W . Hence, Reduced Stru(H,
H,Q) has the same number of nodes as QS Stru(G, G,Q). It is also not diffi-
cult to see that Z also defines an isomorphism between the two structures.
If G is not the maximal subgroup of H consisting of all automorphisms of
G that respect Q1, . . . , Ql , then Reduced Stru(H,H,Q) has fewer nodes than
QS Stru(G, G,Q).

The following theorem states that we can check the satisfaction of a CTL∗ for-
mula by checking its satisfaction in either of the structures GQS Stru(H,H,Q),
Reduced Stru(H,H,Q).

THEOREM 3. Let φ be a CTL∗ formula that only uses atomic propositions in
X . Let s be any node in K Stru(G,Q) and f be an automorphism inH such that
f (rep(s,H)) = s. Then φ is satisfied at node s in the structure K Stru(G,Q) iff φ
is satisfied at node u = (rep(s,H), f −1(Q1), . . . , f −1(Ql ), f −1(21) , . . . , f −1(2r ))
in the structure GQS Stru(H,H,Q) iff φ is satisfied at node u in the structure
Reduced Stru(H,H,Q).

PROOF. In the definition of the structure QS Stru(G, G,Q), let s itself be the
representative of the equivalence class of≡G to which it belongs. Since the node
s in K Stru(G,Q) is bisimilar to the same node s in QS Stru(G, G,Q), it follows
that s satisfies φ in the former structure iff s satisfies φ in th latter structure.
From Theorem 2, it follows that s satisfies φ in QS Stru(G, G,Q) iff node u
satisfies φ in GQS Stru(H,H,Q) iff u satisfies φ in Reduced Stru(H,H,Q).
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The above theorem provides a procedure for model checking a CTL∗ formulaφ
by using GQS Stru(H,H,Q) or Reduced Stru(H,H,Q). If φ is a CTL∗ formula,
we can check whether φ is satisfied at a state in Reduced Stru(H,H,Q) by
using the CTL∗ model-checking algorithm given in Clarke et al. [1986], and
Emerson and Lei [1987]. If φ is a CTL formula, any standard CTL model-
checking algorithm can also be used. Section 4 presents further improvements
to this approach.

3.3 An Alternate Approach for Handling Guards

In this section, we briefly discuss an alternate approach for handling guards
in the GQS. We can delete guards from the GQS and incorporate them into
the formula that we want to check instead, as explained below. Let G = (S, E)
and H = (S, F ) be state graphs as previously defined. Note that every infinite
path in G is also a path in H, while the converse may not be true. We define
a CTL∗ path formula g satisfying the following condition: an infinite path in
K Stru(H,Q) satisfies g iff it is a path in K Stru(G,Q). Such a formula g can
be obtained easily from the edge predicates 21, . . . ,2r , and can be written as
G(g ′) where g ′ uses only the temporal operator X.

Let p be a state CTL∗ formula which we want to check. We transform p as
follows. We replace every subformula of the form E(q) by the subformula E(g∧q)
starting with the smallest such subformula (we assume that universal path
quantifiers are defined in terms of E). Let p′ be the resulting formula. Clearly,
a state s in the Kripke structure K Stru(G,Q) satisfies p iff the state s satisfies
p′ in the Kripke structure K Stru(H,Q). Now, to check the latter condition,
we simply construct the AQS of H with respect to the set of symmetries H
and use the approach given in Emerson and Sistla [1996, 1997]. We call this
approach the AQS-based approach. The AQS of H with respect toH is same as
GQS(H,H,Q) without the guards. That is, if GQS(H,H,Q) = (V̄ , F̄ , C) then
AQS of H is simply the pair (V̄ , F̄ ).

The AQS-based approach has the following problems. First, if p is a CTL
formula then p′ is a CTL∗ formula but not a CTL formula, and a CTL∗ model
checker is thus necessary to check p′. Second, the AQS-based approach given
in Emerson and Sistla [1996, 1997] constructs an automaton corresponding
to the linear temporal formulas in p′ and then computes its product with the
AQS. This automaton can be large because it also includes atomic propositions
appearing in the edge predicates. In contrast, tracking these as edge conditions
as in the GQS-based method can be much more efficient, since any symmetry
in the edge conditions can be exploited and may result in much fewer nodes.

4. FORMULA DECOMPOSITION AND SUBFORMULA TRACKING

In this section, we discuss two complementary techniques that can improve the
direct approach of the previous section.

4.1 Formula Decomposition

Any CTL∗ state formula φ can be rewritten as a boolean combination of atomic
propositions and existential subformulas of the form Eφ′. Let Eform(φ) denote
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the set of existential subformulas of φ that are not subformulas of any other
existential subformula of φ (i.e., they are the top-level existential subformulas
of φ). Checking whether a state s satisfies a state formula φ can be done by
checking whether s satisfies each subformula in Eform(φ) separately, and then
combining the results.

For each φ′ ∈ Eform(φ), we can determine whether s satisfies φ′ in the struc-
ture K Stru(G,Q) by unwinding GQS(H,H), with respect to the predicates in
pred(φ′) only, to obtain the Kripke structure GQS Stru(H,H, pred(φ′)) and by
checking if the corresponding node satisfies φ′ in this structure. Formulas in
Eform(φ) that have the same set of atomic propositions can be grouped and their
satisfaction can be checked at the same time using the same unwinding. Obvi-
ously, unwinding with respect to smaller sets of predicates can yield dramatic
performance improvements.

Correlations between predicates can also be used to limit the number of un-
windings necessary for model checking. Two predicates Qi and Q j in Q are
correlated if, for all f ∈ H, f (Qi) = Qi iff f (Q j ) = Q j . It is easy to see that
the relation “correlated” is an equivalence relation. We say that two atomic
propositions are correlated if their corresponding predicates are correlated.
Correlations between predicates can sometimes be detected very easily. For
instance, with the framework of Emerson and Sistla [1996, 1997] where au-
tomorphisms induced by process permutations are considered, two predicates
referring to variables of a same process are correlated: the predicates x[1] = 5
and y[1] = 10 are correlated if x[1] and y[1] refer to the local variables x and
y of process 1, respectively.

If two predicates Qi and Q j are correlated, the following property can
be proved: if C is a subset of Q containing Qi and C′ =C ∪ {Q j }, then
the Kripke structures obtained by unwinding with respect to either C or C′

will be isomorphic. This fact allows us to combine unwindings correspond-
ing to different formulas in Eform(φ) whose atomic propositions are corre-
lated. First, we define an equivalence relation among formulas in Eform(φ):
two formulas x and y in Eform(φ) are equivalent if every atomic proposi-
tion in x is correlated to some atomic proposition in y , and vice versa. This
equivalence relation partitions Eform(φ) into disjoint sets G1, . . . , Gw. Let
pred(Gi) = {∪pred(φ′) : φ′ ∈ Gi}. Now for each set Gi, we can unwind GQS(H,H)
with respect to pred(Gi) and check whether each formula in Gi is satisfied at
rep(s,H).

The number of unwindings can be further reduced by ordering the sets
G1, . . . , Gw as follows. We say that Gi is above G j if every predicate in pred(G j )
is correlated to some predicate in pred(Gi). The relation “above” is a partial
order. We call Gi a top-set if there is no set above it. Observe that, if Gi is above
G j , we can combine their unwindings. Hence, if H1, .., Hv denote the top-sets
defined by the sets G1, . . . , Gw (v ≤ w), we can unwind GQS(H,H) with re-
spect to the predicates in pred(Hi) for each set Hi separately, and check the
satisfaction in state s of each formula in Hi and in all the sets Gi “below” it
using this unwinding.

Note that using the formula decomposition technique can sometimes be less
efficient than the direct approach of the previous section. This can be the case
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when there is a lot of overlap between the sets pred(Hi) of predicates corre-
sponding to the sets Hi obtained after partitioning Eform(φ).

4.2 Subformula Tracking

A CTL∗ formula sometimes exhibits itself some internal symmetry. Exploiting
formula symmetry was already proposed in Emerson and Sistla [1996]. Here,
we generalize these ideas by presenting a unified unwinding process where
decomposition and symmetry in a formula can be both exploited simultaneously.
First, we need the following definition.

Let φ be a CTL∗ formula. Consider two state subformulas φ′ and φ′′ of φ. We
say that φ′ dominates φ′′ in φ if φ′′ is a subformula of φ′ and every occurrence
of φ′′ in φ is inside an occurrence of φ′. We say that φ′ and φ′′ are independent
in φ if neither of them dominates the other in φ. Thus, formulas that are not
subformulas of each other are independent. Note that even if a formula is a
subformula of another formula, it is possible for them to be independent: for
instance, in the formula q given by E(EGq1 U E(q1Uq2)), the state subformulas
q1 and E(q1Uq2) are independent since there is an occurrence of q1 which does
not appear in the context of E(q1Uq2). Let Sform(φ) be the set of all subformulas
of φ that are state formulas. Let R be a subset of Sform(φ). We say that R is
a maximal independent set if it is a maximal subset of Sform(φ) such that the
state formulas in R are all pairwise independent. There can be many such
maximal independent subsets of Sform(φ). For instance, the set of all atomic
propositions appearing in φ is obviously a maximal independent set. For the
formula q given above, the set consisting of EGq1 and E(q1Uq2) is a maximal
independent set.

In what follows, we are interested in exploiting “good” maximal independent
sets, that is, setsRwhose elements are symmetric or partially symmetric. A for-
mula q is symmetric if, for every automorphism f in G, f (q) = q; it is partially
symmetric when this property holds for almost all f in G. In general, detecting
whether a subformula is symmetric is computationally hard. However, when
syntactically symmetric constructs (similar to those in ICTL∗ [Emerson and
Sistla 1997]) are used, it is then easy to determine whether a sub-formula is
symmetric. For instance, when only process permutations are used as auto-
morphisms (as in Emerson and Sistla [1996, 1997]), the subformula ∧i∈I h(i) is
symmetric when I is the set of all process indices and h(i) is a formula that
only refers to the local variables of process i; the same sub-formula is partially
symmetric when I contains most process indices.

LetR = {r1, . . . , rm} be a (preferably good) maximal independent set of subfor-
mulas of φ. For each i = 1, . . . , m, let Ri denote the set of states in K Stru(G,Q)
that satisfy the formula ri. LetR′ = {R1, . . . , Rm}. We identify the sub-formulas
inRwith the sets inR′. With this understanding, we consider the Kripke struc-
ture GQS Stru(H,H,R) obtained by unwinding GQS(H,H) with respect to R.
In a similar way, we can define Reduced Stru(H,H,R) following the procedure
of Section 3.

Let ψ denote the formula obtained from φ by replacing every occurrence of
the sub-formula ri by a fresh atomic proposition r ′i (i.e., an atomic proposition
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not appearing in φ), for all i = 1, . . . , m. The following theorem relates the
satisfaction of φ and ψ .

THEOREM 4. Let s be a state in S and f be an automorphism in H such
that s = f (rep(s,H)). Then, the formula φ is satisfied at state s in the structure
K Stru(G,Q) iff ψ is satisfied at the node u = (rep(s,H), f −1(R1), . . . , f −1(Rm),
f −1(21), . . . , f −1(2r )) in the structure GQS Stru(H,H,R) iff ψ is satisfied at
node u in the structure Reduced Stru(H,H,R).

PROOF. Let K Stru(G,R) be the Kripke structure (S, E, X ′, L′) where X ′ =
{r ′i : 1 ≤ i ≤ m} and for every t ∈ S, L′(t) = {r ′i : t ∈ Ri}. From the semantics of
CTL∗, it is easy to see that the formula φ is satisfied at state s in K Stru(G,Q)
iff the formula ψ is satisfied at s in K Stru(G,R). From Theorem 3, we see
that the formula ψ is satisfied at s in K Stru(G,R) iff ψ is satisfied at
the node u = (rep(s,H), f −1(R1), . . . , f −1(Rm), f −1(21), . . . , f −1(2r )) in the
structure GQS Stru(H,H,R) iff ψ is satisfied at node u in the structure
Reduced Stru(H,H,R). The theorem follows from the above observations.

Thus, the previous theorem makes it possible to check a formula φ “hierarchi-
cally”, by recursively checking subformulas ri and then combining the results
via the unwinding of GQS(H,H) with respect to R′ only.

We now begin to discuss the construction of the structures GQS Stru(H,
H,R) and Reduced Stru(H,H,R). A state u of both of these structures is of the
form (s̄, X 1, . . . , X m,81, . . . ,8r ). The sets X i (1 ≤ i ≤ m) and 8 j (1 ≤ j ≤ r)
are obtained by using an automorphism in H and by applying it to Ri (1 ≤
i ≤ m) and 2 j (1 ≤ j ≤ m) respectively; note that this automorphism is the
composition of the automorphisms labeling the edges along a path from the
initial state to s̄ in GQS(H,H). Let fu denote the automorphism used to obtain
the state u. One way of representing the state u is to explicitly represent the
sets X i and8 j ; in this case, the above structures are constructed by recursively
model checking for the subformulas ri and computing the sets Ri (1 ≤ i ≤
m) and then applying the unwinding process. Alternately, we can represent a
state u implicitly by the pair (s̄, fu); in this case, each set X i can be computed
using fu and Ri for 1 ≤ i ≤ m. This second representation can use less space
than the previous one but typically requires more time to be computed. Indeed,
whenever we need to check if an already generated state u is the same as a
newly generated state, we need to recompute the sets X i of the state u. A third
alternative is to represent each set X i (1 ≤ i ≤ m) in the state u implicitly by a
CTL∗ formula. (We have already stated that each 8i is represented implicitly.).
We describe this approach below.

We assume that the original set Q of predicates {Q1, . . . , Ql } is closed under
the automorphisms in H, that is, for each f ∈ H and for each Qi, f (Qi) is also
in Q (if this condition is not satisfied, we can expand the set Q to satisfy it).
Recall that the atomic propositions q1, . . . , ql are implicit representations of the
predicates Q1, . . . , Ql respectively. We extend the application of the automor-
phisms in H to the atomic propositions qi (1 ≤ i ≤ l ) as follows: For any auto-
morphism f , if f (Qi) = Q j , then we define f (qi) to be qj . Now, for any CTL∗

formula ψ over the atomic propositions q1, . . . , ql and f ∈ H, let f (ψ) denote
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the formula obtained by replacing every occurrence of every atomic proposition
qi (for 1 ≤ i ≤ l ) in ψ by f (qi).

Consider a node u = (s̄, X 1, . . . , X m,81, . . . ,8r ) in GQS Stru(H,H,R) as
defined above. Let fu be the automorphism in H that is associated with u as
defined earlier. (Recall that fu(Ri) = X i for 1 ≤ i ≤ m). We represent the sets
X i (for 1 ≤ i ≤ m) by the CTL∗ formula fu(ri). The following lemma gives a
sufficient condition for checking if two states u, v are equal.

LEMMA 1. Let u = (s̄, X 1, . . . , X m, 81, . . . ,8r ) and v = (t̄, Y1, . . . , Ym,
11, . . . , 1r ) be nodes in GQS Stru(H,H,R). If s̄ = t̄, the CTL∗ formula fu(ri) is
equivalent to fv(ri) for each i such that 1 ≤ i ≤ m, and 8 j = 1 j for each j such
that 1 ≤ j ≤ r, then u, v are the same nodes.

PROOF. Consider the graph fu(G) = ( fu(S), fu(E)). Since fu ∈ H, it is the
case that fu(S) = S. Recall that E = ⋃

e∈F̄ Class(e,H) ∩ C(e) where F̄ is the
set of labeled edges in GQS(H,H). From this, it is not difficult to see that
fu(E) =⋃e∈F̄ Class(e,H)∩ fu(C(e)). (This is because Class(e,H) is closed under
fu.) Since C(e) = 2 j (for some 1 ≤ j ≤ r), it follows that fu(C(e)) = 8 j .
Consider any i such that 1 ≤ i ≤ m. Any state s in K Stru(G,Q) satisfies ri
iff the state fu(s) in K Stru( fu(G),Q) satisfies fu(ri) (this can be proved by
a simple induction on the structure of ri). Hence, we see that X i = fu(Ri) is
exactly the set of states in K Stru( fu(G),Q) that satisfy fu(ri). By a similar
argument, we see that Yi is the set of states in K Stru( fu(G),Q) that satisfy
fv(ri). From the hypothesis of the lemma, we have fu(ri) is equivalent fv(ri).
Hence, X i = Yi. This holds for each i such that 1 ≤ i ≤ m. The lemma easily
follows from this.

Note that the above lemma gives only a sufficient condition. So it is possible
for two states u and v to be the same without satisfying the condition of the
lemma. In this case, our procedure will treat these states as distinct. This may
increase the number of states in the constructed structures and hence increase
the time for model checking. However, this does not effect the soundness of the
model checking procedure.

Another important aspect in the construction of GQS Stru(H,H,R) is the
generation of N (s̄) for each state s̄. For the node u = (s̄, X 1, . . . , X m,81, . . . ,8r ),
r ′i ∈ N (u) iff s̄ ∈ X i. From the observations made in the proof of the above
lemma, we see that s̄ ∈ X i iff the s̄ satisfies the formula f (ri) in the structure
K Stru( f (G),Q). The latter condition can be checked by recursively invoking
the procedure for checking f (ri) using the edge conditions f (21), . . . , f (2r ),
that is, the edge conditions 81, . . . ,8r .

In summary, we represent each of the sets X i in the node u by a CTL∗ formula
xi. In the initial node of GQS Stru(H,H,R), the value of xi will be simply ri,
for 1 ≤ i ≤ m. During the unwinding process, whenever we unwind along an
edge labeled with the automorphism h, the value of xi in the new node are
obtained by applying h−1 to the value of xi in the previous node. To check if
two nodes u = (s̄, x1, . . . , xm,81, . . . ,8r ) and v = (t̄, y1, . . . , ym,11, . . . ,1r ) are
the same, we check that s̄ = t̄, the CTL∗ formulas xi, yi are equivalent for
1 ≤ i ≤ m and 8 j = 1 j for 1 ≤ j ≤ r. Checking the equivalence of CTL∗
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formulas can be computationally hard. Note that, if the CTL∗ formula φ uses
syntactically symmetric constructs such as those in ICTL∗ [Emerson and Sistla
1996], then this check can always be done efficiently. To check if r ′i ∈ N (u),
we recursively invoke the procedure on the CTL∗ formula xi using the initial
conditions 81, . . . ,8r .

We thus obtain a complete recursive procedure which constructs different
structures corresponding to the different sub-formulas Ri of φ. Note that the
formula decomposition technique of Section 4.1 can be used to decompose sub-
formulas Ri. Thus, formula decomposition and sub-formula tracking are com-
plementary and can be both applied recursively. It is to be noted that if no good
maximal independent set R can be found then the procedure of Section 4.1
should be applied directly.

The following procedure summarizes the different steps for checking if the
formula φ is satisfied at state s in K Stru(G,Q). The input to the procedure is
φ and the description of the concurrent program. We assume that the group H
is known or can be deduced from the structure of the concurrent program as is
done in SMC or Murphi.

(1) If the nesting depth of φ is one or less, then use the procedure given in
section 4.1. Otherwise, go to Step (2).

(2) Analyze the formula φ and obtain a good maximal independent set R. R
is considered good if many of its members are symmetric or partially sym-
metric. If no such set R can be found then use the decomposition approach
given in section 4.1 and exit. Otherwise, go to Step (3).

(3) Let R = {r1, . . . , rm}. Construct the formula ψ from φ by replacing each
occurrence of ri in φ by a new atomic proposition r ′i , for i = 1, . . . , m. Con-
struct the Kripke structure GQS Stru(H,H,R) or Reduced Stru(H,H,R).
Check if the formula ψ is satisfied in the constructed structure at the node
u where u is the node defined in Theorem 4 (i.e., u= (rep(s,H), f −1(R1), . . . ,
f −1(Rm), f −1(21), . . . , f −1(2r )). This checking can be done directly or
by recursive invocation of this algorithm. Note that constructing either
GQS Stru(H,H,R) or Reduced Stru(H,H,R) requires determining the
satisfaction of sub-formulas in R at the nodes in these structures; this can
be done by recursive invocation of this procedure.

Example. We illustrate the procedure above with a simple example. As-
sume that we are using automorphisms induced by process permutations, as
in Emerson and Sistla [1996, 1997]. Consider a concurrent system of n pro-
cesses which are all similar except for one of them. Also consider a formula
φ = E(q1U ∧i∈I Eh(i)) where h(i) is a path formula with no further path quan-
tifiers which only refers to the local propositions of process i, I is the set of
all process indices except process 1, and q1 is a local proposition of process 1.
Let φ′ denote the subformula ∧i∈I Eh(i). It is a partially symmetric subformula.
We take R to be the set {q1, φ′}, since it is a “good” maximal independent set.
Note that the formula ψ of Theorem 4 is obtained by replacing q1, φ′ in φ by
two new atomic propositions r ′1 and r ′2 respectively. In this case, we get ψ to be
E(r ′1Ur ′2).
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We construct GQS Stru(H,H,R) where H is the set of automorphisms in-
duced by the group consisting of all permutations over the n processes. Sup-
pose that there is one edge predicate that references a single process. Let M
be the total number of nodes in GQS(H,H). M can be exponentially smaller
than the number of nodes in the full reachability graph, that is, the num-
ber of nodes in K Stru(G,Q). Each node in GQS Stru(H,H,R) is of the form
(s̄, qj , ∧i∈J E(h(i)),8) where j is a process index, J is the set of process indices
other than j and 8 is a tracked edge predicate. Note that the second, third and
fourth component of the node is obtained by applying a permutation to subfor-
mulas q1, φ′ and to the edge predicate respectively. It is easy to see that there
are at most n different values of j . Further more, there will be at most n differ-
ent tracked edge predicates appearing in these nodes. From this we see that the
number of nodes in GQS Stru(H,H,R) is at most n2M . During the construction
of GQS Stru(H,H,R), we need to determine which of its nodes satisfy subfor-
mulas of the form ∧i∈J Eh(i)) where J is a set containing n− 1 process indices
(these subformulas are obtained by applying a permutation to φ′). We do this
as follows. We use formula decomposition of Section 4.1. For each tracked edge
predicate and for each i, we recursively determine nodes that satisfy E(h(i)).
This is done by unwinding GQS(H,H). The resulting unwound structure is of
size O(nM ). Thus, for each tracked-edge predicate and for each i, determining
nodes that satisfy E(h(i)) is of complexity O(nM ). Since this has to be done for
each edge predicate in the unwound structure (and there are at most n such
edge predicates) and for each i, the overall complexity is O(n3M ).

However, if we use the direct approach and unwind GQS(H,H) (or if we use
QS Stru(G, G, pred(φ))), we then obtain the full reachability graph. Since M is
exponentially smaller than the number of nodes in the full reachability graph,
we see that the above example is a case where formula decomposition together
with subformula tracking yields an exponentially better complexity than the
direct approach alone. Of course, one can give examples of formulas with no
symmetric (or partially symmetric) subformulas for which the method of this
section does not help.

Note that the formula φ defined above is not an ICTL∗ formula and hence
the method of Emerson and Sistla [1997] for ICTL∗ formulas cannot be applied.
Furthermore, the approach of Emerson and Sistla [1996] that explicitly com-
putes the formula symmetry will not be of any use in reducing the state space
because this method would consider φ not to contain any symmetry at all, that
is, it would compute the set of symmetries for φ to be the identity set.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present experimental results evaluating the techniques pro-
posed in this article. More specifically, we compare three different methods:
(1) the QS-based method using the quotient structure QS defined in Section 3;
(2) the GQS-based method using the GQS defined in Section 3; (3) the AQS-
based method, which is the alternate method presented in Section 3.3.

The techniques based on formula decomposition can be used in conjunction
with all three methods. For example, with the QS-based method, to check the
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formula g∧h where g and h do not share any correlated predicates, we can check
g and h separately and then combine the results. (Constructing two separate
quotient structures can be faster than constructing one quotient structure with
fewer symmetries.)

In Section 3, we have already defined the structures GQS Stru(H,H,Q)
and Reduced Stru(H,H,Q). As indicated earlier, we will use the Reduced
stru(H,H,Q) in our GQS-based method. We briefly describe the proce-
dure for incrementally constructing the reachable part of Reduced Stru
(H,H,Q) from GQS(G,H). The procedure maintains a set To explore of nodes
that have been visited but are yet to be explored. Exploration of a node consists
of generating all its successor nodes. Initially, To explore contains nodes of the
form (s0, Q1, . . . , Ql ,21, . . . ,2r ) where s0 is the representative of an equiva-
lence class containing an initial state. We iterate the following procedure un-
til To explore is empty. We remove a node z = (t, Z1, . . . , Zl ,91, . . . ,9r ) from
To explore. For each labeled edge e = (t, t ′, f ) in GQS(G,H), we check if the
edge (t, f (t ′)) satisfies the edge predicate 9 j , where j is the unique integer
such that 2 j is the edge predicate C(e). If this condition is satisfied we pro-
ceed as follows. We construct the node u′ = (t ′, Y1, . . . , Yl , 11, . . . ,1r ) where
Yi = f −1(Zi) for 1 ≤ i ≤ l and 1 j = f −1(9 j ) for 1 ≤ j ≤ r. Then, we check if
there exists a node u = (t ′, X 1, . . . , X l ,81, . . . ,8r ) in the partially constructed
Reduced Stru(H,H,Q) and a h ∈ H such that t ′ = h(t ′) and X i = h(Yi) for all
i = 1, . . . , l , and 8 j = h(1 j ) for all j = 1, . . . , r (i.e., the condition of Part 4 of
Theorem 2 is checked). If this condition is satisfied, we add an edge from z to
u; otherwise, we add u′ as a new node, include it in To explore and add an edge
from z to u′.

5.1 Implementation of Priorities

5.1.1 Priorities in the GQS-Based Method. We implemented the GQS-
based method for systems with priorities by extending the SMC tool [Sistla
et al. 2000]. We call the extended system the Prioritized SMC (or simply PSMC).
The SMC tool takes as input a concurrent program and a property automaton,
and checks if there exists a fair computation of the concurrent program that
is accepted by the automaton. The automaton is an incorrectness automaton,
that is, it accepts exactly the incorrect computations. Thus, SMC checks CTL∗

properties of the form E(p) where the path formula p is a linear time prop-
erty specified by an automaton. The input concurrent program is divided into
modules where each module consists of a set of processes that are identical up
to renaming. SMC considers automorphisms induced by process permutations.
Given the above syntax of the concurrent program, it is easy to see that any
permutation mapping processes in a module to processes with in the same mod-
ule is an automorphism of the reachability graph of the concurrent program.
These automorphisms are used to construct the AQS by SMC.

Processes in the concurrent program communicate through shared variables.
A shared variable is specified by a name together with a list of process indices.
If a process in a module C has a shared variable with another process in module
D, then every process in C has such a shared variable with every process in D. A
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different type of variables, called index variables, are used in defining the pro-
cesses in a module. An index variable ranges over the process IDs of a module.
A module specification starts with the declaration of a single index variable,
called the primary index variable, and is followed by a set of transition schemas.
The primary index variable identifies the process to which the instance of the
transition schema belongs to. Each transition schema is given by a condition
part and an action part. The condition part is a boolean expression over atomic
conditions and the action part is a set of concurrent assignment statements.
The following SMC input describes a resource controller example.

// declaration of modules
Module server = 2;
Module client = 80;

// declaration of program variables
busy[server] = 0;
request[server, client] = 0;
reply[server, client] = 0;
lc[client] = 0;

//index variable declaration
s of server;
c of client;

// server specification starts
s: busy[s] == 0 && request[s,c] == 0 -> reply[s,c] =1,

busy[s] = 1;

// client specification starts
c: {

lc[c] == 0 -> lc[c] = 1, request[s,c] = 1;
lc[c] == 1 && reply[s,c] == 1 -> lc[c] = 2, request[s,c] =0;
lc[c] == 2 && reply[s,c] == 1 -> lc[c] = 0, busy[s] =0,

reply[s,c]=0;
}

The above example declares two modules called server and client having
two and eighty processes, respectively. It also declares two sets of variables
request[s,c], reply[s,c], for each 0 ≤ s < 2 and 0 ≤ c < 80. For each server
s, it declares the variable busy[s]. For each client c, it declares the location
counter variable lc[c]. All these variables are initialized to zero. It also declares
two index variables s, c ranging over server and client processes respectively.

The server module has a single transition schema (note that s is used as
the primary index variable). For each value of s = 0, 1, the server process s
has eighty transitions obtained by substituting the values 0, .., 79 for the client
index variable c. The client module has three transition schemas (note c is the
primary index variable).
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In the PSMC system, priorities can be specified with transition schemas
having two index variables, where priorities are defined with respect to
the nonprimary index variable. We call this nonprimary index variable the
secondary index variable. For instance, the single transition schema in the
server module of the above example has the two index variables s, c appearing
in it, where c is the secondary index variable. Priorities for this transition
schema can be defined by having the following command immediately after it:

Priority (X1;X2; . . . ;Xk),

where X 1, X 2, . . . , X k are disjoint sets of process ids belonging to the client
module. In this command, each X i is specified as a list of process IDs (or ranges
of process IDs) separated by commas. Such a specification states that, for this
transition schema, all client processes belonging to X i have the same priority
and, for i < j , processes belonging to X i have higher priority than processes
belonging to X j . The formal semantics of this priority scheme for the transition
schema in the server module is defined as follows: Fix the the value of the index
variable s. Let ti, for 0 ≤ i < 80, denote the transitions in the server process s
when the constant i is substituted for the index variable c in the above transition
schema. Let δ denote a global state of the above system. Transition ti can be
executed in δ if ti is enabled in δ (i.e., its condition part is satisfied in δ) and there
is no j (0 ≤ j < 80) such that t j is enabled in δ and j has higher priority than
i. Thus, priorities in the above transition schema states that the server process
s must grant the waiting request to one of the clients with the highest priority.

5.1.2 Implementation Details of the GQS-Based Method. The SMC system
as well as the PSMC system are based on using automorphisms induced by
process permutations. The SMC system is modified in the following way to get
the PSMC system. First, observe that if G is the reachability graph of the in-
put concurrent program with the priority specifications then H is simply the
reachability graph of the same concurrent program without the priority speci-
fications. The AQS structure is constructed ignoring the priority specifications
associated with the transition schemas. Already in the SMC system, the label
of each transition of the AQS includes a permutation identifier and the index
of the process to which this transition belongs; this index value is same as the
instantiated value of the primary index variable. In addition to this informa-
tion, the PSMC system is designed in such a way that, if a transition schema
has a priority specification associated with it, then all the AQS transitions cor-
responding to this transition schema also contain the instantiated value of the
secondary index variable and a pointer to the priority specification. The result-
ing structure is the GQS. Note that PSMC does not use any edge predicate, but
instead stores the above additional information with each GQS transition.

We briefly describe how the additional information associated with the GQS
transitions are used during the unwinding process with an example. Consider
a transition schema T that specifies highest priority to process 0 of module C,
but equal priorities to all other processes belonging to module C. During the
unwinding process we track process 0 of module C. (Indeed, edge predicates
in the GQS only refer to process 0 of module C; tracking the values of edge
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predicates thus reduces to tracking process 0 in this example.) Suppose during
the unwinding process, i.e., during the construction of GQS Stru, we are at
node u whose GQS state component is s̄ and whose tracked process value is c.
Assume that there is a GQS transition t from state s̄ which is obtained from T
by instantiating its primary and secondary index variables with values d and e
respectively (note that all this information is contained within t). Consider the
instantiation of the transition schema T by substituting d and c for the primary
and secondary index variables respectively. (Note that c is the tracked value of
the index of the highest priority process.) If this instantiated schema is enabled
in the GQS state s̄ and e 6= c, then we cannot use transition t; otherwise, we
can use t and continue unwinding along this transition. The correctness of this
implementation is easily seen from our earlier discussion.

The above implementation is generalized naturally to the case when the
priority specification is given by multiple priority classes where each class has
more than one process. This generalization requires tracking sets of processes,
not individual processes; this is done by simply applying the permutations to
the sets of process indices during the unwinding process.

Another important aspect of PSMC is that it directly constructs the re-
duced structure, that is, Reduced Stru, from the GQS. Recall that during
the construction of the reduced structure, described at the beginning of this
section, we check if the condition in part (4) of Theorem 2 is satisfied; in
this condition u′ = (t ′, Y1, . . . , Yl ,11, . . . ,1r ) is a newly generated node and
u = (t ′, X 1, . . . , X l ,81, . . . ,8r ) is a previously generated node. This condition
requires the existence of an automorphism h ∈ H such that h(t ′) = t ′ and
X i = h(Yi) for i = 1, . . . , l and 8 j = h(1 j ) for j = 1, . . . , r. Any automor-
phism h such that h(t ′) = t ′ is called a state symmetry of t ′ [Emerson and
Sistla 1996; Gyuris and Sistla 1999; Sistla et al. 2000]. For programs specified
in SMC and in PSMC a large subgroup of the group of state symmetries of a
state can be computed and represented efficiently at the time of construction
of GQS(G,H) [Gyuris and Sistla 1999; Sistla et al. 2000]. We use this group
of state symmetries. The construction of the Reduced Stru(H,H,Q) involves
marginal additional cost compared to the construction of GQS Stru(H,H,Q).)

5.1.3 Priorities in the QS-Based and the AQS-Based Methods. The AQS-
based method incorporates priorities in the property automaton. In this method,
the AQS is constructed assuming that all processes have equal priorities. The
property automaton only considers computations that satisfy the priority re-
quirements. In our experiments, we have manually incorporated the priorities
into the automaton.

The QS-based method is evaluated for systems with priorities using the SMC
system as follows. Processes in an original module are divided into new modules
based on their priorities, so that all processes having identical priorities are
placed in the same new module, and processes in different new modules have
different priorities. The transitions of the processes are modified appropriately
to encode the priorities. These new modules form the input modules to the SMC
system. This encoding of priorities was done manually for our experiments.
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5.2 Case Study

We have tested the QS-based, GQS-based and AQS-based methods on sev-
eral examples of systems. Experimental results are presented below for two
examples: a model of the IEEE Fire-wire protocol [IEEE 1995] and a simpler
resource-controller example. All experiments were conducted on a Sun Ultra2
workstation running Sun-OS 5.5.1.

A simplified description of the asynchronous data transfer mode of the pro-
tocol is the following. The protocol is composed of three main layers: the trans-
action layer, the link layer and the physical layer. Loosely speaking, the trans-
action layer communicates with the applications, the physical layer handles
the physical transfer of the data, and the link layer serves as an intermediary
between the transaction layer and the physical layer. The different layers com-
municate through actions or services. When the transaction layer of a client on
one station (site) wants to send a message p to some other client, it indicates
this to the link layer by executing the appropriate action. The link layer then
requests the physical layer for arbitration of the common bus. This request is
either granted or denied by the physical layer. If the link layer wins the arbi-
tration, it then forwards the packet p to the physical layer. The physical layer
notifies the recipient of the incoming packet at the destination station. At this
station, the message is forwarded by the link layer to the transaction layer. The
transaction layer at the destination site acknowledges the message and this
acknowledgment is forwarded back to the sender via the bus. Sending of the
acknowledgement also requires arbitration for the bus. A more detailed (yet
simpler than the IEEE standard given in [IEEE 1995]) description of the pro-
tocol can be found in Sighireanu and Mateescu [1999], and Sistla et al. [2000].

We evaluated the three methods developed in this paper by checking various
properties of the fire-wire protocol extended with priorities. We concentrated
on the link layer part of the protocol. A deadlock in this protocol was previously
detected using SMC and reported in Sistla et al. [2000] (the same deadlock was
also detected by Sighireanu and Mateescu [1999]). This deadlock was due to a
missing transition in the specification. After adding this transition, no further
deadlock was found. In the current experiments, we introduced priorities in
to the deadlock-free protocol, and analyzed several properties using the three
different methods. We modeled the link layer part of the protocol in detail, while
the physical layer was represented by a single process modeling the interface of
the physical layer with the link layer (including arbitration, etc.) and the actual
transmission of the data on the bus. Some of the transitions of the physical-layer
process model the arbitration scheme between the link layer parts of different
stations. We have introduced priorities for these transitions so that station 1 is
given the highest priority.

We considered one safety property and two liveness properties. The safety
property states that whenever a station sends a non-broadcast message to an-
other station, it will not send any further messages as long as an acknowl-
edgment for the current message is not received. We actually checked whether
there exists a computation that violates this property. As described earlier, this
is done by specifying an automaton which accepts all sequences that violate the
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Table I. Table for the Safety Property (Fire-wire protocol) : Time and
Memory

# of QS-based AQS-based GQS-based
stations Time Memory Time Memory Time Memory

2 2 671 1 401 1 435
3 95 23081 39 10000 36 10808

Table II. Table for the Safety Property (Fire-wire protocol): R-nodes and
P-nodes

# of QS-based AQS-based GQS-based
stations R-nodes P-nodes R-nodes P-nodes R-nodes P-nodes

2 2745 3156 1375 3414 1375 3156
3 71921 80530 24361 88100 24361 80530

above property and then checking if any computation of the concurrent program
is accepted by this automaton. Note that the existence of an incorrect compu-
tation can be specified by a CTL∗ formula of the form E(p) where p does not
contain any path quantifiers, that is, p is a linear temporal logic formula. PSMC
and SMC check whether a property of the form E(p) holds at the initial state
where p is a linear time property given by an automaton. (Thus, these model
checkers currently do not handle full CTL∗.) We use the automaton specify-
ing the incorrectness as the input automaton for the QS-based and GQS-based
methods. In the case of the AQS-based method, we use an automaton which is
a product of the incorrectness automaton and the priority automaton. All the
three methods proved that the above property is indeed satisfied.

Results of experiments with this property are given in Tables I and II. In both
tables, the first column gives the number of stations used in the experiment.
Table I gives the overall model checking time (in seconds) and the maximum
memory used (in Kilobytes) for each of the three methods. Table II has two
columns for each of the methods: the R-nodes and P-nodes columns. An entry
in a R-nodes column gives the number of representative states; that is, it gives
the number of nodes in the QS, the AQS and the GQS, for the QS-based, the
AQS-based and the GQS-based methods, respectively. An entry in a P-nodes
column gives the number of nodes in the product structure constructed by the
corresponding method.

—In the case of the QS-based method, the product structure is the product of
the Kripke structure QS Stru (defined in Section 3) and of the incorrectness
automaton.

—In the case of the GQS-based method, the product structure is the the product
of the structure Reduced Stru (given in Section 3) and of the incorrectness
automaton.

—In the case of the AQS-based method, the product structure is the product of
the AQS, of the incorrectness automaton and of the priority automaton.

It is to be noted that the QS-based method uses the maximum set of possible
automorphisms. That is, in the case of three stations where station 1 is given
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highest priority, the set of automorphisms used is the set of all permutations
among the stations 2 and 3.

As is seen from the tables, the number of representative states is much
less for the GQS-based method compared to the QS-based method, while the
number of product nodes is the same for both methods. However, the overall
time and memory requirements for the GQS-based method is much less than
those for the QS-based method. This can be explained as follows: Note that
both these methods involve two steps. In the first step, the QS or the GQS is
constructed. In the QS-based method the second step involves construction of
the product structure and its simultaneous exploration on the fly. In case of
the GQS-based method, the second step also involves unwinding of the GQS
to obtain the Reduced Stru; this additional function is carried out simultane-
ously with product construction and exploration. For the GQS-based method,
the time for the first step takes a lot less time since the size of the GQS is much
smaller than that of the QS. Since the number of nodes in the product struc-
ture is the same, the component of the time for construction and exploration
of the product structure during the second step is almost the same for both of
these methods. However, the second step for the GQS-based method involves
an additional function of unwinding the GQS. It turns out that this does not
make much of a difference in the time taken for the second step. For exam-
ple, in the case of three stations, the first step of the GQS-based method took
30 seconds while the second step took 6 seconds. In comparison, the first step
of the QS-based method took 89 seconds while its second step took 6 seconds
(these detailed statistics are not given in the tables). Construction of the QS
and GQS involves identifying all the enabled transitions, executing them and
checking if each newly generated state is equivalent to an already generated
state. For this reason the first step of the QS-based method takes more time
than the first step of the GQS-based method. On the other hand, the additional
function of unwinding carried out in the second step of the GQS-based method
does not involve identifying and executing enabled transitions of the program
and it does not involve sophisticated equivalence checking; it involves simple
equivalence checking under the state symmetry (actually the information about
state symmetry is already calculated during the first step). For this reason, this
function does not cause any noticeable increase in runtime for the second step.
Similarly, the memory requirement is dominated by the size of the QS and
GQS respectively. As a consequence, the overall memory requirement for the
GQS-based method is much less than that of the QS-based method.

The runtime for the GQS-based method is consistently smaller than that for
the AQS-based method. This is because the number of product nodes for the
AQS-based method is higher than that for the GQS-based method. Indeed, the
input automaton for the AQS-based method has more states since it also cap-
tures the priority specification. The overall memory needed for the GQS-based
method (respectively, AQS-based method) is the sum of the memory needed
for building the GQS (respectively, AQS) plus the memory needed to explore
the product structure. The memory needed for storing the GQS is larger than
for the AQS because we store additional information with each GQS transi-
tion. As a consequence, we see that the overall memory requirements for the
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Table III. Table for the first Liveness Property (Fire-wire protocol):
Time and Memory

# of QS-based AQS-based GQS-based
stations Time Memory Time Memory Time Memory

2 2 690 1 459 1 449
3 92 23422 39 11345 36 11052

Table IV. Table for the first Liveness Property (Fire-wire protocol): R-nodes
and P-nodes

# of QS-based AQS-based GQS-based
stations R-nodes P-nodes R-nodes P-nodes R-nodes P-nodes

2 2745 3684 1375 3970 1375 3684
3 71921 90015 24361 98159 24361 90015

GQS-based method can be slightly higher than that for the AQS-based method.
On the other hand, the memory needed for exploration of the product structure
is higher in the case of the AQS-based method. Moreover, when the number of
priority levels increases, the memory requirements for the product structure
in the AQS-based method grow rapidly and can become much higher than that
for the GQS-based method. This can be seen from the results obtained for the
resource controller example given in the next subsection.

The first liveness property we consider states that, whenever station 1 wants
to arbitrate and send a point-to-point message to another station, it will success-
fully send the message and eventually receive an acknowledgment. All three
methods correctly prove that this liveness property is not satisfied by the pro-
tocol under weak fairness, even though station 1 has the highest priority in
the arbitration. Indeed, after station 1 successfully gets the bus, some other
station may continuously request access to the bus and be denied: this contin-
uous unsuccessful arbitration activity by another station keeps the physical
layer process occupied and prevents it from transmitting the message sent by
station 1. To avoid this behavior, we check if the same liveness property is sat-
isfied under the condition that another station can unsuccessfully request the
bus only a finite number of times, that is, under the assumption of a finite num-
ber of arbitration requests by other stations. Under this additional condition,
all three methods prove that station 1 can successfully transmit its message
and eventually receive an acknowledgment. The corresponding experimental
results are presented in Tables III and IV.

The second liveness property we consider is similar to the first liveness prop-
erty, but is stated for station 2. In this case, even under the assumption that
other stations arbitrate only a finite number of times, the property is not satis-
fied. This is because station 2 has lower priority than station 1 and will lose the
arbitration if station 1 sends a request at the same time. We then modified the
property by requiring that this liveness property hold under the assumption
that there is no arbitration from any other station at the same time. All three
methods were then able to prove that the modified property is satisfied. Results
of these experiments are given in Tables V and VI.
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Table V. Table for the second Liveness Property (Fire-wire protocol):
Time and Memory

# of QS-based AQS-based GQS-based
stations Time Memory Time Memory Time Memory

2 2 676 1 395 1 435
3 99 25732 49 12593 43 13074

Table VI. Table for the second Liveness Property (Fire-wire protocol): R-nodes
and P-nodes

# of QS-based AQS-based GQS-based
stations R-nodes P-nodes R-nodes P-nodes R-nodes P-nodes

2 2745 3000 1375 3236 1375 3000
3 71921 146177 24361 160113 24361 146177

From the above results, we see that the GQS-based method and the AQS-
based method perform better than the QS-based method in terms of time as
well as memory usage. The GQS-based method performs slightly better than the
AQS-based method in runtime although the difference is not very significant.
This may be explained by the fact that there are only few stations and only
two priority levels. In the resource controller example given in the next section,
where many processes are used with multiple priority levels, the GQS-based
method performs substantially better than the AQS-based method in both the
overall time and memory requirements.

It is to be noted that the symmetry based method (i.e., SMC) outperforms
the method that does not employ symmetry for the Fire-Wire protocol. The
interested reader can refer to Sistla et al. [2000], and Gyuris and Sistla [1999]
for this experimental comparison.

5.3 Another Example

In this section, we study the performance of the three methods developed in
this paper for the verification of certain properties of a client/server resource
controller system with many client processes and multiple priority levels. We
considered a system with one server and 80 client processes. We carried out the
following sets of experiments. In all these experiments, the QS-based method
used the maximal possible set of automorphisms, that is, G is the set of auto-
morphisms induced by permutations that permute processes within the same
priority class arbitrarily. In the case of the GQS-based method, the set of au-
tomorphisms H consists of those that are induced by permuting the client pro-
cesses arbitrarily.

We considered systems with k priority levels for the client processes, for
different values of k and with different number of processes in each priority
level. That is, the client processes are divided into k classes. For each i =
1, . . . , k−1, the process in the ith class have higher priority than the processes
in class j , for each j = i + 1, . . . , k.

We checked the property stating that the resource cannot be free and held
by a process at the same time. This is an indirect specification of the mutual
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Table VII. Indirect Mutual Exclusion Property (resource controller
example)

value QS-based AQS-based GQS-based
of k Time Memory Time Memory Time Memory

2 12 3017 12 2282 14 2529
3 21 5402 21 4088 18 3077
4 42 10468 52 9160 27 4136
5 97 21141 158 23538 51 6627

exclusion property. (We are only using this indirect mutual exclusion property
for evaluation of the different methods. It is not difficult to see that mutual
exclusion is a symmetric property that can be checked more efficiently directly
on the QS or the GQS without any unwinding. If this method is used, then
GQS-based method outperforms the QS-based method substantially since the
size of the GQS is much smaller than that of the QS.) The indirect mutual
exclusion property is expressed as a disjunction of k clauses: the ith clause (for
i = 1, . . . , k) tests whether a process in the ith class holds the resource, while
at the same time the resource is indicated to be free.

In the first set of experiments, we considered systems in which the first k−1
classes each have only one client process and the kth class has the remain-
ing (80− k + 1) client processes. The results of these experiments are given in
Table VII. Each row in the table corresponds to a different value of k and each
column gives the results obtained when the method indicated at the top of the
column is employed. It is easy to see that the GQS-based method outperforms
the other methods for k = 3 and above. For k = 2, its performance is slightly
worse. The difference in the performance of the GQS-based method and the
other two methods increases with the value of k. Compared to the results ob-
tained with the Fire-wire protocol, we see that the GQS-based method can
substantially outperform the AQS-based method for high values of k. This is
partly due to the fact that the size of the automaton used in the AQS-based
method increases when there are more priority levels.

In the second set of experiments, we considered a system with two priority
classes (i.e., with k = 2) each having 40 processes. In this case, we compared
the QS-based and the GQS-based method using the indirect mutual exclusion
property as specified above. (We could not test the AQS-based method for this
case since including the priorities in the automata will break the symmetry
existing in each of the priority classes.) We could test both these methods using
formula decomposition. (To check for a formula of the form g ∨h using formula
decomposition with the QS-based method, we simply check g and h separately
and combine their results.) The QS-based method took 291 seconds and used
36,596 K of memory, while the GQS-based method took only 138 seconds and
used 7,088 K of memory. We were able to check the property without formula
decomposition for the GQS-based method, but not for the QS-based method.
For the GQS-based without formula decomposition, it took 178 seconds and
12,410 K of memory. This shows that decomposition can substantially improve
the performance, especially when there are many processes in each priority
class.
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Table VIII. Unsolicited Resource Allocation

value QS-based GQS-based
of k Time Memory Time Memory

2 12 2851 13 2409
3 20 4945 15 2748
4 40 9578 20 3589
5 91 19510 33 5593

In the third set of experiments, we considered systems where each of the first
k − 1 classes have exactly two processes. For k = 2, the QS-based method took
17 seconds and used 4,577 K of memory, while the GQS-based method took 18
seconds and used 3,056 K of memory. For k = 3, the QS-based method took
53 seconds and used 1,5276 K of memory, while GQS-based method took 47
seconds and used 6,734 K of memory. For k = 4, we could not test the QS-based
method at all even using formula decomposition, while we were able to test the
GQS-based method using formula decomposition and it took 184 seconds and
used 9,693 K of memory.

In the fourth set of experiments, we checked a different property by con-
sidering systems where the first k − 1 classes have exactly one process. The
property checks whether the highest priority process can ever be granted a re-
source without requesting the resource. We call this property the “unsolicited
resource allocation”. We compared the QS-based and GQS-based methods.
Both methods correctly reported that this is not possible. Results are given in
Table VIII.

From the above experiments, we see that the GQS-based method outper-
forms the other two methods both in time and memory in most of the cases.
We believe that the few cases (when k = 2) where the QS-based method per-
fomed better than the GQS-based method can be explained by the sub-optimal
implementation of the GQS-based method in PSMC. Specifically, our current
implementation of PSMC is not very efficient as we implemented it by extending
SMC, and hence were forced to use some of the same data structures. In par-
ticular, the data structures used during the unwinding of the GQS for tracking
the priority classes are not optimal.

As the number of priority classes increases, we see that the difference in
performance of the GQS-based method comapred to the QS-based method in-
creases. Also, as the number of processes in each priority class increases, we
can check the above indirect mutual exclusion property only when using for-
mula decomposition. When we apply formula decomposition, the GQS-based
method performs better than the QS-based method. This is due to the follow-
ing reason. To check a formula of the form g ∨ h using formula decomposition,
in the GQS-based method we construct the GQS and then unwind it twice for
checking g and h separately; thus, we need to construct the GQS only once. On
the other hand, when we use decomposition in the QS-based method we check
for g and h independently and we need to construct two quotient structures
from scratch. Also, in the QS-based method, formula decomposition can only
be applied at the top level, while in the GQS-based method, formula decom-
position can sometimes be applied to subformulas inside temporal operators
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as well, since we can use subformula tracking and decomposition mutually
recursively.

6. CONCLUSIONS AND RELATED WORK

We have presented new algorithmic techniques for exploiting symmetry in
model checking. We have generalized symmetry reduction to a larger class
of automorphisms, so that systems with little or no symmetry can be verified
more efficiently using symmetry reduction. We also presented novel techniques
based on formula decomposition and subformula tracking. Most of the proposed
algorithms have been implemented in the SMC verification system and evalu-
ated on several protocol examples. Our experimental results indicate that the
new techniques can significantly improve traditional symmetry-reduction tech-
niques. An earlier version of this paper, that does not include implementation
details, experimental results and proofs of theorems, was published in Sistla
and Godefroid [2001].

As mentioned earlier, symmetry reduction in model checking has been ex-
tensively studied in Ip and Dill [1993], Clarke et al. [1993], Emerson and Sistla
[1996, 1997], Emerson and Sistla [1997], Gyuris and Sistla [1999], Clarke and
Jha [1995], Kurshan [1994], Emerson and Trefler [1999], and Emerson et al.
[2000]. The problem of verifying properties of systems with little or no sym-
metry was first considered in Emerson and Trefler [1999], and Emerson et al.
[2000]. The work presented in Emerson et al. [2000] also considered general
automorphisms. The method used in this earlier work constructs the quotient
structure of an expanded graph H and checks the correctness property on this
quotient structure. This method works only for the verification of symmetric
properties. In contrast, our method constructs a GQS which is an extension
of the quotient structure where each edge has additional information in the
form of an edge condition and an automorphism, and can be used to verify any
property specified in CTL∗, even if the property is not symmetric. In the case
of symmetric properties, we can proceed as indicated in Emerson and Trefler
[1999], and Emerson et al. [2000], that is, perform standard model checking
on the GQS without unwinding it (the edge conditions are then simply ignored
during the model-checking process.)

Formula symmetry was explicitly considered in Emerson and Sistla [1996]
where quotient structures are constructed with respect to automorphisms rep-
resenting symmetries of the program as well as of the formula. Formula decom-
position was also suggested in Emerson and Sistla [1996] for model checking.
In that approach, a conjunctive formula φ is decomposed into its conjuncts,
model checking is done with respect to each of the conjuncts separately and
the results are combined to get the result for φ. Since each conjunct of φ has
more symmetry than φ itself, the quotient structures with respect to each con-
junct will be smaller than the quotient structure with respect to φ. Thus, for-
mula decomposition suggested in Emerson and Sistla [1996] will involve con-
struction of multiple smaller quotient structures (one for each of the conjuncts)
rather than constructing one big quotient structure with respect to φ. In con-
trast, we use here formula decomposition during the unwinding process. While
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unwinding with respect to φ may produce a large structure, unwinding with
respect to its components will result in several smaller structures, which may
be more efficient than dealing with the large structure. Also, formula sym-
metry is used during the construction of the quotient structure Emerson and
Sistla [1996]. Here, we do not consider formula symmetry in the construction
of the GQS, but symmetries of subformulas are used in subformula tracking
dynamically as the GQS is unwound. Emerson and Sistla [1997] presents a ver-
ification method for ICTL∗ formulas. Our subformula tracking technique can
also be used to efficiently verify properties specified in ICTL∗, in addition to
being applicable to any CTL∗ formula.
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