
An AbortAn Abort--Aware Model ofAware Model of

Transactional ProgrammingTransactional Programming

Page 1 January 2009VMCAI’2009

Transactional ProgrammingTransactional Programming

Kousha Etessami Patrice GodefroidKousha Etessami Patrice Godefroid

U. of Edinburgh Microsoft ResearchU. of Edinburgh Microsoft Research

Background: MultiBackground: Multi--Core RevolutionCore Revolution

• New multi-core machines

• The masses will have to learn concurrent programming

• But using locks and shared memory is hard and messy

• Can we use something better?

Page 2 January 2009VMCAI’2009

• Can we use something better?

• One proposal: transactional programming

– Processes communicate using atomic transactions

– Gives the illusion of sequential programming

– Requires an underlying “Transactional Memory”

– Lots of recent research on efficient software and
hardware “Transactional Memory” implementations

Motivation of This WorkMotivation of This Work

• A program analysis/verification point of view of
Transactional Programming

– If Transactional Programs are really easier to write,
then they should be easier to verify ! Is that true?

– But wait, what is a transactional program?

• Part 1: high-level semantics for transactional programs

Page 3 January 2009VMCAI’2009

• Part 1: high-level semantics for transactional programs

– A critique of single-lock semantics

– An abort-aware semantics for transactions

• Part 2: TSMs = Transactional State Machines

– A finite-state abstract model of transactional programs

– Some first verification results

Transactional ProgramTransactional Program

• A transactional program runs on top of a STM or HTM
implementation

– Processes communicate using atomic transactions accessing shared
memory

• What is the API? What is a transaction?

• Syntax: atomic { . . . }

Page 4 January 2009VMCAI’2009

• Syntax: atomic { . . . }

• Semantics? “single-lock semantics”

– easy

– But not satisfactory because overly simplified (“as if”)
• No parallelism allowed, blocking (known)
• Ignores non-terminating transactions (known)

– Ignores STM/HTM aborted transactions: for responsiveness,
“abort” cannot be equal to “retry” (new)

SingleSingle--Lock Semantics is too SimplisticLock Semantics is too Simplistic

• Example: flight reservation program
Transaction book(Agent, Flight_Nbr, Customer_Id) {

forall possible Seat_Number:

if (Agent.Flights[Flight_Nbr,Seat_Number] == available)

then { Agent.Flights[Flight_Nbr,Seat_Number] = Customer_Id;

return; // attempt to commit }

return full; // explicit abort for “no seats available”

} the transactional program wants to be notified

Page 5 January 2009VMCAI’2009

}

Main() { ...

status = book(Expedia, AA175, JohnDoe);

if (status == full) . . . // try another flight

if (status == commit) . . . // great, move on

if (status == abort) . . . // notify user & retry with Orbitz

}

– Transactions may abort; aborted transactions must have side-effects
to be able to test for success (commit) or failure (abort)

– Transactional programs must deal with aborted transactions

dead code with single-lock semantics

the transactional program wants to be notified

of any automatic abort (for responsiveness)

Transactional State Machines (TSMs)Transactional State Machines (TSMs)

• A foundation for the analysis of Transactional Programs

• TSM = “a FSM model for transactional programs”

• TSM = concurrent Recursive State Machines (RSMs)
+ shared variables + transactions

– RSMs = (finite-state) procedures which can call each other

Page 6 January 2009VMCAI’2009

– RSMs = (finite-state) procedures which can call each other

– Each thread/process executes one RSM

– Shared variables (with finite domain) for communication

– Transactions: some procedures are transactional

– Nesting: recursion is allowed

• Each terminating transaction ends in a commit or abort

An AbortAn Abort--Aware Semantics for TransactionsAware Semantics for Transactions

• There is a universal copy of all shared variables v

• After a transaction has started, for every shared variable v,

– every first read of v is recorded in a fixed copy

– every write and subsequent read of v is performed on a mutable copy

• If/when the transaction terminates,

– If fixed copy == universal copy, universal copy = mutable copy (commit)

Page 7 January 2009VMCAI’2009

– If fixed copy == universal copy, universal copy = mutable copy (commit)

Assumption: this is done with a single atomic compare-and-swap

– Else there is a memory conflict and the transaction is aborted (abort)

• Notes : (this is just one possible semantics, variants are ok too)

– Transactions are non-blocking and concurrent

– Memory conflicts are based on values, not accesses

– Nested transactions are “closed” (because we think open nested
transactions with inner commits and outer aborts do not make sense !)

Examples and RemarksExamples and Remarks

Page 8 January 2009VMCAI’2009

• Remarks : (choices that simplify the TSM semantics)
– We assume strong isolation/atomicity (ex1)

• To be able to define an interleaving semantics

– Explicit aborts supported (exception-raising mechanism) (ex2)

– Deferred update (not direct update) (ex2)

– Possible compiler re-orderings are not part of semantics (ex3)

StutterStutter--SerializabilitySerializability

• Properties of abort-aware semantics:

– If a transaction commits, it is as if it can be entirely scheduled
at the time of its successful compare-and-swap operation

– Therefore, any sequence of changes to the universal copy can be
witnessed by a serial execution of committed transactions

(Like with “single-lock semantics”, yet we accommodate aborts !)

Page 9 January 2009VMCAI’2009

(Like with “single-lock semantics”, yet we accommodate aborts !)

• Formally,

– a TSM is stutter-serializable if, for every run r of the TSM,
there is a run r’ such that r[U] is stutter-equivalent to r’[U] and
all committed transactions during r’ are serial

• Theorem: All TSMs are stutter-serializable

Model Checking (MC)Model Checking (MC)

• Theorem: in general, MC of TSMs for stutter-invariant
linear (LTL) properties of shared memory is undecidable
– Proof idea: with possibly unbounded recursion,

TSMs can simulate concurrent PDAs, i.e., a Turing machine

• Theorem: if recursion only occurs inside transactions,
MC of TSMs for stutter-invariant linear (LTL)

Page 10 January 2009VMCAI’2009

MC of TSMs for stutter-invariant linear (LTL)
properties of shared memory is decidable
– Proof idea: (for finitely-many finite-domain variables)

state transformations performed by recursive transactions can
be “summarized” in finitely-many possible ways,
both for shared variables (commits) and local variables

• Note: same results with other TSM semantics like
abort=retry, nondeterministic aborts, single-lock, etc.

ConclusionsConclusions

• Plan:

– Transactional programming is embraced by the masses

– Transactional programs are automatically abstracted into TSMs

– These TSMs are analyzed with tools (model checking, etc.)

• TSM = a model for Transactional Programs

Page 11 January 2009VMCAI’2009

• TSM = a model for Transactional Programs

• Abort-aware semantics to allow reactive programming

– Responsiveness is important yet mostly ignored so-far in TM world !

– With abort-aware semantics, all TSMs are stutter-serializable

– Clean high-level semantic property akin “single-lock semantics”, yet
formal and includes aborts

• Some model-checking results

