
Page 1 June 2009SPIN’2009

Software Model Checking Software Model Checking
Improving Security ofImproving Security of
a Billion Computersa Billion Computers

Patrice GodefroidPatrice Godefroid

Microsoft ResearchMicrosoft Research

Page 2 June 2009SPIN’2009

AcknowledgmentsAcknowledgments

• Joint work with Michael Levin (CSE) and others:
– Chris Marsh, Lei Fang, Stuart de Jong (CSE)

– interns Dennis Jeffries (06), David Molnar (07),
Adam Kiezun (07), Bassem Elkarablieh (08), …

• Thanks to the entire SAGE team and users !

– MSR: Ella Bounimova,…

– Z3: Nikolaj Bjorner, Leonardo de Moura,…

– WEX (Windows): Nick Bartmon, Eric Douglas,…

– Office: Tom Gallagher, Octavian Timofte,…

– SAGE users all across Microsoft!

Page 3 June 2009SPIN’2009

ReferencesReferences

• see http://research.microsoft.com/users/pg

– DART: Directed Automated Random Testing,
with N. Klarlund and K. Sen, PLDI’2005

– Compositional Dynamic Test Generation, POPL’2007

– Automated Whitebox Fuzz Testing,
with M. Levin and D. Molnar, NDSS’2008

– Demand-Driven Compositional Symbolic Execution,
with S. Anand and N. Tillmann, TACAS’2008

– Grammar-Based Whitebox Fuzzing,
with A. Kiezun and M. Levin, PLDI’2008

– Active Property Checking,
with M. Levin and D. Molnar, EMSOFT’2008

– Precise Pointer Reasoning for Dynamic Test Generation,
with B. Elkarablieh and M. Levin, ISSTA’2009

Page 4 June 2009SPIN’2009

A Brief History of Software Model CheckingA Brief History of Software Model Checking

• How to apply model checking to analyze software?

– “Real” programming languages (e.g., C, C++, Java),

– “Real” size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

(SLAM, Bandera,
FeaVer, BLAST,…)

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,…

Data inputs: DART, EXE, SAGE,…

Killer app: security à biggest impact to date!

Page 5 June 2009SPIN’2009

Security is Critical (to Microsoft)Security is Critical (to Microsoft)

• Software security bugs can be very expensive:

– Cost of each Microsoft Security Bulletin: $Millions

– Cost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

• Most security exploits are initiated via files or packets

– Ex: Internet Explorer parses dozens of file formats

• Security testing: “hunting for million-dollar bugs”

– Write A/V (always exploitable), Read A/V (sometimes
exploitable), NULL-pointer dereference, division-by-zero
(harder to exploit but still DOS attacks), etc.

Page 6 June 2009SPIN’2009

Hunting for Security BugsHunting for Security Bugs

• Main techniques used by “black hats”:
– Code inspection (of binaries) and

– Blackbox fuzz testing

• Blackbox fuzz testing:
– A form of blackbox random testing [Miller+90]

– Randomly fuzz (=modify) a well-formed input

– Grammar-based fuzzing: rules that encode “well-formed”ness +
heuristics about how to fuzz (e.g., using probabilistic weights)

• Heavily used in security testing
– Ex: July 2006 “Month of Browser Bugs”

– Simple yet effective: many bugs found this way…

– At Microsoft, fuzzing is mandated by the SDL à

I am from
Belgium too!

Page 7 June 2009SPIN’2009

BlackboxBlackbox FuzzingFuzzing

• Examples: Peach, Protos, Spike, Autodafe, etc.

• Why so many blackbox fuzzers?

– Because anyone can write (a simple) one in a week-end!

– Conceptually simple, yet effective…

• Sophistication is in the “add-on”

– Test harnesses (e.g., for packet fuzzing)

– Grammars (for specific input formats)

• Note: usually, no principled “spec-based” test generation

– No attempt to cover each state/rule in the grammar

– When probabilities, no global optimization (simply random walks)

Page 8 June 2009SPIN’2009

Introducing Introducing WhiteboxWhitebox FuzzingFuzzing

• Idea: mix fuzz testing with dynamic test generation

– Symbolic execution

– Collect constraints on inputs

– Negate those, solve with constraint solver, generate new inputs

– à do “systematic dynamic test generation” (=DART)

• Whitebox Fuzzing = “DART meets Fuzz”

Two Parts:

1. Foundation: DART (Directed Automated Random Testing)

2. Key extensions (“Whitebox Fuzzing”), implemented in SAGE

Page 9 June 2009SPIN’2009

Automatic CodeAutomatic Code--Driven Test GenerationDriven Test Generation

Problem:

Given a sequential program with a set of input parameters,
generate a set of inputs that maximizes code coverage

= “automate test generation using program analysis”

This is not “model-based testing”
(= generate tests from an FSM spec)

Page 10 June 2009SPIN’2009

How? (1) How? (1) StaticStatic Test GenerationTest Generation

• Static analysis to partition the program’s input space
[King76,…]

• Ineffective whenever symbolic reasoning is not possible

– which is frequent in practice… (pointer manipulations, complex
arithmetic, calls to complex OS or library functions, etc.)

Example:

int obscure(int x, int y) {

if (x==hash(y)) error();

return 0;

}

Can’t statically generate
values for x and y
that satisfy “x==hash(y)” !

Page 11 June 2009SPIN’2009

How? (2) How? (2) DynamicDynamic Test GenerationTest Generation

• Run the program (starting with some random inputs),
gather constraints on inputs at conditional statements,
use a constraint solver to generate new test inputs

• Repeat until a specific program statement is reached
[Korel90,…]

• Or repeat to try to cover ALL feasible program paths:
DART = Directed Automated Random Testing
= systematic dynamic test generation [PLDI’05,…]

– detect crashes, assertion violations, use runtime checkers
(Purify,…)

Page 12 June 2009SPIN’2009

DART = Directed Automated Random Testing

Example:

int obscure(int x, int y) {

if (x==hash(y)) error();

return 0;

}

- start with (random) x=33, y=42Run 1 :

- solve: x==567 à solution: x=567

- execute concretely and symbolically:
if (33 != 567) | if (x != hash(y))

constraint too complex
à simplify it: x != 567

- new test input: x=567, y=42

Run 2 : the other branch is executed
All program paths are now covered !

• Observations:

– Dynamic test generation extends static test generation with
additional runtime information: it is more powerful

– The number of program paths can be infinite: may not terminate!

– Still, DART works well for small programs (1,000s LOC)

– Significantly improves code coverage vs. random testing

Page 13 June 2009SPIN’2009

DART ImplementationsDART Implementations

• Defined by symbolic execution, constraint generation and solving
– Languages: C, Java, x86, .NET,…

– Theories: linear arith., bit-vectors, arrays, uninterpreted functions,…

– Solvers: lp_solve, CVCLite, STP, Disolver, Z3,…

• Examples of tools/systems implementing DART:
– EXE/EGT (Stanford): independent [’05-’06] closely related work

– CUTE = same as first DART implementation done at Bell Labs

– SAGE (CSE/MSR) for x86 binaries and merges it with “fuzz” testing for finding
security bugs (more later)

– PEX (MSR) for .NET binaries in conjunction with “parameterized-unit tests” for
unit testing of .NET programs

– YOGI (MSR) for checking the feasibility of program paths generated statically
using a SLAM-like tool

– Vigilante (MSR) for generating worm filters

– BitScope (CMU/Berkeley) for malware analysis

– CatchConv (Berkeley) focus on integer overflows

– Splat (UCLA) focus on fast detection of buffer overflows

– Apollo (MIT) for testing web applications …and more!

Page 14 June 2009SPIN’2009

DART SummaryDART Summary

• DART attempts to exercise all paths (like model checking)
– Covering a single specific assertion (verification): hard problem

(often intractable)

– Maximize path coverage while checking thousands of assertions all
over: easier problem (optimization, best-effort, tractable)

– Better coverage than pure random testing (with directed search)

• DART can work around limitations of symbolic execution
– Symbolic execution is an adjunct to concrete execution

– Concrete values are used to simplify unmanageable symbolic expressions

– Randomization helps where automated reasoning is difficult

• Comparison with static analysis:
– No false alarms (more precise) but may not terminate (less coverage)

– “Dualizes” static analysis: static à may vs. DART à must
• Whenever symbolic exec is too hard, under-approx with concrete values
• If symbolic execution is perfect, no approx needed: both coincide!

Page 15 June 2009SPIN’2009

WhiteboxWhitebox FuzzingFuzzing [NDSS[NDSS’’08]08]

• Whitebox Fuzzing = “DART meets Fuzz”

• Apply DART to large applications (not unit)

• Start with a well-formed input (not random)

• Combine with a generational search (not DFS)
– Negate 1-by-1 each constraint in a path constraint

– Generate many children for each parent run

– Challenge all the layers of the application sooner

– Leverage expensive symbolic execution

• Search spaces are huge, the search is partial…
yet effective at finding bugs !

Gen 1
parent

Page 16 June 2009SPIN’2009

Example

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 3) crash();

}

input = “good”

I 0!=‘b’

I 1!=‘a’

I 2!=‘d’

I 3!=‘!’

à

Path constraint:

good

goo!

bood

gaod

godd

àààà I 0=‘b’

àààà I 1=‘a’

àààà I 2=‘d’

àààà I 3=‘!’

Gen 1

Page 17 June 2009SPIN’2009

The Search SpaceThe Search Space

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 3) crash();

}

Page 18 June 2009SPIN’2009

SAGE (Scalable Automated Guided Execution) SAGE (Scalable Automated Guided Execution)

• Generational search introduced in SAGE

• Performs symbolic execution of x86 execution traces
– Builds on Nirvana, iDNA and TruScan for x86 analysis

– Don’t care about language or build process

– Easy to test new applications, no interference possible

• Can analyse any file-reading Windows applications

• Several optimizations to handle huge execution traces
– Constraint caching and common subexpression elimination

– Unrelated constraint optimization

– Constraint subsumption for constraints from input-bound loops

– “Flip-count” limit (to prevent endless loop expansions)

Page 19 June 2009SPIN’2009

Check for

Crashes

(AppVerifier)

Code

Coverage

(Nirvana)

Generate

Constraints

(TruScan)

Solve

Constraints

(Z3)

Input0
Coverage

Data
Constraints

Input1

Input2

…

InputN

SAGE Architecture SAGE Architecture

MSR algorithms
& code insideSAGE is mostly developed by CSE

Page 20 June 2009SPIN’2009

Some ExperimentsSome Experiments

• Seven applications – 10 hours search each

App Tested #Tests Mean Depth Mean #Instr. Mean Input
Size

ANI 11468 178 2,066,087 5,400

Media1 6890 73 3,409,376 65,536

Media2 1045 1100 271,432,489 27,335

Media3 2266 608 54,644,652 30,833

Media4 909 883 133,685,240 22,209

Compressed
File Format

1527 65 480,435 634

OfficeApp 3008 6502 923,731,248 45,064

Most much (100x) bigger than ever tried before!

Page 21 June 2009SPIN’2009

Generational Search Leverages Symbolic ExecutionGenerational Search Leverages Symbolic Execution

• Each symbolic execution is expensive

• Yet, symbolic execution does not dominate search time

25m30s

Page 22 June 2009SPIN’2009

Since April’07 1st release: many new security bugs found
(missed by blackbox fuzzers, static analysis)

– Apps: image processors, media players, file decoders,…

– Bugs: Write A/Vs, Read A/Vs, Crashes,…

– Many triaged as “security critical, severity 1, priority 1”
(would trigger Microsoft security bulletin if known outside MS)

– Example: WEX Security team for Win7
• Dedicated fuzzing lab with 100s machines à

• 100s apps (deployed on 1billion+ computers)

• ~1/3 of all fuzzing bugs found by SAGE !

– SAGE = gold medal at Fuzzing Olympics
organized by SWI at BlueHat’08 (Oct’08)

– Credit due to entire SAGE team + users !

SAGE ResultsSAGE Results

Page 23 June 2009SPIN’2009

WEX Fuzz Dashboard Snippet

Page 24 June 2009SPIN’2009

WEX WEX FuzzingFuzzing Lab Bug Yield for Win7Lab Bug Yield for Win7

• 100s of apps, total number of
fuzzing bugs is confidential

• But SAGE didn’t exist in 2006

• Since 2007 (SAGE 1st release),
~1/3 bugs found by SAGE

• But SAGE currently deployed
on only ~2/3 of those apps

• Normalizing the data by 2/3,
SAGE found ~1/2 bugs

• SAGE is more CPU expensive,
so it is run last in the lab,
so all SAGE bugs were missed
by everything else!

Default

Blackbox

Fuzzer

+ Regression

All Others SAGE

How fuzzing bugs found (2006-2009) :

SAGE is running 24/7 on 100s machines:

“the largest usage ever of any SMT solver”

N. Bjorner + L. de Moura (MSR, Z3 authors)

Page 25 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 26 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 00 00 00 00 00 0 0 00 00 ; RIFF............
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 27 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 ** ** ** 20 00 0 0 00 00 ; RIFF....***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 28 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 0 0 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 29 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 0 0 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 00 0 0 00 00 ;strh........
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 30 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 0 0 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 6 9 64 73 ;strh....vids
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 31 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 0 0 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 6 9 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 00 0 0 00 00 ;strf........
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 32 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 0 0 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 6 9 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 0 0 00 00 ;strf....(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 33 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 0 0 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 6 9 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 0 0 00 00 ;strf....(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 C9 9 D E4 4E ;É �äN
00000060h: 00 00 00 00 ;

Page 34 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 0 0 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 6 9 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 0 0 00 00 ;strf....(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 35 June 2009SPIN’2009

Zero to Crash in 10 GenerationsZero to Crash in 10 Generations

• Starting with 100 zero bytes …

• SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 0 0 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 6 9 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 B2 75 76 3A 28 0 0 00 00 ;strf²uv:(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 0 0 00 00 ;
00000060h: 00 00 00 00 ;

Page 36 June 2009SPIN’2009

Different Seed Files, Different CrashesDifferent Seed Files, Different Crashes

1867196225 X X X X X

2031962117 X X X X X

612334691 X X

1061959981 X X

1212954973 X X

1011628381 X X X

842674295 X

1246509355 X X X

1527393075 X

1277839407 X

1951025690 X
For the first time, we face bug triage issues!

Page 37 June 2009SPIN’2009

Most Bugs Found are Most Bugs Found are ““ShallowShallow””

seed4 seed4

Page 38 June 2009SPIN’2009

SAGE SummarySAGE Summary

• SAGE is so effective at finding bugs that, for the first
time, we face “bug triage” issues with dynamic test
generation

• What makes it so effective?

– Works on large applications (not unit test)

– Can detect bugs due to problems across components

– Fully automated (focus on file fuzzing)

– Easy to deploy (x86 analysis – any language or build process !)

– Now, used daily in various groups inside Microsoft

Page 39 June 2009SPIN’2009

More On the Research Behind SAGEMore On the Research Behind SAGE

• Challenges:

– How to recover from imprecision in symbolic execution? PLDI’05

– How to scale symbolic exec. to billions of instructions? NDSS’08

– How to check efficiently many properties together? EMSOFT’08

– How to leverage gram. specs for complex input formats? PLDI’08

– How to deal with path explosion in large prgms? POPL’07, TACAS’08

– How to reason precisely about pointers? ISSTA’09

+ research on constraint solvers (Z3, disolver,...)

Page 40 June 2009SPIN’2009

Extension: Active Property CheckingExtension: Active Property Checking

• Traditional property checkers are “passive”
– Purify, Valgrind, AppVerifier, TruScan, etc.

– Check only the current concrete execution

– Can check many properties at once

• Combine with symbolic execution à “active”
– Reason about all inputs on same path

– Apply heavier constraint solving/proving

– “Actively” look for input violating property

• Ex: array ref a[i] where i depends on input, a is of size c
– Try to force buffer over/underflow: add “(i < 0) OR (i >= c)” to the

path constraint; if SAT, next test should hit a bug!

• Challenge: inject/manage all such constraints efficiently…

Page 41 June 2009SPIN’2009

Ext.: GrammarExt.: Grammar--Based Based WhiteboxWhitebox FuzzingFuzzing

• Input precondition specified as a context-free grammar

• Avoids path explosion in lexer and parser

• Faster, better and deeper coverage for applications
with structured inputs (XML, etc.)

generation strategy
(each ran 2 hours)

#inputs total
coverage

coverage in
code gen

blackboxblackbox fuzzingfuzzing 86588658 14%14% 51%

whiteboxwhitebox fuzzingfuzzing 68836883 15%15% 54%

grammargrammar--based based blackboxblackbox fuzzingfuzzing 78377837 12%12% 61%

grammargrammar--based based whiteboxwhitebox fuzzingfuzzing 23782378 20%20% 82%

Page 42 June 2009SPIN’2009

Ext.: Compositionality = Key to ScalabilityExt.: Compositionality = Key to Scalability

• Problem: executing all feasible paths does not scale !

• Idea: compositional dynamic test generation

– use summaries of individual functions (arbitrary program blocks)
like in interprocedural static analysis

– If f calls g, test g separately, summarize the results, and
use g’s summary when testing f

– A summary (g) is a disjunction of path constraints expressed in
terms of input preconditions and output postconditions:

(g) = ∨ (w) with (w) = pre(w) ∧ post(w)
expressed in terms of g’s inputs and outputs

– g’s outputs are treated as symbolic inputs to a calling function f

• Can provide same path coverage exponentially faster !

Page 43 June 2009SPIN’2009

Conclusion: Conclusion: BlackboxBlackbox vs. vs. WhiteboxWhitebox FuzzingFuzzing

• Different cost/precision tradeoffs

– Blackbox is lightweight, easy and fast, but poor coverage

– Whitebox is smarter, but complex and slower

– Note: other recent “semi-whitebox” approaches
• Less smart (no symbolic exec, constr. solving) but more lightweight:

Flayer (taint-flow, may generate false alarms), Bunny-the-fuzzer
(taint-flow, source-based, fuzz heuristics from input usage), etc.

• Which is more effective at finding bugs? It depends…

– Many apps are so buggy, any form of fuzzing find bugs in those !

– Once low-hanging bugs are gone, fuzzing must become smarter:
use whitebox and/or user-provided guidance (grammars, etc.)

• Bottom-line: in practice, use both! (We do at Microsoft)

Page 44 June 2009SPIN’2009

Future Work (The Big Picture)Future Work (The Big Picture)

• During the last decade, code inspection for standard programming
errors has largely been automated with static code analysis

• Next: automate testing (as much as possible)

– Thanks to advances in program analysis, efficient constraint solvers and
powerful computers

• Whitebox testing: automatic code-based test generation

– Like static analysis: automatic, scalable, checks many properties

– Today, we can exhaustively test small applications, or
partially test large applications

– Biggest impact so far: whitebox fuzzing for (Windows) security testing
• Improved security for a billion computers worldwide!

– Next: towards exhaustive testing of large application (verification)

– How far can we go?

