
Page 1 March 2013 TACAS 2013

Analysis of
Boolean Programs

Patrice Godefroid Mihalis Yannakakis

Microsoft Research Columbia University

Page 2 March 2013 TACAS 2013

What is a Boolean Program?

• All variables have Boolean type, recursive procedures

• Ex:

• Exponentially more succinct than pushdown automata

• Popular abstract domain for static SW model checking

– Ex of tools: SLAM, BLAST, YASM, TERMINATOR, YOGI,…

– Precise control-flow representation

– Data part represented by Bool. predicates (predicate abstraction)

– Many interesting properties still decidable

bool[8] x; // 8-bit global variable

procedure foo()

{

 print(``a'');

 if (x>0)

 {

 x = x-1;

 foo();

 }

 print(``b'');

 return;

}

procedure bar(bool[8] y)

{

 print(``a'');

 if (y>0)

 {

 bar(y-1);

 }

 print(``b'');

 return;

}

local var

(saved on stack)
Both programs

print an bn

Page 3 March 2013 TACAS 2013

Analysis of Boolean Programs

• Prior work: several algorithms

– For reachability, LTL model checking, …

– Run in time exponential in the program size, or worse

– Often no detailed complexity analysis

– No lower bounds (can one do better?)

• This work: study of the worst-case complexity of

– Reachability, cycle detection, LTL, CTL, CTL* model checking

– For boolean programs and particular sub-classes
• Deterministic, hierarchical (no recursion), acyclic, I/O bounded,…

– We present upper bounds and matching lower bounds in all cases
• All our algorithms are optimal in complexity-theoretic sense

– Note: different from prior results on pushdown automata

Page 4 March 2013 TACAS 2013

Boolean Programs = ERSMs

• ERSMs = Extended Recursive State Machines

• ERSM generalizes:

– RSM: Recursive State Machine (with no Boolean variables)

– EHSM: Extended Hierarchical State Machine (no recursion)

– HSM: Hierarchical State Machine (EHSM with no variables)

– EFSM: Extended Finite State Machine (one procedure only)

– FSM: Finite State Machine (one procedure and no variables)

• Other particular cases considered:

– I/O bounded: number of I/O (local and global) vars < c . log|A|
where c is some fixed constant and |A| is the size of the program

– Deterministic programs, acyclic programs,…

Page 5 March 2013 TACAS 2013

Reachability Analysis: Results

Theorem: Reachability for ERSMs is EXPTIME-complete

– even for deterministic, acyclic ERSMs

Proof:

– Upper bound: from prior work

– Lower bound: with a

Boolean program simulating an

alternating PSPACE machine

Page 6 March 2013 TACAS 2013

Reachability: Particular Cases

Other results:

For acyclic EHSMs of bounded depth: NP-complete

Page 7 March 2013 TACAS 2013

LTL Model Checking

Theorem: The program complexity of LTL model checking
is the same as for reachability analysis, for ERSMs and all
the previous sub-classes considered

Proofs:
– Automata-theoretic approach (standard)

• Negation of LTL formula -> Buchi automaton
• Product construction
• Detect a cycle or infinite stack that is accepting

– Lower bounds: derived from reachability results

– Upper bounds:
• Easy cases by reduction to non-extended cases (RSMs etc.)
 Ex: ERSM case is EXPTIME-complete
• Harder cases: new algorithms (with automata-theoretic approach)
 Ex: I/O Bounded ERSM is PSPACE-complete

Page 8 March 2013 TACAS 2013

Branching-Time Properties

Theorem: The program complexity of CTL model checking
for ERSMs is 2EXPTIME-complete

Proof:

– Upper bound: easy (reduction to RSM CTL model checking)

– Lower bound:
• using a nondeterministic Boolean program simulating an alternating

EXPSPACE machine (see next slide)

• and the CTL formula E(C -> EX(CheckMode AF(OK)) U Success)

Page 9 March 2013 TACAS 2013

bool Next(state q, headLocation h, symbol s, depth d)

{

C:if (nondeterminism) then CheckMode=true; // in C:, $EX (CheckMode \wedge AF(OK))$ must

hold

 if (CheckMode) // start CheckMode -- this is executed at most once!

 { // we check that the last 2 tape contents T and T' (last) are δ_M-compatible

 if (d==0) then { OK=true; STOP; } // nothing to check

 j= nondeterministically pick a cell location // $0\leq j<2^n$ -- \forall-nondeterminism due to

$AF(OK)$

 return false; // dummy return value in this mode; start popping to get T'[j] and T[j]

 }

 if (q in Q_T) then return true;

 if (q in Q_F) then return false;

 boolean result;

 if (q in Q_\exists) then result=false;

 else result=true; // case where q in Q_\forall

 boolean ret;

 for each (q',s',D) in δ_M(q,s) // with s=T[h]

 {

 if (D==L) then h '= h-1 else h' = h+1; // set h' = new head location

 if (d<2) then g_d'=d+1; // note: d is either 0, 1 or 2

 else g_d'=d;

 g_q' = q'; g_h' = h'; // global variables for next call of Next()

 g_s = s'; g_h = h; // global variables for this call of Next()

 if (g_h==0) s_new = g_s;

 else s_new = nondeterministically pick a symbol in Σ; // \exists-nondeterminism

 ret=GuessNextTapeCell(0,s_new);

 if (CheckMode)

 {

 if (T[j]!=UNDEF \wedge T'[j]==UNDEF) then // we got T'[j]

 {

 T'[j]=T[j];

 if (d>0) then return false; // continue popping to get T[j]

 else { T[j]=x_j; h'=h; }

 }

 // we are ready to check δ_M-compatibility at position j

 if ((j!=h') \wedge T'[j]==T[j]) then OK=true; // the tape cell content must be unchanged

 if (j==h') then OK=true; // nothing to check -- case enforced by construction

 STOP;

 }

 if (q in Q_\exists) then result = result \vee ret;

 else result = result \wedge ret;

 }

 return result;

}

Global variables:

g_s, g_s', s_new: previous/next/temporary symbol in

Σ ($log(|\Sigma|)$ bits)

g_q': current state ($log(|Q|)$ bits)

g_h, g_h': previous/next location for the tape head (n bits)

g_d: depth (is either 0, 1, 2)

j: cell location (n bits) or UNDEF

T[j],T'[j]: symbol in Σ ($log(|\Sigma|)$ bits) or UNDEF

// 2 symbols, not arrays

OK=false, CheckMode=false, Success=false: boolean

variables (false by default)

Top()

{

 j=UNDEF; T[j]=UNDEF; T'[j]=UNDEF;

 if Next(q_0,0,x_0,0) then Success=true

 STOP;

}

bool GuessNextTapeCell(tapeLocation i, symbol s)

{

 boolean ret;

 if (g_h'==i) then g_s' = s; // record in g_s' the next symbol

read from the next location h'

 if (i<(2^n -1))

 {

 if (g_h==i+1) then s_new = g_s; // new symbol just written

at the previous location h

 else s_new = nondeterministically pick a symbol in

Σ; // \exists-nondeterminism

 ret=GuessNextTapeCell(i+1,s_new); // put s_new on the

stack of the ERSM

 }

 else

 ret=Next(g_q',g_h',g_s',g_d');

 if (CheckMode \wedge i==j) then T[j]=s;

 return ret;
}

Boolean prgm simulating an alt EXPSPACE machine

Page 10 March 2013 TACAS 2013

Particular Cases, Other Results

• For deterministic ERSMs, the program complexity of
CTL model checking is “only” EXPTIME-complete

• For EHSMs (deterministic or not): PSPACE-complete

– Same as for HSMs !

• The program complexity of CTL* model checking is

– 2EXPTIME-complete for ERSMs

– EXPTIME-complete for deterministic ERSMs

– PSPACE-complete for EHSMs

(same program complexity as for CTL in all 3 cases)

Page 11 March 2013 TACAS 2013

Summary of Results

• Complexity bounds in the size of the program:

– For CTL, deterministic Boolean programs are exponentially
easier compared to nondeterministic ones, except for EHSMs

– CTL harder than LTL for nondeterministic HSMs, RSMs, ERSMs

Page 12 March 2013 TACAS 2013

Visual Summary for Main Classes

• Adding Boolean variables (“E” extension):

– exponentially more succinct

– But not uniformly exponentially harder !

• See the cost of adding hierarchy, adding recursion

Page 13 March 2013 TACAS 2013

Impact on Logic Encodings

• These results shed new light on logic encodings for
(classes of) Boolean programs

– for VC-gen, SAT/SMT-based bounded model checking

• Example: reachability for EHSMs is PSPACE-complete

– No precise polyn.-size encoding of EHSMs in propositional logic

– But possible in QBF (can be reduced to QSAT)

• Example: reachability for acyclic EHSMs of bounded
depth is NP-complete

– Possible precise polynomial-size encoding in propositional logic
(can be reduced to SAT)

Page 14 March 2013 TACAS 2013

Conclusion

• Boolean programs: natural program representation

– Simple, elegant, concise, popular, useful
• Used in static abstraction-based software model checking tools

– Generalizes other representations (E/FSMs, HSMs, RSMs,…)

– Interesting properties (this work!)

• This paper: 1st comprehensive study of the worst-case
complexity of basic analyses of Boolean programs

– Reachability, cycle detection, LTL, CTL, CTL* model checking

– Matching upper and lower bounds for all these problems

– Sub-classes: explain what features contribute to complexity
• Nondeterminism, cycles, variables, hierarchy, recursion, I/O-bound,…

