
Page 1 June 2015 TCEõ2015

Automated Software Testing

for the 21 st Century

Patrice Godefroid

Microsoft Research

Page 2 June 2015 TCEõ2015

Outline

Two parts:

1. Some recent advances on automated software testing

ð Technical developments

ð Applications

2. Some current trends in the software industry

ð And their impact on software testing

Page 3 June 2015 TCEõ2015

Automatic Code -Driven Test Generation

Problem:

 Given a sequential program with a set of input parameters,
generate a set of inputs that maximizes code coverage

 = òautomate test generation using program analysisó

 This is not òmodel-based testingó
(= generate tests from an FSM spec)

Example: Powerpnt.exe <filename>

ðMillions of lines of C/C++, complex input format, dynamic
memory allocation, data structures of various shapes and sizes,
pointers, loops, procedures, libraries, system calls, etc.

Page 4 June 2015 TCEõ2015

How? (1) Static Test Generation

ÅStatic analysis to partition the programõs input space
[King76,é]

Å Ineffective whenever symbolic reasoning is not possible

ðwhich is frequent in practiceé (pointer manipulations, complex
arithmetic, calls to complex OS or library functions, etc.)

Example:

int obscure(int x, int y) {

 if (x==hash(y)) error();

 return 0;

}

Canõt statically generate
values for x and y
that satisfy òx==hash(y)ó !

Page 5 June 2015 TCEõ2015

How? (2) Dynamic Test Generation

ÅRun the program (starting with some random inputs),
gather constraints on inputs at conditional statements,
use a constraint solver to generate new test inputs

ÅRepeat until a specific program statement is reached
[Korel90,é]

ÅOr repeat to try to cover ALL feasible program paths:
DART = Directed Automated Random Testing
= systematic dynamic test generation [PLDIõ05,é]

ðdetect crashes, assertion violations, use runtime checkers
(Purify, Valgrind , AppVerifier ,é)

Page 6 June 2015 TCEõ2015

DART = Directed Automated Random Testing

Example:

int obscure(int x, int y) {

 if (x==hash(y)) error();

 return 0;

}

- start with (random) x=33, y=42 Run 1 :

- solve: x==567 Ą solution: x=567

- execute concretely and symbolically:
 if (33 != 567) | if (x != hash(y))

constraint too complex
Ą simplify it: x != 567

- new test input: x=567, y=42

Run 2 : the other branch is executed
 All program paths are now covered !

ÅObservations:

ðDynamic test generation extends static test generation with
additional runtime information: it is more powerful

ð see [DART in PLDIõ05], [PLDIõ11]

ðThe number of program paths can be infinite: may not terminate!

ðStill, DART works well for small programs (1,000s LOC)

ðSignificantly improves code coverage vs. random testing

Page 7 June 2015 TCEõ2015

DART Implementations

Å Defined by symbolic execution, constraint generation and solving
ð Languages: C, Java, x86, .NET,é

ð Theories: linear arithmetic, bit -vectors, arrays, uninterpreted functions,é

ð Solvers: lp_solve, CVCLite, STP, Disolver, Z3,é

Å Examples of tools/systems implementing DART:
ð EXE/EGT (Stanford): independent [õ05-õ06] closely related work (became KLEE)

ð CUTE = same as first DART implementation done at Bell Labs

ð SAGE (CSE/MSR) for x86 binaries and merges it with òfuzzó testing for finding
security bugs (more later)

ð PEX (MSR) for .NET binaries in conjunction with òparameterized-unit testsó for
unit testing of .NET programs

ð YOGI (MSR) for checking the feasibility of program paths generated statically
using a SLAM-like tool

ð Vigilante (MSR) for generating worm filters

ð BitScope (CMU/Berkeley) for malware analysis

ð CatchConv (Berkeley) focus on integer overflows

ð Splat (UCLA) focus on fast detection of buffer overflows

ð Apollo (MIT/IBM) for testing web applications éand many more!

SMT solvers!

Page 8 June 2015 TCEõ2015

The Rise of SMT Solvers

ÅSAT Solvers for propositional logic

ðEx: Is formula F = p and (not q) satisfiable ?

 Answer: yes with p = true and q = false

ÅSMT = Satisfiability Modulo Theories

ðAllows more expressive formulas, useful to model sw features

ðEx: Let F = (b + 2 = c) and (f(read(write(a,b,3), c-2) Í f(c-b+1))

Is formula F satisfiable modulo theory T ?

 (A theory T is a set of formulas)

ðSMT solvers have specialized algorithms for each T, and
have improved dramatically over the last 10 years

Arithmetic Array Theory Uninterpreted

Functions

Page 9 June 2015 TCEõ2015

An Application: SAGE @ Microsoft

Å#1 application of SMT solvers today (CPU usage)

ÅWhy? Security Testing

ÅSoftware security bugs can be very expensive:
ðCost of each Microsoft Security Bulletin: $Millions

ðCost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

ÅMany security vulnerabilities are in file & packet parsers
ðEx: MS Windows includes parsers for hundreds of file formats

ÅSecurity testing: òhunting for million-dollar bugsó
ðWrite A/V (always exploitable), Read A/V (sometimes

exploitable), NULL -pointer dereference, division -by-zero
(harder to exploit but still DOS attacks), etc.

