Analysis of
Boolean Programs

Patrice Godefroid Mihalis Yannakakis

Microsoft Research Columbia University

Page 1 March 2013

What is a Boolean Program?

All variables have Boolean type, recursive procedures

EE><- bool[8] x; // 8-bit global variable
) procedure foo () procedure bar (bool[8] y)

{ {

print (" "a''); print("a'');

if (x>0) if (y>0)
{ {
= x-1 bar (y-1) ; local var
fo0 (), Both programs , ety
: (saved on stack)
} print a” b" print(*'b''");
print('b'"'); return;

return; }

}
Exponentially more succinct than pushdown automata

Popular abstract domain for static SW model checking
- Ex of tools: SLAM, BLAST, YASM, TERMINATOR, YOGI,...
- Precise control-flow representation
- Data part represented by Bool. predicates (predicate abstraction)
- Many interesting properties still decidable

TACAS 2013 Page 2 March 2013

Analysis of Boolean Programs

* Prior work: several algorithms
- For reachability, LTL model checking, ...
- Run in time exponential in the program size, or worse
- Often no detailed complexity analysis
- No lower bounds (can one do better?)

» This work: study of the worst-case complexity of
- Reachability, cycle detection, LTL, CTL, CTL* model checking

- For boolean programs and particular sub-classes
+ Deterministic, hierarchical (no recursion), acyclic, I/O bounded,...

- We present upper bounds and matching lower bounds in all cases
- All our algorithms are optimal in complexity-theoretic sense

- Note: different from prior results on pushdown automata

TACAS 2013 Page 3 March 2013

Boolean Programs = ERSMs

ERSMs = Extended Recursive State Machines

ERSM generalizes:

- RSM: Recursive State Machine (with no Boolean variables)

- EHSM: Extended Hierarchical State Machine (no recursion)
- HSM: Hierarchical State Machine (EHSM with no variables)
- EFSM: Extended Finite State Machine (one procedure only)
- FSM: Finite State Machine (one procedure and no variables)

Other particular cases considered:

- I/0 bounded: number of I/0 (local and global) vars < c . log|A|
where c is some fixed constant and |A| is the size of the program

- Deterministic programs, acyclic programs,...

TACAS 2013 Page 4 March 2013

Reachability Analysis: Results

Theorem: Reachability for ERSMs is EXPTIME-complete
- even for deterministic, acyclic ERSMs

procedure Top()

Proof: {
- Upper bound: from prior work

if Accign. 0. Initial Tape)
then print(**M accepts ™ ");

- LOWCI" bound: WITh a bool Acc(state qg. head location h, Tape T)
{
: : if (@ in Q¢) then return true;
BOOIZGn progr‘am SlmU'GTlng an lf (g in Q:,-] then return false;
alternating PSPACE machine bool res:
if (g in ©35) then res = false:
else res = true; // case (q in Qy)

for each (g’ .s.D) in dp(q.T[h])
{

compute new tape location h’ and tape T7;
if (g in @3) then res=resvAcc(q’ .h".T"):
else res=resAAcc(q’ ,h’.,T");

}

return res;

TACAS 2013 Page 5 March 2013

Reachability: Particular Cases

Other results:

Class of Program Restriction General Case|l/O Bounded
ERSM EXPTIME | PSPACE
EHSM PSPACE PSPACE
EHSM nondeterministic acyclic|| PSPACE NP
EHSM deterministic acyclic PSPACE P

For acyclic EHSMs of bounded depth: NP-complete

TACAS 2013 Page 6 March 2013

LTL Model Checking

Theorem: The program complexity of LTL model checking
is the same as for reachability analysis, for ERSMs and all
the previous sub-classes considered

Proofs:

- Automata-theoretic approach (standard)
* Negation of LTL formula -> Buchi automaton
» Product construction
+ Detect a cycle or infinite stack that is accepting

- Lower bounds: derived from reachability results

- Upper bounds:
- Easy cases by reduction to non-extended cases (RSMs etc.)
Ex: ERSM case is EXPTIME-complete
- Harder cases: new algorithms (with automata-theoretic approach)
Ex: I/0 Bounded ERSM is PSPACE-complete

TACAS 2013 Page 7 March 2013

Branching-Time Properties

Theorem: The program complexity of CTL model checking
for ERSMs is 2EXPTIME-complete

Proof:
- Upper bound: easy (reduction to RSM CTL model checking)

- Lower bound:
» using a nondeterministic Boolean program simulating an alternating
EXPSPACE machine (see next slide)
- and the CTL formula E(C -> EX(CheckMode A AF(OK)) U Success)

TACAS 2013 Page 8 March 2013

Boolean prgm simulating an alt EXPSPACE machine

Global variables:

g_s, g_s', s_new: previous/next/temporary symbol in
Σ ($log(|\Sigmal|)$ bits)

g_q" current state ($log(]Q|)$ bits)

g_h, g_h": previous/next location for the tape head (n bits)
g_d: depth (is either 0, 1, 2)

j: cell location (n bits) or UNDEF

T[j],T'[]: symbol in Σ ($log(|\Sigma|)$ bits) or UNDEF
/I 2 symbols, not arrays

OK=false, CheckMode=false, Success=false: boolean
variables (false by default)

Top()

{
j=UNDEF; T[j]I=UNDEF; T'[j]J=UNDEF;
if Next(g_0,0,$x_0%$,0) then Success=true
STOP;

}

bool GuessNextTapeCell(tapeLocation i, symbol s)
{
boolean ret;
if (g_h'==i) then g_s' = s; // record in g_s' the next symbol
read from the next location h'
if (i<(2™n -1))
{
if (g_h==i+1) then s_new = g_s; // new symbol just written
at the previous location h
else s_new = nondeterministically pick a symbol in
Σ; // \exists-nondeterminism
ret=GuessNextTapeCell(i+1,s_new); // put s_new on the
stack of the ERSM
}
else
ret=Next(g_q',g_h',g_s",g_d";
if (CheckMode \wedge i==j) then T[j]=s;
return ret;
}

TACAS 2013

bool Next(state g, headLocation h, symbol s, depth d)

{
C:if (nondeterminism) then CheckMode=true; // in C:, $EX (CheckMode \wedge AF(OK))$ must

hold

if (CheckMode) // start CheckMode -- this is executed at most once!
{ /I we check that the last 2 tape contents T and T' (last) are δ_M-compatible
if (d==0) then { OK=true; STOP; } // nothing to check

j= nondeterministically pick a cell location // $0\leq j<2"n$ -- \forall-nondeterminism due to

$AF(OK)$

}

return false; // dummy return value in this mode; start popping to get T'[j] and T[j]
}
if (q in Q_T) then return true;
if (q in Q_F) then return false;
boolean result;
if (q in Q_\exists) then result=false;
else result=true; // case where q in Q_\forall
boolean ret;
for each (¢',s',D) in δ_M(q,s) // with s=T[h]

if (D==L) then h '= h-1 else h' = h+1; // set h' = new head location
if (d<2) then g_d'=d+1; // note: d is either 0, 1 or 2

else g_d'=d;
9.9'=g;g_h"=h’
g_s=s;9_h=h;

/I global variables for next call of Next()
/I global variables for this call of Next()

if (9_h==0) s_new =g_s;
else s_new = nondeterministically pick a symbol in Σ; // \exists-nondeterminism

ret=GuessNextTapeCell(0,s_new);
if (CheckMode)
{
if (T[[]!=UNDEF \wedge T'[jJ==UNDEF) then // we got T'[j]
{
TI=TE;
if (d>0) then return false; // continue popping to get T[j]
else { T[j]=x_j; h'=h; }
/' we are ready to check δ_M-compatibility at position j
if ((i'=h") \wedge T'[j]==T[j]) then OK=true; // the tape cell content must be unchanged
if (j==h") then OK=true; // nothing to check -- case enforced by construction

STOP;

}
if (g in Q_\exists) then result = result \vee ret;
else result = result \wedge ret;

return result;

Page 9

March 2013

Particular Cases, Other Results

For deterministic ERSMs, the program complexity of
CTL model checking is "only” EXPTIME-complete

For EHSMs (deterministic or not): PSPACE-complete
- Same as for HSMs |

* The program complexity of CTL* model checking is
- 2EXPTIME-complete for ERSMs
- EXPTIME-complete for deterministic ERSMs
- PSPACE-complete for EHSMs
(same program complexity as for CTL in all 3 cases)

TACAS 2013 Page 10 March 2013

Summary of Results

» Complexity bounds in the size of the program:

Class of Program| Restriction LTL CTL
FSM Linear Linear
EESM PSPACE PSPACE
HSM Linear PSPACE
HSM deterministic|| Linear Linear
EHSM PSPACE PSPACE
EHSM deterministic|| PSPACE PSPACE
RSM Cubic EXPTIME
RSM deterministic|| Linear Linear
ERSM EXPTIME | 2-EXPTIME
ERSM deterministic || EXPTIME| EXPTIME

- For CTL, deterministic Boolean programs are exponentially
easier compared to nondeterministic ones, except for EHSMs

- CTL harder than LTL for nondeterministic HSMs, RSMs, ERSMs

TACAS 2013 Page 11 March 2013

Visual Summary for Main Classes

LTL CTL
NLOGSPACE PSPACE NLOGSPACE PSPACE
ZP 5 EFSM
exp
""" g HSM EHSM
3]
EXPTIME EXPTIME 2-EXPTIME

Fig. 4. Visual summary for the program complexity of LTL and CTL model checking.

» Adding Boolean variables ("E" extension):
- exponentially more succinct
- But not uniformly exponentially harder !

+ See the cost of adding hierarchy, adding recursion

TACAS 2013 Page 12 March 2013

Impact on Logic Encodings

These results shed new light on logic encodings for
(classes of) Boolean programs

- for VC-gen, SAT/SMT-based bounded model checking

Example: reachability for EHSMs is PSPACE-complete
- No precise polyn.-size encoding of EHSMs in propositional logic
- But possible in QBF (can be reduced to QSAT)

Example: reachability for acyclic EHSMs of bounded
depth is NP-complete

- Possible precise polynomial-size encoding in propositional logic
(can be reduced to SAT)

TACAS 2013 Page 13 March 2013

Conclusion

* Boolean programs: natural program representation

- Simple, elegant, concise, popular, useful
» Used in static abstraction-based software model checking tools

- Generalizes other representations (E/FSMs, HSMs, RSMs,...)
- Interesting properties (this work!)

» This paper: 15t comprehensive study of the worst-case
complexity of basic analyses of Boolean programs

- Reachability, cycle detection, LTL, CTL, CTL* model checking
- Matching upper and lower bounds for all these problems

- Sub-classes: explain what features contribute o complexity
 Nondeterminism, cycles, variables, hierarchy, recursion, I/O-bound,...

TACAS 2013 Page 14 March 2013

