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What is a Boolean Program?

All variables have Boolean type, recursive procedures

EE><- bool[8] x; // 8-bit global variable
) procedure foo () procedure bar (bool[8] y)

{ {

print (" "a''); print( "a'');

if (x>0) if (y>0)
{ {
= x-1 bar (y-1) ; local var
fo0 (), Both programs , ety
: (saved on stack)
} print a” b" print(*'b''");
print( 'b'"'); return;

return; }

}
Exponentially more succinct than pushdown automata

Popular abstract domain for static SW model checking
- Ex of tools: SLAM, BLAST, YASM, TERMINATOR, YOGI,...
- Precise control-flow representation
- Data part represented by Bool. predicates (predicate abstraction)
- Many interesting properties still decidable
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Analysis of Boolean Programs

* Prior work: several algorithms
- For reachability, LTL model checking, ...
- Run in time exponential in the program size, or worse
- Often no detailed complexity analysis
- No lower bounds (can one do better?)

» This work: study of the worst-case complexity of
- Reachability, cycle detection, LTL, CTL, CTL* model checking

- For boolean programs and particular sub-classes
+ Deterministic, hierarchical (no recursion), acyclic, I/O bounded,...

- We present upper bounds and matching lower bounds in all cases
- All our algorithms are optimal in complexity-theoretic sense

- Note: different from prior results on pushdown automata
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Boolean Programs = ERSMs

ERSMs = Extended Recursive State Machines

ERSM generalizes:

- RSM: Recursive State Machine (with no Boolean variables)

- EHSM: Extended Hierarchical State Machine (no recursion)
- HSM: Hierarchical State Machine (EHSM with no variables)
- EFSM: Extended Finite State Machine (one procedure only)
- FSM: Finite State Machine (one procedure and no variables)

Other particular cases considered:

- I/0 bounded: number of I/0 (local and global) vars < c . log|A|
where c is some fixed constant and |A| is the size of the program

- Deterministic programs, acyclic programs,...
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Reachability Analysis: Results

Theorem: Reachability for ERSMs is EXPTIME-complete
- even for deterministic, acyclic ERSMs

procedure Top()

Proof: {
- Upper bound: from prior work

if Accign. 0. Initial Tape)
then print(**M accepts ™ " );

- LOWCI" bound: WITh a bool Acc(state qg. head location h, Tape T)
{
: : if (@ in Q¢ ) then return true;
BOOIZGn progr‘am SlmU'GTlng an lf (g in Q:,-] then return false;
alternating PSPACE machine bool res:
if (g in ©35) then res = false:
else res = true; // case (q in Qy)

for each (g’ .s.D) in dp(q.T[h])
{

compute new tape location h’ and tape T7;
if (g in @3) then res=resvAcc(q’ .h".T"):
else res=resAAcc(q’ ,h’.,T");

}

return res;
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Reachability: Particular Cases

Other results:

Class of Program Restriction General Case|l/O Bounded
ERSM EXPTIME | PSPACE
EHSM PSPACE PSPACE
EHSM nondeterministic acyclic|| PSPACE NP
EHSM deterministic acyclic PSPACE P

For acyclic EHSMs of bounded depth: NP-complete
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LTL Model Checking

Theorem: The program complexity of LTL model checking
is the same as for reachability analysis, for ERSMs and all
the previous sub-classes considered

Proofs:

- Automata-theoretic approach (standard)
* Negation of LTL formula -> Buchi automaton
» Product construction
+ Detect a cycle or infinite stack that is accepting

- Lower bounds: derived from reachability results

- Upper bounds:
- Easy cases by reduction to non-extended cases (RSMs etc.)
Ex: ERSM case is EXPTIME-complete
- Harder cases: new algorithms (with automata-theoretic approach)
Ex: I/0 Bounded ERSM is PSPACE-complete
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Branching-Time Properties

Theorem: The program complexity of CTL model checking
for ERSMs is 2EXPTIME-complete

Proof:
- Upper bound: easy (reduction to RSM CTL model checking)

- Lower bound:
» using a nondeterministic Boolean program simulating an alternating
EXPSPACE machine (see next slide)
- and the CTL formula E(C -> EX(CheckMode A AF(OK)) U Success)
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Boolean prgm simulating an alt EXPSPACE machine

Global variables:

g_s, g_s', s_new: previous/next/temporary symbol in
$\Sigma$ ($log(|\Sigmal|)$ bits)

g_q" current state ($log(]Q|)$ bits)

g_h, g_h": previous/next location for the tape head (n bits)
g_d: depth (is either 0, 1, 2)

j: cell location (n bits) or UNDEF

T[j],T'[]: symbol in $\Sigma$ ($log(|\Sigma|)$ bits) or UNDEF
/I 2 symbols, not arrays

OK=false, CheckMode=false, Success=false: boolean
variables (false by default)

Top()

{
j=UNDEF; T[j]I=UNDEF; T'[j]J=UNDEF;
if Next($g_0$,0,$x_0%$,0) then Success=true
STOP;

}

bool GuessNextTapeCell(tapeLocation i, symbol s)
{
boolean ret;
if (g_h'==i) then g_s' = s; // record in g_s' the next symbol
read from the next location h'
if (i<(2™n -1))
{
if (g_h==i+1) then s_new = g_s; // new symbol just written
at the previous location h
else s_new = nondeterministically pick a symbol in
$\Sigma$; // $\exists$-nondeterminism
ret=GuessNextTapeCell(i+1,s_new); // put s_new on the
stack of the ERSM
}
else
ret=Next(g_q',g_h',g_s",g_d";
if (CheckMode $\wedge$ i==j) then T[j]=s;
return ret;
}
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bool Next(state g, headLocation h, symbol s, depth d)

{
C:if (nondeterminism) then CheckMode=true; // in C:, $EX (CheckMode \wedge AF(OK))$ must

hold

if (CheckMode) // start CheckMode -- this is executed at most once!
{ /I we check that the last 2 tape contents T and T' (last) are $\delta_M$-compatible
if (d==0) then { OK=true; STOP; } // nothing to check

j= nondeterministically pick a cell location // $0\leq j<2"n$ -- $\forall$-nondeterminism due to

$AF(OK)$

}

return false; // dummy return value in this mode; start popping to get T'[j] and T[j]
}
if (q in $Q_T$) then return true;
if (q in $Q_F$) then return false;
boolean result;
if (q in $Q_\exists$) then result=false;
else result=true; // case where q in $Q_\forall$
boolean ret;
for each (¢',s',D) in $\delta_M$(q,s) // with s=T[h]

if (D==L) then h '= h-1 else h' = h+1; // set h' = new head location
if (d<2) then g_d'=d+1; // note: d is either 0, 1 or 2

else g_d'=d;
9.9'=g;g_h"=h’
g_s=s;9_h=h;

/I global variables for next call of Next()
/I global variables for this call of Next()

if (9_h==0) s_new =g_s;
else s_new = nondeterministically pick a symbol in $\Sigma$; // $\exists$-nondeterminism

ret=GuessNextTapeCell(0,s_new);
if (CheckMode)
{
if (T[[]!=UNDEF $\wedge$ T'[jJ==UNDEF) then // we got T'[j]
{
TI=TE;
if (d>0) then return false; // continue popping to get T[j]
else { T[j]=$x_j$; h'=h; }
/' we are ready to check $\delta_M$-compatibility at position j
if ((i'=h") $\wedge$ T'[j]==T[j]) then OK=true; // the tape cell content must be unchanged
if (j==h") then OK=true; // nothing to check -- case enforced by construction

STOP;

}
if (g in $Q_\exists$) then result = result $\vee$ ret;
else result = result $\wedge$ ret;

return result;
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Particular Cases, Other Results

For deterministic ERSMs, the program complexity of
CTL model checking is "only” EXPTIME-complete

For EHSMs (deterministic or not): PSPACE-complete
- Same as for HSMs |

* The program complexity of CTL* model checking is
- 2EXPTIME-complete for ERSMs
- EXPTIME-complete for deterministic ERSMs
- PSPACE-complete for EHSMs
(same program complexity as for CTL in all 3 cases)
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Summary of Results

» Complexity bounds in the size of the program:

Class of Program| Restriction LTL CTL
FSM Linear Linear
EESM PSPACE PSPACE
HSM Linear PSPACE
HSM deterministic|| Linear Linear
EHSM PSPACE PSPACE
EHSM deterministic|| PSPACE PSPACE
RSM Cubic EXPTIME
RSM deterministic|| Linear Linear
ERSM EXPTIME | 2-EXPTIME
ERSM deterministic || EXPTIME| EXPTIME

- For CTL, deterministic Boolean programs are exponentially
easier compared to nondeterministic ones, except for EHSMs

- CTL harder than LTL for nondeterministic HSMs, RSMs, ERSMs

TACAS 2013 Page 11 March 2013



Visual Summary for Main Classes

LTL CTL
NLOGSPACE PSPACE NLOGSPACE PSPACE
ZP 5 EFSM
exp
""" g HSM EHSM
3]
EXPTIME EXPTIME 2-EXPTIME

Fig. 4. Visual summary for the program complexity of LTL and CTL model checking.

» Adding Boolean variables ("E" extension):
- exponentially more succinct
- But not uniformly exponentially harder !

+ See the cost of adding hierarchy, adding recursion
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Impact on Logic Encodings

These results shed new light on logic encodings for
(classes of) Boolean programs

- for VC-gen, SAT/SMT-based bounded model checking

Example: reachability for EHSMs is PSPACE-complete
- No precise polyn.-size encoding of EHSMs in propositional logic
- But possible in QBF (can be reduced to QSAT)

Example: reachability for acyclic EHSMs of bounded
depth is NP-complete

- Possible precise polynomial-size encoding in propositional logic
(can be reduced to SAT)
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Conclusion

* Boolean programs: natural program representation

- Simple, elegant, concise, popular, useful
» Used in static abstraction-based software model checking tools

- Generalizes other representations (E/FSMs, HSMs, RSMs,...)
- Interesting properties (this work!)

» This paper: 15t comprehensive study of the worst-case
complexity of basic analyses of Boolean programs

- Reachability, cycle detection, LTL, CTL, CTL* model checking
- Matching upper and lower bounds for all these problems

- Sub-classes: explain what features contribute o complexity
 Nondeterminism, cycles, variables, hierarchy, recursion, I/O-bound,...
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