
Page 1 January 2007POPL’2007

CompositionalCompositional
Dynamic Test GenerationDynamic Test Generation

Patrice GodefroidPatrice Godefroid

Microsoft ResearchMicrosoft Research

Page 2 January 2007POPL’2007

MotivationMotivation

• Problem: automatic code-driven test generation

– Given a sequential program with a set of input parameters,
generate a set of tests that maximizes code coverage

• How? (1) Static test generation ([King76,…])

– Static analysis to partition the program’s input space

– Ineffective whenever symbolic reasoning is not possible
• which is frequent in practice…

Example:

int obscure(int x, int y) {

if (x==hash(y)) error();

return 0;

}

Can’t statically generate
values for x and y
that satisfy “x==hash(y)” !

Page 3 January 2007POPL’2007

DART = Directed Automated Random TestingDART = Directed Automated Random Testing

• How? (2) Dynamic test generation
– Run the program starting with some random inputs,
gather symbolic constraints on inputs at conditional statements,
use a constraint solver to generate new test inputs

– Repeat the process until a specific program path or statement is
reached (classic dynamic test generation [Korel90])

– Or repeat the process to attempt to cover ALL feasible
program paths (DART = systematic dyn. test gen. [PLDI’05])
• detect crashes, assert violations, use runtime checkers (Purify,…)

Example:

int obscure(int x, int y) {

if (x==hash(y)) error();

return 0;

}

Run 1: pick x and y randomly.
Run 2: keep same value for y but
set x to hash(y), known from Run 1.
All program paths are now covered !

Dynamic is more powerful than static

Page 4 January 2007POPL’2007

Compositionality = Key to ScalabilityCompositionality = Key to Scalability

• Problem: executing all feasible paths does not scale !

• Idea: compositional dynamic test generation

– use summaries of individual functions (arbitrary program blocks)
like in interprocedural static analysis

– If f calls g, test g separately, summarize the results, and
use g’s summary when testing f

– A summary (g) is a disjunction of path constraints expressed in
terms of input preconditions and output postconditions:

(g) = ∨ (w) with (w) = pre(w) ∧ post(w)
expressed in terms of g’s inputs and outputs

– g’s outputs are treated as symbolic inputs to a calling function f

Page 5 January 2007POPL’2007

SMART = Scalable DARTSMART = Scalable DART

• Unlike interprocedural static analysis:
– Summaries may include information about concrete values
(to allow partial symbolic reasoning)

– Each summary needs to be grounded in some concrete execution
(to guarantee that no false alarm is ever generated):
here, “must” summaries, not “may” summaries !

– Bottom-up strategy for computing summaries is problematic
(generates too many spurious summaries and too few relevant
summaries – see paper)

– Top-down strategy to compute summaries on a demand-driven
basis from concrete calling contexts: SMART algorithm

– SMART = Systematic Modular Automated Random Testing

– Same path coverage as DART but can be exponentially faster!

– See paper…

Page 6 January 2007POPL’2007

ExampleExample

int is_positive(int x) {

if (x>0) return 1;

return 0;

}

#define N 100

void top(int s[N]) {//N inputs

int i,cnt=0;

for (i=0;i<N;i++)

cnt=cnt+is_positive(s[i]);

if (cnt == 3) error(); //(*)

return;

}

Program P={top,is_positive} has
2^N feasible whole-program paths
DART will perform 2^N runs

SMART will perform only 4 runs !
• 2 to compute the summary
Φ = (x>0 ∧ ret=1) ∨ (x=<0 ∧ ret=0)
for function is_positive()

• 2 to execute both branches of (*),
by solving the constraint
[(s[0]>0 ∧ ret0=1) ∨ (s[0]=<0 ∧ ret0=0)]
∧ [(s[1]>0 ∧ ret1=1) ∨ (s[1]=<0 ∧ ret1=0)]
∧ ... ∧ [(s[N-1]>0 ∧ retN-1=1) ∨ (s[N-1]=<0
∧ retN-1=0)]
∧ (ret0+ret1+…+retN-1 = 3)

Page 7 January 2007POPL’2007

ResultsResults

• Theorem: SMART provides same path coverage as DART

– Corollary: same branch coverage, assertion violations,…

• Complexity: if b bounds the number of intraprocedural
paths, number of runs by SMART is linear in b
(while number of runs by DART can be exponential in b)

– Similar to interprocedural static analysis,
Hierarchical-FSM/Pushdown-system verification…

• Notes: arbitrary program blocks ok, recursion ok,
concurrency is orthogonal (but arguably inherently
non-compositional in general…)

Page 8 January 2007POPL’2007

ConclusionsConclusions

• DART is a promising new approach
– Already detected hard-to-find bugs in several applications…

• Two main limitations: constraint solver + path explosion

• Here, drastic solution to path explosion !
– compute symbolic test summaries that are grounded in concrete
executions (“must”) for compositional dynamic test generation

– completely eliminates path explosion due to interprocedural
(interblock) paths, by using formulas with lots of disjunctions

– those formulas can be solved using existing constraint solvers

• Bottom-line: A SMART search is necessary to make the
“DART approach” scalable to large programs !

Page 9 January 2007POPL’2007

BackBack--up slidesup slides

Page 10 January 2007POPL’2007

Example with Bounded RecursionExample with Bounded Recursion

#define N 100

int s[N]; // N inputs

int rec_is_pos(int i) {

if (i == N) return 0; //(**)

if (s[i]>0)

return 1+rec_is_pos(i+1);

return rec_is_pos(i+1);

}

void top() {

int cnt;

cnt=rec_is_pos(0);

if (cnt == 3) error(); //(*)

return;

}

Program P={top,is_positive} has
2^N feasible whole-program paths
(test (**) is input independent!)
DART will perform 2^N runs

SMART will perform only 4 runs !
• 2 to compute the summary
Φ = (in>0 ∧ ret=1) ∨ (in=<0 ∧ ret=0)
in inner-most call to rec_is_pos()

• 2 to execute both branches of (*),
by solving the recursive constraint
[(s[0]>0 ∧ ret0=1+ret1) ∨ (s[0]=<0 ∧
ret0=ret1)]
∧ ... ∧ [(s[N-1]>0 ∧ retN-1=1) ∨ (s[N-1]=<0
∧ retN-1=0)]
∧ (ret0 = 3)

Page 11 January 2007POPL’2007

Note on Unbounded RecursionNote on Unbounded Recursion

• Example: if there is no bound N in the previous example, program
P={top,is_positive} has infinitely many feasible whole-program paths

• Thus DART and SMART (as is) do not terminate !

• For finite-state programs with unbounded recursion, use dynamic
programming techniques as in interprocedural static analysis and
pushdown system verification

– Example:

int foo(int x) {

if (x>0) return f(x)

else return f(-x)

}

• Otherwise, use techniques for infinite-state program analysis
(example: loop/stack invariants for unbounded inputs – see paper)

