# Analysis of Boolean Programs

#### Patrice Godefroid

Microsoft Research

Mihalis Yannakakis

**Columbia University** 

# What is a Boolean Program?

• All variables have Boolean type, recursive procedures



- Exponentially more succinct than pushdown automata
- Popular abstract domain for static SW model checking
  - Ex of tools: SLAM, BLAST, YASM, TERMINATOR, YOGI, ...
  - Precise control-flow representation
  - Data part represented by Bool. predicates (predicate abstraction)
  - Many interesting properties still decidable

# Analysis of Boolean Programs

- Prior work: several algorithms
  - For reachability, LTL model checking, ...
  - Run in time exponential in the program size, or worse
  - Often no detailed complexity analysis
  - No lower bounds (can one do better?)
- This work: study of the worst-case complexity of
  - Reachability, cycle detection, LTL, CTL, CTL\* model checking
  - For boolean programs and particular sub-classes
    - Deterministic, hierarchical (no recursion), acyclic, I/O bounded,...
  - We present upper bounds and matching lower bounds in all cases
    - All our algorithms are optimal in complexity-theoretic sense
  - Note: different from prior results on pushdown automata

# Boolean Programs = ERSMs

- ERSMs = Extended Recursive State Machines
- ERSM generalizes:
  - RSM: Recursive State Machine (with no Boolean variables)
  - EHSM: Extended Hierarchical State Machine (no recursion)
  - HSM: Hierarchical State Machine (EHSM with no variables)
  - EFSM: Extended Finite State Machine (one procedure only)
  - FSM: Finite State Machine (one procedure and no variables)
- Other particular cases considered:
  - I/O bounded: number of I/O (local and global) vars < c . log|A|</li>
     where c is some fixed constant and |A| is the size of the program
  - Deterministic programs, acyclic programs,...

## Reachability Analysis: Results

#### Theorem: Reachability for ERSMs is EXPTIME-complete

- even for deterministic, acyclic ERSMs

Proof:

- Upper bound: from prior work
- Lower bound: with a
   Boolean program simulating an
   alternating PSPACE machine

```
procedure Top()
  if Acc(q_0, 0, Initial Tape)
     then print(''M accepts'');
}
bool Acc(state q, head location h, Tape T)
  if (q in Q_T) then return true;
  if (q \text{ in } Q_F) then return false;
  bool res;
  if (q in Q_{\exists}) then res = false;
  else res = true; // case (q in Q_{\forall})
  for each (q', s, D) in \delta_M(q, T[h])
  ł
    compute new tape location h' and tape T';
    if (q in Q_{\exists}) then res=res\lorAcc(q',h',T');
    else res=res\landAcc(q',h',T');
```

```
return res;
```

# Reachability: Particular Cases

#### Other results:

| Class of Program | Restriction              | General Case | I/O Bounded |
|------------------|--------------------------|--------------|-------------|
| ERSM             |                          | EXPTIME      | PSPACE      |
| EHSM             |                          | PSPACE       | PSPACE      |
| EHSM             | nondeterministic acyclic | PSPACE       | NP          |
| EHSM             | deterministic acyclic    | PSPACE       | Р           |

#### For acyclic EHSMs of bounded depth: NP-complete

# LTL Model Checking

Theorem: The program complexity of LTL model checking is the same as for reachability analysis, for ERSMs and all the previous sub-classes considered

Proofs:

- Automata-theoretic approach (standard)
  - Negation of LTL formula -> Buchi automaton
  - Product construction
  - Detect a cycle or infinite stack that is accepting
- Lower bounds: derived from reachability results
- Upper bounds:
  - Easy cases by reduction to non-extended cases (RSMs etc.)
     Ex: ERSM case is EXPTIME-complete
  - Harder cases: new algorithms (with automata-theoretic approach)
     Ex: I/O Bounded ERSM is PSPACE-complete

### **Branching-Time Properties**

Theorem: The program complexity of CTL model checking for ERSMs is 2EXPTIME-complete

Proof:

- Upper bound: easy (reduction to RSM CTL model checking)
- Lower bound:
  - using a nondeterministic Boolean program simulating an alternating EXPSPACE machine (see next slide)
  - and the CTL formula E(C -> EX(CheckMode ^ AF(OK)) U Success)

### Boolean prgm simulating an alt EXPSPACE machine

Global variables: bool Next(state g, headLocation h, symbol s, depth d) g\_s, g\_s', s\_new: previous/next/temporary symbol in C:if (nondeterminism) then CheckMode=true; // in C:, \$EX (CheckMode \wedge AF(OK))\$ must \$\Sigma\$ (\$log(|\Sigma|)\$ bits) hold g g': current state (\$log(|Q|)\$ bits) if (CheckMode) // start CheckMode -- this is executed at most once! g\_h, g\_h': previous/next location for the tape head (n bits) { // we check that the last 2 tape contents T and T' (last) are \$\delta M\$-compatible  $g_d$ : depth (is either 0, 1, 2) if (d==0) then { OK=true; STOP; } // nothing to check j: cell location (n bits) or UNDEF j= nondeterministically pick a cell location // \$0\leq j<2^n\$ -- \$\forall\$-nondeterminism due to \$AF(OK)\$ T[j],T'[j]: symbol in \$\Sigma\$ (\$log(|\Sigma|)\$ bits) or UNDEF return false; // dummy return value in this mode; start popping to get T'[i] and T[i] // 2 symbols, not arrays OK=false, CheckMode=false, Success=false: boolean if (q in \$Q\_T\$) then return true; variables (false by default) if (q in \$Q F\$) then return false; boolean result; if (g in \$Q \exists\$) then result=false; Top() else result=true; // case where q in \$Q\_\forall\$ boolean ret: for each (g',s',D) in \$\delta M\$(g,s) // with s=T[h] j=UNDEF; T[j]=UNDEF; T'[j]=UNDEF; if Next(\$q\_0\$,0,\$x\_0\$,0) then Success=true if (D==L) then h '= h-1 else h' = h+1; // set h' = new head location STOP: if (d<2) then a d'=d+1: // note: d is either 0. 1 or 2 else g\_d'=d; g\_q' = q'; g\_h' = h'; // global variables for next call of Next() // global variables for this call of Next()  $g_s = s'; g_h = h;$ bool GuessNextTapeCell(tapeLocation i, symbol s) if  $(q_h==0) s_new = q_s;$ boolean ret: else s new = nondeterministically pick a symbol in \$\Sigma\$: // \$\exists\$-nondeterminism if  $(q_h'==i)$  then  $q_s' = s$ ; // record in  $q_s'$  the next symbol ret=GuessNextTapeCell(0,s new); read from the next location h' if (i<(2^n -1)) if (CheckMode) if (T[j]!=UNDEF \$\wedge\$ T'[j]==UNDEF) then // we got T'[j] if (g\_h==i+1) then s\_new = g\_s; // new symbol just written at the previous location h T'[j]=T[j]; if (d>0) then return false; // continue popping to get T[j] else s new = nondeterministically pick a symbol in else { T[j]=\$x\_j\$; h'=h; } \$\Sigma\$; // \$\exists\$-nondeterminism ret=GuessNextTapeCell(i+1,s\_new); // put s\_new on the // we are ready to check \$\delta\_M\$-compatibility at position j stack of the ERSM if ((i!=h') \$\wedge\$ T'[i]==T[i]) then OK=true: // the tape cell content must be unchanged if (j==h') then OK=true; // nothing to check -- case enforced by construction ٦ STOP: else ret=Next(g\_q',g\_h',g\_s',g\_d'); if (g in \$Q \exists\$) then result = result \$\vee\$ ret; else result = result \$\wedge\$ ret; if (CheckMode \$\wedge\$ i==i) then T[i]=s; return ret: return result:

### Particular Cases, Other Results

- For deterministic ERSMs, the program complexity of CTL model checking is "only" EXPTIME-complete
- For EHSMs (deterministic or not): PSPACE-complete
  - Same as for HSMs!
- The program complexity of CTL\* model checking is
  - 2EXPTIME-complete for ERSMs
  - EXPTIME-complete for deterministic ERSMs
  - PSPACE-complete for EHSMs

(same program complexity as for CTL in all 3 cases)

# Summary of Results

• Complexity bounds in the size of the program:

| Class of Program | Restriction   | LTL     | CTL       |
|------------------|---------------|---------|-----------|
| FSM              |               | Linear  | Linear    |
| EFSM             |               | PSPACE  | PSPACE    |
| HSM              |               | Linear  | PSPACE    |
| HSM              | deterministic | Linear  | Linear    |
| EHSM             |               | PSPACE  | PSPACE    |
| EHSM             | deterministic | PSPACE  | PSPACE    |
| RSM              |               | Cubic   | EXPTIME   |
| RSM              | deterministic | Linear  | Linear    |
| ERSM             |               | EXPTIME | 2-EXPTIME |
| ERSM             | deterministic | EXPTIME | EXPTIME   |
|                  |               |         |           |

- For CTL, deterministic Boolean programs are exponentially easier compared to nondeterministic ones, except for EHSMs
- CTL harder than LTL for nondeterministic HSMs, RSMs, ERSMs

# Visual Summary for Main Classes



Fig. 4. Visual summary for the program complexity of LTL and CTL model checking.

- Adding Boolean variables ("E" extension):
  - exponentially more succinct
  - But not uniformly exponentially harder !
- See the cost of adding hierarchy, adding recursion

### Impact on Logic Encodings

- These results shed new light on logic encodings for (classes of) Boolean programs
  - for VC-gen, SAT/SMT-based bounded model checking
- Example: reachability for EHSMs is PSPACE-complete
  - No precise polyn.-size encoding of EHSMs in propositional logic
  - But possible in QBF (can be reduced to QSAT)
- Example: reachability for acyclic EHSMs of bounded depth is NP-complete
  - Possible precise polynomial-size encoding in propositional logic (can be reduced to SAT)

# Conclusion

- Boolean programs: natural program representation
  - Simple, elegant, concise, popular, useful
    - Used in static abstraction-based software model checking tools
  - Generalizes other representations (E/FSMs, HSMs, RSMs, ...)
  - Interesting properties (this work!)
- This paper: 1<sup>st</sup> comprehensive study of the worst-case complexity of basic analyses of Boolean programs
  - Reachability, cycle detection, LTL, CTL, CTL\* model checking
  - Matching upper and lower bounds for all these problems
  - Sub-classes: explain what features contribute to complexity
    - Nondeterminism, cycles, variables, hierarchy, recursion, I/O-bound,...