Automated Software T esting

fonthe21 1s' Century

Patrice Godefroid

Microsoft Research

TCE2015 pagel . June2015

Outline

Two parts:

1. Some recent advances on automated software testing
d Technical developments

d Applications

2. Some current trends in the software industry

d And their impact on software testing

TCEB82015 Page2 June 2015

Automatic Code -Driven Test Generation
Problem:

Given asequential program with a set of input parameters,
generate a set of inputs that maximizes code coverage

= O0automate test generation

Thisisnotomodbealsed testingo
(= generate tests from an FSM spec)

Example: Powerpnt.exe <filename>

d Millions of lines of C/C++, complex input format, dynamic
memory allocation, data structures of various shapes and sizes,
pointers, loops, procedures, libraries, system calls, etc.

TCEB82015 Page3 June 2015

How? (1) Static: Test Generation

AStatic analysis to partition
| King76, é&]

A Ineffective whenever symbolic reasoning is not possible

dwhich is frequent in practicee (
arithmetic, calls to complex OS or library functions, etc.)

Example:

int obscure(int X, int y){ Canot statically
if (x==hash(y)) error(); values for x and y
return O: t hat satisfy o0ox=

TCEB82015 Page4 June 2015

How? (2) Dynamic Test Generation

A Run the program (starting with some random inputs),
gather constraints on inputs at conditional statements,
use a constraint solver to generate new test inputs

A Repeat until a specific program statement is reached
| Kor el 90, é]

A Orrepeat to try to cover ALL feasible program paths:
DART = Directed Automated Random Testing
= systemati c dynamic test ge

d detect crashes, assertion violations, use runtime checkers
(Purify, Valgrind, AppVerifier , é)

TCEB82015 Page5 June 2015

DART = Directed-Adtomated Random T esting

Example: Run 1 :- start with (random) x=33, y=42

- execute concretely and symbolically:
if (33!=567) | if (x|!=hash(y))

int obscure(int x, inty) {

if (x==hash(y)) error(); constraint too complex
return O; A simplify it: x 1= 567
) - solve: x==567 A solution: x=567

- new test input: x=567, y=42

Run 2 : the other branch is executed

: All program paths are now covered !
A Observations:

d Dynamic test generation extends static test generation with
additional runtime information: itis more powerful

8 see [DART in PLDI®&05], [PLDI®11]
d The number of program paths can be infinite: may not terminate!
d Still, DART works well for small programs (1,000s LOC)
d Significantly improves code coverage vs. random testing

TCEB82015 Page6 June 2015

DART Implementations

A Defined by symbolic execution, constraint generation and solving

0
0
0

Languages: C, Java, x86, . NET, é
Theories: linear arithmetic, bit -vectors, arrays, uninterpreted f unct i ons, ¢

Solvers: Ip_solve, CVCLite, STP, Disolver, Z-3-, ¢ SMT solvers!

A Examples of tools/systems implementing DART:

0
0
0

o Ox Ox Ox O

EXE/EGT (St anf or d) : | n@@®@dle nadlecd e[Y0 0r5el at ed
CUTE = same as first DART implementation done at Bell Labs

SAGE(CSE/ MSR) for x86 binaries and merges
security bugs (more later)

PEX(MSR) for . NET binaries i n camjiundteisdr
unit testing of .NET programs

YOGI (MSR) for checking the feasibility of program paths generated statically
using a SLAM-like tool

Vigilante (MSR) for generating worm filters

BitScope (CMU/Berkeley) for malware analysis

CatchConv (Berkeley) focus on integer overflows

Splat (UCLA) focus on fast detection of buffer overflows

Apollo(MI T/ I BM) for testing web apandmacyanbre!o r

TCEB82015 Page7 June 2015

The Rise of SMT Solvers

A SAT Solvers for propositional logic
d Ex:lIsformula F = p and (not q)satisfiable ?

Answer: yes with p =true and q = false

A SMT = Satisfiability Modulo Theories

d Allows more expressive formulas, useful to model sw features

d Ex: LetF = [(b+2=c)]and (flread{writé(afo.3[cq [TIo+1) (c

Arithmetic ‘ Array Theory \ Uninterpreted
Functions

Is formula F satisfiable modulo theory T ?

(A theory T is aset of formulas)

d SMT solvers have specialized algorithms for each T, and
have improved dramatically over the last 10 years

TCEB82015 Page8 June 2015

An Application:: SAGE @ Microsoft

A #1 application of SMT solvers today (CPU usage)
A Why? Security Testing

A Software security bugs can be very expensive:
d Cost of each Microsoft Security Bulletin: $Millions
d Cost due to worms (Slammer, CodeRed Blaster, etc.): $Billions

A Many security vulnerabilities are in file & packet parsers
0 Ex: MS Windows includes parsers for hundreds of file formats

A Securitytesting: o hunt i ng Ffdwr | rmirl Ibiuar

d Write A/V (always exploitable), Read A/V (sometimes
exploitable), NULL -pointer dereference, division -by-zero
(harder to exploit but still DOS attacks), etc.

TCEB82015 Page9 June 2015

