Automated Software Testing

for the 21st Century

Patrice Godefroid

Microsoft Research

eeeeeeeeeeeee

Outline

Two parts:

1. Some recent advances on automated software testing
- Technical developments
- Applications

2. Some current trends in the software industry
- And their impact on software testing

TCE'2015 Page 2 June 2015

Automatic Code-Driven Test Generation

Problem:

Given a sequential program with a set of input parameters,
generate a set of inputs that maximizes code coverage

“automate test generation using program analysis”

This is not "model-based testing”
(= generate tests from an FSM spec)

Example: Powerpnt.exe <filename>

- Millions of lines of C/C++, complex input format, dynamic
memory allocation, data structures of various shapes and sizes,
pointers, loops, procedures, libraries, system calls, etc.

TCE'2015 Page 3 June 2015

How? (1) Static Test Generation

Static analysis to partition the program's input space
[King76,...]

Ineffective whenever symbolic reasoning is not possible

- which is frequent in practice... (pointer manipulations, complex
arithmetic, calls to complex OS or library functions, etfc.)

Example:

int obscure(int x, int y) { Can't statically generate
if (x==hash(y)) error(Q); values for x and y
return 0: that satisfy "x==hash(y)" !

TCE'2015 Page 4 June 2015

How? (2) Dynamic Test Generation

* Run the program (starting with some random inputs),
gather constraints on inputs at conditional statements,
use a constraint solver to generate new test inputs

* Repeat until a specific program statement is reached
[Korel90,...]

* Or repeat to try to cover ALL feasible program paths:
DART = Directed Automated Random Testing
= systematic dynamic test generation [PLDI'05,...]

- detect crashes, assertion violations, use runtime checkers
(Purify, Valgrind, AppVerifier,...)

TCE'2015 Page 5 June 2015

DART = Directed Automated Random Testing

Example: Run 1 :- start with (random) x=33, y=42

- execute concretely and symbolically:
if (331=567) | if (x!= hash(y))

int obscure(int x, int y) {

it (x==hash(y)) error(Q); constraint Too complex
return O; -~ simplify it: x 1= 567
1 - solve: x==567 -> solution: x=567

- new test input: x=567, y=42

Run 2 : the other branch is executed

. All program paths are now covered !
- Observations: program e

- Dynamic test generation extends static test generation with
additional runtime information: it is more powerful

- see [DART in PLDI'05], [PLDI'11]
- The number of program paths can be infinite: may not terminatel
- Still, DART works well for small programs (1,000s LOC)
- Significantly improves code coverage vs. random testing

TCE'2015 Page 6 June 2015

DART Implementations

Defined by symbolic execution, constraint generation and solving

Languages: C, Java, x86, .NET,...
Theories: linear arithmetic, bit-vectors, arrays, uninterpreted functions,...
Solvers: Ip_solve, CVCLite, STP, Disolver, Z3,.—_ SMT solvers!

Examples of tools/systems implementing DART:

TCE'2015

EXE/EGT (Stanford): independent ['05-'06] closely related work (became KLEE)
CUTE = same as first DART implementation done at Bell Labs

SAGE (CSE/MSR) for x86 binaries and merges it with "fuzz" testing for finding
security bugs (more later)

PEX (MSR) for .NET binaries in conjunction with "parameterized-unit tests” for
unit testing of .NET programs

YOGI (MSR) for checking the feasibility of program paths generated statically
using a SLAM-like tool

Vigilante (MSR) for generating worm filters

BitScope (CMU/Berkeley) for malware analysis

CatchConv (Berkeley) focus on integer overflows

Splat (UCLA) focus on fast detection of buffer overflows

Apollo (MIT/IBM) for testing web applications ..and many morel!

Page 7 June 2015

The Rise of SMT Solvers

SAT Solvers for propositional logic
- Ex: Is formula F = pand (notq) satisfiable?
Answer: yes with p = true and q = false

SMT = Satisfiability Modulo Theories

- Allows more expressive formulas, useful fo model sw features

- Ex:Let F= [(B+2=0)]and (freadfwrite(a,if,3][c-2 4 Ac-b+1))

Arithmetic ‘ Array Theory \ Uninterpreted
Functions

Is formula F satisfiable modulo theory T ?

(A theory T is a set of formulas)

- SMT solvers have specialized algorithms for each T, and
have improved dramatically over the last 10 years

TCE'2015 Page 8 June 2015

An Application: SAGE @ Microsoft

#1 application of SMT solvers today (CPU usage)
Why? Security Testing

Software security bugs can be very expensive:
- Cost of each Microsoft Security Bulletin: $Millions
- Cost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

Many security vulnerabilities are in file & packet parsers
- Ex: MS Windows includes parsers for hundreds of file formats

Security testing: "hunting for million-dollar bugs”

- Write A/V (always exploitable), Read A/V (sometimes
exploitable), NULL-pointer dereference, division-by-zero
(harder to exploit but still DOS attacks), etc.

TCE'2015 Page 9 June 2015

Hunting for Security Bugs

Main techniques used by "black hats":
- Code inspection (of binaries) and
- Blackbox fuzz testing

Blackbox fuzz testing:
- A form of blackbox random testing [Miller+90]
- Randomly fuzz (=modify) a well-formed input

- Grammar-based fuzzing: rules that encode "well-formed"ness +
heuristics about how to fuzz (e.g., using probabilistic weights)

Heavily used in security testing
- Simple yet effective: many bugs found this way...
- At Microsoft, fuzzing is mandated by the SDL >

TCE'2015 Page 10

Introducing Whitebox Fuzzing [NDSS'08]

Idea: mix fuzz testing with dynamic test generation

- Dynamic symbolic execution to collect constraints on inputs,
hegate those, solve new constraints to get new tests,
repeat > "systematic dynamic test generation” (= DART)

(Why dynamic ? Because most precise | [PLDI'05, PLDI'11])
Apply to large applications (not unit)

Start with a well-formed input (not random)

Combine with a generational search (not DFS)
- Negate 1-by-1 each constraint in a path constraint
- Generate many children for each parent run

- Chadllenge all the layers of the application sooner Gen 1
- Leverage expensive symbolic execution parent

Implemented in the tool SAGE

TCE'2015 Page 11 June 2015

Example

void top(char input[4])
{

input = “good”

int cnt = O: Path constraint:
if (input[0] == ‘b’) cnt++; [L!='b’'| > I,='b’
if (input[1l] == ‘a@’) cnt++; |[Ii!=‘a’| > I,='a’
if (input[2] == ‘d’) cnt++; |I'='d/| 2 I,='d’
N
if (input[3] == ‘!’) cnt++; I3!=‘\!\’ 9
if (cnt >= 4) crash(Q); SMT
solver good
} > SAT Gen 1

Solve new constraint = new input

TCE'2015 Page 12

Negate each constraint in path constraint

June 2015

The Search Space

void top(char input[4]) If symbolic execution is perfect
{ int cnt = 0; and search space is small,

if (input[0] == ‘b’) cnts+; this is verification |

if (input[l] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if Ginput[3] == ‘!’) cnt++;

if (cnt >= 4) crash(Q);

AN AN

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4
good goo! godd god! gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd bad!

TCE'2015 Page 13 June 2015

Some Experimen.rs Most much (100x) bigger than ever tried before!

- Seven applications - 10 hours search each

App Tested

ANI

Medial

Media?2

Media3

Media4

Compressed
File Format

Excel

TCE'2015

#Tests Mean Depth @ Mean Input
Size

11468 178 2,066,087 5,400
6890 73 3,409,376 65,536
1045 1100 271,432,489 27,335
2266 608 54,644,652 30,833
909 883 133,685,240 22,209
1527 65 480,435 634

3008 6502 923,731,248 45,064

Page 14 June 2015

SAGE (Scalable Automated Guided Execution)

Whitebox fuzzing introduced in SAGE

Performs symbolic execution of x86 execution traces
- Builds on Nirvana, iDNA and TruScan for x86 analysis

- Don't care about language or build process

- Easy to test new applications, no interference possible

Can analyse any file-reading Windows applications

Several optimizations to handle huge execution traces
- Constraint caching and common subexpression elimination

- Unrelated constraint optimization

- Constraint subsumption for constraints from input-bound loops
- "Flip-count” limit (to prevent endless loop expansions)

TCE'2015 Page 15 June 2015

SAGE Architecture

Coverage -
Constraints
InputO Data
Check for Code Generate Solve

Crashes |]|]|::> Coverage |]|]|::> Constraints |]|]|::> Constraints
(AppVerifier) (Nirvana) (TruScan) (Z3)

TCE'2015 Page 16 June 2015

SAGE Results

Since 2007: many new security bugs found
(missed by blackbox fuzzers, static analysis)

- Apps: image decoders, media players, document processors,...
- Bugs: Write A/Vs, Read A/Vs, Crashes,...

- Many triaged as "security critical, severity 1, priority 1"
(would trigger Microsoft security bulletin if known outside MS)

- Example: WEX Security team for Win7 Fowfuzzing bugs found (2006-2009):
+ Dedicated fuzzing lab with 100s machines

- 100s apps (deployed on 1 billion+ computers)
» ~1/3 of all fuzzing bugs found by SAGE !

Default All Others SAGE
Blackbox

Fuzzer
+ Regression

TCE'2015 Page 17 June 2015

Impact of SAGE (in Numbers)

- 500+ machine-years
- Runs in the largest dedicated fuzzing lab in the world
- Largest computational usage ever for any SMT solver

» 100s of apps, 100s of bugs (missed by everything else)
- Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs
- Millions of dollars saved (for Microsoft and the world)

- “Practical Verification":

- Eradicate all buffer overflows in all Windows parsers
- <H security bulletins in all SAGE-cleaned Win7 parsers, O since 2011
» If nobody can find bugs in P, P is observationally equiv to “verified”!

» Reduce costs & risks for Microsoft, increase those for Black Hats
2000 2005 2010 2015

Blackbox Fuzzing Whitebox Fuzzing “Practical Verification”

TCE'2015 Page 18 June 2015

What Next?

1. Better Depth: Towards Formal Verification
- When can we safely stop testing?
- When we know that there are no more bugs ! = "Verification”

- Software Model Checking = verification by exhaustive testing
(state-space exploration)

- Active area of research...

2. Better Breadth: More Applications
- Beyond file fuzzing
- What other “killer apps"?
- Active area of research...

TCE'2015 Page 19 June 2015

More On the Research Behind SAGE

How to recover from imprecision in symbolic exec.? PLDI'05, PLDI'11
How to scale symbolic exec. to billions of instructions? NDss'08
How to check efficiently many properties together? EMSOFT08
How to leverage grammars for complex input formats? PLDI'08
How to deal with path explosion ? POPL'07, TACAS'08, POPL'10, SAS'11
How to reason precisely about pointers? ISsTA'09

How to deal with floating-point instructions? ISsTA'10

How to deal with input-dependent loops? 1ssTA11

How to synthesize x86 circuits automatically? PLDI'12

How to run 24/7 for months at a time? ICSE'13

+ research on constraint solvers

References: see http://research.microsoft.com/users/pg

TCE'2015

Page 20 June 2015

Some Current Trends in the Software Industry

And their Impact on Software Testing

Tllustrated with Examples from Microsoft

TCE'2015 Page 21 June 2015

Telemetry

+ Ex: Microsoft's Windows Error Reporting (WER)

!'g/! Do you want to send more information about the
‘ problem?

Additional details about what went wrong can help Microsoft
create a solution.

v | Show Details

[Send information |

B PowerPoint 100%
50% '
0%

12345678 91011121314151617181520

- Valuable automatic feedback

- Huge help to prioritize, improve customer satisfaction
* Heavily skewed distributions, maximum benefit from fixed budget

- Not just Microsoft software ! (>7000 products)

Relative #
of Reports

BP0 rage 22 Credit: G. Hunt, J. Larus

"A/B Testing"

* For Services (mostly)

<5 0~ @6

Google

A/ B Testing

k New More= Search oo

Web Images Vide

What is A/B Testing? - opumizely.com
www optimizely com/A/B_Testing » (866) 332-8040
Leam the Basics of A/B Testing in This Slmplé Guide.
“__Seven billion web experiences optimized " -~ TechCrunch
ptimizely has 904 follow

Test st out
A/B Testing Webinar A/B Testing Benefts
A/B Testing Tool

AJb Testing - Adobe.com
www adobe comTarget «
Watch Future of |esm\g ebinar by Forrestor & AOL with white papers

\dobe ha r

Powerful A/B Testing Tool - vwo.com
www vwo com/ab_testing ~ (844) 822-8378
AIB Testing whh haskme, targeng post Sorausaton mndmors Try now

A/B testing - Wikipedia, the free encyclopedia

en wikipedia orgwikVA/B_testing ~ Wikipedia

In marketing and business inteligence, A/B testing is jargon for a randomized
experiment with two variants, A and B, which are the control and treatment in the
Google Wabsite Optimizer - Purchase funnel - Multivariate testing - Choice modeling

What is A/B Testing? - Optlmlzsly

hitps www optimizely com/ab-tes

Improve conversions through A/ B "esnng Split Testing and Multivariate Testing with
Optimizely!

What is Split Testing? - The Hottest A/B Testing Tool . - Multivariate Testing

The Ultimate Guide To A/B Testing | Smashlng Magazme
wevew smashingmagazine comy. Ahe-ulimate-guide-t. ~ Smashing M

2010 - A/B testing isn't a buzz term. A lot of savvy marketers and designs are
using it right now to gain insight into visitor behavior and 10 incr

LB B Hitposvowwbing.com/searchia=A+ 32548 O = &

1> bing

s Beta

A/ B testing

Web In

Videos Map N

60,900,000 RESULTS Any time ~

Ads reiated 10 A | B testing

Web & Mobile A/B Testing | SiteSpect.com ¥
wewew.Site Spect.com
Deliver an exceptional user experience with these 17 ideas.

7 Optimization Tips

A/B or Multivariate Test | M iser.com ™

Maxymiser.com/AB Testing

Maxem Batween AB and MVT Tests Match the Method with your Goals.
i Test Website Vadations

In Your Con

What is A/B Testing? - Optimizel

‘optimizely com/ab-testing ~

Optimizely: A/B Testing Simplified. A/B testing is a simple way to test changes to your
page against the current design and determine which ones produce positive results

A/B testing - Wikipedia, the free encyclopedia
on wikipedia og/wiki/A/B_testing ~

Oct 17. 2014 - In marketing and business inteliigence, A/B testing is jargon for a
randomized experiment with two variants, A and B, which are the control and treatment
Common Test Statistics - History - An emailing campaign Acceptance

A/B Testing your TYPO3 website - TICON14EU
www sideshare netwebformat/ab.testing-your-typo3. ~ 1 day ago
Oct 20,2014 - How to test the User Experience of your TYPO3 website using Google

The Ultimate Guide To A/B Testmg | Smashmg

0106724 bt~

Jon 24,2010 AIB testing it a buzz term. Aot of savvy marketers and designs are
using it right now 1o gain insight into visitor behavior and 1o increase

com72

A Primer on A/B Testing - An A List Apart Article

alistapart comvarticie/a-primer-on-a-b-testing +

But it's important to make sure you reach statistically significant results and avoid red
herrings_Let's talk about how to do that What is an AV test’

Related searches

AB Testing Software

A B Testing Tool

A B Testing Methodology

A B Testing Calculations

A B Testing Google Analytics

A B Testing Statistical Significance
Influenza ASB Testing

Website A B Testing Tools

B2 Twitter

KISSmetrics.com
KISSmetrics.com @ - 2 hours ago

How 1o Find a Winning A/B Testing Hypothesis
Kiss ly/1jqEsGe

How to Find a Winning A/B Testing Hypothesis
Kissmatrics.com

4 £ * See on Twitter
See more on Twitter

W Foodback

° Deploy first to a small set of users
- Users are testers, monitoring, log analysis
Fix bugs on server side quickly, quietly and cheaply...
When stable, deploy further

TCE'2015 Page 23 June 2015

New World of Smartphones and Clouds

* How much testing? Varies widely !
- Many apps are poorly tested

- Some apps (high-end) are very well tested
» Small margin for failure (ready-at-launch)
* Otherwise re-brand/re-launch

TCE'2015 Page 24 June 2015

Big Data: Program Analysis in the Cloud

»+ The Cloud is also an opportunity
- For program analysis, testing, fuzzing, etc.
- Move software development (and testing) assets to the Cloud
- Mine data about code, edits (churn), bug DBs, HR-data, eftc.
- Failure-prediction models, change analysis, test prioritization, etc.

- Ex: Crane @ MSR :> |

mmmmmmmmmmmmm
Fix Regression Risl bability of regression > 50%
Bis

- Continuous monitoring,
logging, analysis, etc.

- Enables new large-scale
sophisticated analyses |

» "Empirical Software
Engineering” research

trace

Credit: N. Nagappan

TCE'2015

Testing Process

- Separate test organization or "combined engineering” ?

* Current trend: "Agile” software development

- Speed: Ship frequently, incrementally, independently
- Especially for services, continuous improvements

- Modularity: Fine-grained components, libraries, services
- Test-driven development, devs write ("unit") tests
- Separate, specialized, end-to-end testing (e.g., for security)

- Evolution of the Dev:Test ratio
- Old Microsoft: 1:1
* New Microsoft: towards 10:1? (Like Google, Facebook, etc.)

 Impact on quality? When does this work and not work?

TCE'2015 Page 26 June 2015

The Rapidly Expanding World of Computing

Medicine and Global Health

Energy and
Sustainability

Educatlon

Scientific
atural
Ianguag

Discovery \
9 roces
Transportation %

machlne
earning
cloud

Security and
Privacy

Technology for

omputm Development

Engineering / Interacting with the
Physical World

Elder Care Acce55|b|I|ty

Wha'l' 'I'QS'I'ing for' Such SySTems? Credit: E. Lazowska

TCE'2015 Page 27 June 2015

Conclusions

Automated Software Testing for the 215t Century :

- Some recent advances on automated software testing
- Dynamic test generation, SMT solvers, whitebox fuzzing
- Applications to large-scale security testing (500+ machine-years)

- What next? Towards verification, more applications...
Active area of research !

+ Some current trends in the software industry
- Telemetry, A/B Testing, Agile Dev&Test, Cloud & Big Data,...
- Impact on software testing...
We live in a world of remarkable innovation, diversity, and opportunity
The same is true for testing !

TCE'2015 Page 28 June 2015

