
Page 1 June 2015 TCE’2015

Automated Software Testing

for the 21st Century

Patrice Godefroid

Microsoft Research

Page 2 June 2015 TCE’2015

Outline

Two parts:

1. Some recent advances on automated software testing

– Technical developments

– Applications

2. Some current trends in the software industry

– And their impact on software testing

Page 3 June 2015 TCE’2015

Automatic Code-Driven Test Generation

Problem:

 Given a sequential program with a set of input parameters,
generate a set of inputs that maximizes code coverage

 = “automate test generation using program analysis”

 This is not “model-based testing”
(= generate tests from an FSM spec)

Example: Powerpnt.exe <filename>

– Millions of lines of C/C++, complex input format, dynamic
memory allocation, data structures of various shapes and sizes,
pointers, loops, procedures, libraries, system calls, etc.

Page 4 June 2015 TCE’2015

How? (1) Static Test Generation

• Static analysis to partition the program’s input space
[King76,…]

• Ineffective whenever symbolic reasoning is not possible

– which is frequent in practice… (pointer manipulations, complex
arithmetic, calls to complex OS or library functions, etc.)

Example:

int obscure(int x, int y) {

 if (x==hash(y)) error();

 return 0;

}

Can’t statically generate
values for x and y
that satisfy “x==hash(y)” !

Page 5 June 2015 TCE’2015

How? (2) Dynamic Test Generation

• Run the program (starting with some random inputs),
gather constraints on inputs at conditional statements,
use a constraint solver to generate new test inputs

• Repeat until a specific program statement is reached
[Korel90,…]

• Or repeat to try to cover ALL feasible program paths:
DART = Directed Automated Random Testing
= systematic dynamic test generation [PLDI’05,…]

– detect crashes, assertion violations, use runtime checkers
(Purify, Valgrind, AppVerifier,…)

Page 6 June 2015 TCE’2015

DART = Directed Automated Random Testing

Example:

int obscure(int x, int y) {

 if (x==hash(y)) error();

 return 0;

}

- start with (random) x=33, y=42 Run 1 :

- solve: x==567  solution: x=567

- execute concretely and symbolically:
 if (33 != 567) | if (x != hash(y))

constraint too complex
 simplify it: x != 567

- new test input: x=567, y=42

Run 2 : the other branch is executed
 All program paths are now covered !

• Observations:

– Dynamic test generation extends static test generation with
additional runtime information: it is more powerful

– see [DART in PLDI’05], [PLDI’11]

– The number of program paths can be infinite: may not terminate!

– Still, DART works well for small programs (1,000s LOC)

– Significantly improves code coverage vs. random testing

Page 7 June 2015 TCE’2015

DART Implementations

• Defined by symbolic execution, constraint generation and solving
– Languages: C, Java, x86, .NET,…

– Theories: linear arithmetic, bit-vectors, arrays, uninterpreted functions,…

– Solvers: lp_solve, CVCLite, STP, Disolver, Z3,…

• Examples of tools/systems implementing DART:
– EXE/EGT (Stanford): independent [’05-’06] closely related work (became KLEE)

– CUTE = same as first DART implementation done at Bell Labs

– SAGE (CSE/MSR) for x86 binaries and merges it with “fuzz” testing for finding
security bugs (more later)

– PEX (MSR) for .NET binaries in conjunction with “parameterized-unit tests” for
unit testing of .NET programs

– YOGI (MSR) for checking the feasibility of program paths generated statically
using a SLAM-like tool

– Vigilante (MSR) for generating worm filters

– BitScope (CMU/Berkeley) for malware analysis

– CatchConv (Berkeley) focus on integer overflows

– Splat (UCLA) focus on fast detection of buffer overflows

– Apollo (MIT/IBM) for testing web applications …and many more!

SMT solvers!

Page 8 June 2015 TCE’2015

The Rise of SMT Solvers

• SAT Solvers for propositional logic

– Ex: Is formula F = p and (not q) satisfiable?

 Answer: yes with p = true and q = false

• SMT = Satisfiability Modulo Theories

– Allows more expressive formulas, useful to model sw features

– Ex: Let F = (b + 2 = c) and (f(read(write(a,b,3), c-2) ≠ f(c-b+1))

Is formula F satisfiable modulo theory T ?

 (A theory T is a set of formulas)

– SMT solvers have specialized algorithms for each T, and
have improved dramatically over the last 10 years

Arithmetic Array Theory Uninterpreted

Functions

Page 9 June 2015 TCE’2015

An Application: SAGE @ Microsoft

• #1 application of SMT solvers today (CPU usage)

• Why? Security Testing

• Software security bugs can be very expensive:
– Cost of each Microsoft Security Bulletin: $Millions

– Cost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

• Many security vulnerabilities are in file & packet parsers
– Ex: MS Windows includes parsers for hundreds of file formats

• Security testing: “hunting for million-dollar bugs”
– Write A/V (always exploitable), Read A/V (sometimes

exploitable), NULL-pointer dereference, division-by-zero
(harder to exploit but still DOS attacks), etc.

Page 10 June 2015 TCE’2015

Hunting for Security Bugs

• Main techniques used by “black hats”:

– Code inspection (of binaries) and

– Blackbox fuzz testing

• Blackbox fuzz testing:

– A form of blackbox random testing [Miller+90]

– Randomly fuzz (=modify) a well-formed input

– Grammar-based fuzzing: rules that encode “well-formed”ness +
heuristics about how to fuzz (e.g., using probabilistic weights)

• Heavily used in security testing

– Simple yet effective: many bugs found this way…

– At Microsoft, fuzzing is mandated by the SDL 

Page 11 June 2015 TCE’2015

Introducing Whitebox Fuzzing [NDSS’08]

Idea: mix fuzz testing with dynamic test generation

– Dynamic symbolic execution to collect constraints on inputs,
negate those, solve new constraints to get new tests,
repeat  “systematic dynamic test generation” (= DART)

 (Why dynamic ? Because most precise ! [PLDI’05, PLDI’11])

• Apply to large applications (not unit)

• Start with a well-formed input (not random)

• Combine with a generational search (not DFS)
– Negate 1-by-1 each constraint in a path constraint

– Generate many children for each parent run

– Challenge all the layers of the application sooner

– Leverage expensive symbolic execution

• Implemented in the tool SAGE

Gen 1
parent

Page 12 June 2015 TCE’2015

Example

void top(char input[4])

{

 int cnt = 0;

 if (input[0] == ‘b’) cnt++;

 if (input[1] == ‘a’) cnt++;

 if (input[2] == ‘d’) cnt++;

 if (input[3] == ‘!’) cnt++;

 if (cnt >= 4) crash();

}

input = “good”

I0!=‘b’

I1!=‘a’

I2!=‘d’

I3!=‘!’

Negate each constraint in path constraint
Solve new constraint  new input

Path constraint:

good

goo!

bood

gaod

godd

 I0=‘b’

 I1=‘a’

 I2=‘d’

 I3=‘!’

Gen 1  SAT

SMT

solver

Page 13 June 2015 TCE’2015

The Search Space

void top(char input[4])

{

 int cnt = 0;

 if (input[0] == ‘b’) cnt++;

 if (input[1] == ‘a’) cnt++;

 if (input[2] == ‘d’) cnt++;

 if (input[3] == ‘!’) cnt++;

 if (cnt >= 4) crash();

}

If symbolic execution is perfect
 and search space is small,
 this is verification !

Page 14 June 2015 TCE’2015

Some Experiments

• Seven applications – 10 hours search each

App Tested #Tests Mean Depth Mean #Instr. Mean Input
Size

ANI 11468 178 2,066,087 5,400

Media1 6890 73 3,409,376 65,536

Media2 1045 1100 271,432,489 27,335

Media3 2266 608 54,644,652 30,833

Media4 909 883 133,685,240 22,209

Compressed
File Format

1527 65 480,435 634

Excel 3008 6502 923,731,248 45,064

Most much (100x) bigger than ever tried before!

Page 15 June 2015 TCE’2015

SAGE (Scalable Automated Guided Execution)

• Whitebox fuzzing introduced in SAGE

• Performs symbolic execution of x86 execution traces
– Builds on Nirvana, iDNA and TruScan for x86 analysis

– Don’t care about language or build process

– Easy to test new applications, no interference possible

• Can analyse any file-reading Windows applications

• Several optimizations to handle huge execution traces
– Constraint caching and common subexpression elimination

– Unrelated constraint optimization

– Constraint subsumption for constraints from input-bound loops

– “Flip-count” limit (to prevent endless loop expansions)

Page 16 June 2015 TCE’2015

Check for

Crashes

(AppVerifier)

Code

Coverage

(Nirvana)

Generate

Constraints

(TruScan)

Solve

Constraints

(Z3)

Input0
Coverage

Data
Constraints

Input1

Input2

…

InputN

SAGE Architecture

Page 17 June 2015 TCE’2015

Since 2007: many new security bugs found
(missed by blackbox fuzzers, static analysis)

– Apps: image decoders, media players, document processors,…

– Bugs: Write A/Vs, Read A/Vs, Crashes,…

– Many triaged as “security critical, severity 1, priority 1”
(would trigger Microsoft security bulletin if known outside MS)

– Example: WEX Security team for Win7
• Dedicated fuzzing lab with 100s machines

• 100s apps (deployed on 1 billion+ computers)

• ~1/3 of all fuzzing bugs found by SAGE !

SAGE Results

Page 18 June 2015 TCE’2015

Impact of SAGE (in Numbers)

• 500+ machine-years
– Runs in the largest dedicated fuzzing lab in the world

– Largest computational usage ever for any SMT solver

• 100s of apps, 100s of bugs (missed by everything else)
– Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs

– Millions of dollars saved (for Microsoft and the world)

• “Practical Verification”:
– Eradicate all buffer overflows in all Windows parsers

• <5 security bulletins in all SAGE-cleaned Win7 parsers, 0 since 2011
• If nobody can find bugs in P, P is observationally equiv to “verified”!
• Reduce costs & risks for Microsoft, increase those for Black Hats

2000 2005 2010 2015

Blackbox Fuzzing Whitebox Fuzzing “Practical Verification”

Page 19 June 2015 TCE’2015

What Next?

1. Better Depth: Towards Formal Verification

– When can we safely stop testing?

– When we know that there are no more bugs ! = “Verification”

– Software Model Checking = verification by exhaustive testing
(state-space exploration)

– Active area of research…

2. Better Breadth: More Applications

– Beyond file fuzzing

– What other “killer apps”?

– Active area of research…

Page 20 June 2015 TCE’2015

More On the Research Behind SAGE

– How to recover from imprecision in symbolic exec.? PLDI’05, PLDI’11

– How to scale symbolic exec. to billions of instructions? NDSS’08

– How to check efficiently many properties together? EMSOFT’08

– How to leverage grammars for complex input formats? PLDI’08

– How to deal with path explosion ? POPL’07, TACAS’08, POPL’10, SAS’11

– How to reason precisely about pointers? ISSTA’09

– How to deal with floating-point instructions? ISSTA’10

– How to deal with input-dependent loops? ISSTA’11

– How to synthesize x86 circuits automatically? PLDI’12

– How to run 24/7 for months at a time? ICSE’13

+ research on constraint solvers

References: see http://research.microsoft.com/users/pg

Page 21 June 2015 TCE’2015

Some Current Trends in the Software Industry

And their Impact on Software Testing

Illustrated with Examples from Microsoft

Page 22 June 2015 TCE’2015

Telemetry

• Ex: Microsoft’s Windows Error Reporting (WER)

• Valuable automatic feedback

– Huge help to prioritize, improve customer satisfaction
• Heavily skewed distributions, maximum benefit from fixed budget

– Not just Microsoft software ! (>7000 products)

Credit: G. Hunt, J. Larus

Page 23 June 2015 TCE’2015

“A/B Testing”

• For Services (mostly)

• Deploy first to a small set of users

– Users are testers, monitoring, log analysis

– Fix bugs on server side quickly, quietly and cheaply…

– When stable, deploy further

Page 24 June 2015 TCE’2015

New World of Smartphones and Clouds

• Lots of new code development !

• How much testing? Varies widely !

– Many apps are poorly tested

– Some apps (high-end) are very well tested
• Small margin for failure (ready-at-launch)

• Otherwise re-brand/re-launch

Page 25 June 2015 TCE’2015

Big Data: Program Analysis in the Cloud

• The Cloud is also an opportunity

– For program analysis, testing, fuzzing, etc.

– Move software development (and testing) assets to the Cloud

– Mine data about code, edits (churn), bug DBs, HR-data, etc.

– Failure-prediction models, change analysis, test prioritization, etc.
• Ex: Crane @ MSR

– Continuous monitoring,
logging, analysis, etc.

– Enables new large-scale
sophisticated analyses !

• “Empirical Software
Engineering” research

Credit: N. Nagappan

Page 26 June 2015 TCE’2015

Testing Process

• Separate test organization or “combined engineering” ?

• Current trend: “Agile” software development

– Speed: Ship frequently, incrementally, independently
• Especially for services, continuous improvements

– Modularity: Fine-grained components, libraries, services

– Test-driven development, devs write (“unit”) tests

– Separate, specialized, end-to-end testing (e.g., for security)

– Evolution of the Dev:Test ratio
• Old Microsoft: 1:1

• New Microsoft: towards 10:1 ? (Like Google, Facebook, etc.)

• Impact on quality? When does this work and not work?

Page 27 June 2015 TCE’2015

The Rapidly Expanding World of Computing

machine
learning

natural
language
processing

HCI

cloud
computing

big
data

mobile

sensors

Energy and
Sustainability

Security and
Privacy

Technology for
Development

Medicine and Global Health
Education

Scientific
Discovery

Transportation

Neural
Engineering

Elder Care Accessibility

Interacting with the
Physical World

CORE
CSE

 Credit: E. Lazowska What testing for such systems?

Page 28 June 2015 TCE’2015

Conclusions

Automated Software Testing for the 21st Century :

• Some recent advances on automated software testing

– Dynamic test generation, SMT solvers, whitebox fuzzing

– Applications to large-scale security testing (500+ machine-years)

– What next? Towards verification, more applications…
• Active area of research !

• Some current trends in the software industry

– Telemetry, A/B Testing, Agile Dev&Test, Cloud & Big Data,…

– Impact on software testing…

 We live in a world of remarkable innovation, diversity, and opportunity

The same is true for testing !

