Compositional Dynamic Test Generation

Patrice Godefroid

Microsoft Research
Motivation

• Problem: automatic code-driven test generation
 - Given a sequential program with a set of input parameters, generate a set of tests that maximizes code coverage

• How? (1) Static test generation ([King76,...])
 - Static analysis to partition the program’s input space
 - Ineffective whenever symbolic reasoning is not possible
 • which is frequent in practice...

Example:
```c
int obscure(int x, int y) {
    if (x==hash(y)) error();
    return 0;
}
```

Can’t statically generate values for x and y that satisfy “x==hash(y)”!
DART = Directed Automated Random Testing

• How? (2) Dynamic test generation
 - Run the program starting with some random inputs, gather symbolic constraints on inputs at conditional statements, use a constraint solver to generate new test inputs
 - Repeat the process until a specific program path or statement is reached (classic dynamic test generation [Korel90])
 - Or repeat the process to attempt to cover ALL feasible program paths (DART = systematic dyn. test gen. [PLDI’05])
 • detect crashes, assert violations, use runtime checkers (Purify,...)

Example:
int obscure(int x, int y) {
 if (x==hash(y)) error();
 return 0;
}

Dynamic is more powerful than static

Run 1: pick x and y randomly.
Run 2: keep same value for y but set x to hash(y), known from Run 1.
All program paths are now covered!
Compositionality = Key to Scalability

- Problem: executing all feasible paths does not scale!

- Idea: compositional dynamic test generation
 - use summaries of individual functions (arbitrary program blocks) like in interprocedural static analysis
 - If f calls g, test g separately, summarize the results, and use g’s summary when testing f
 - A summary \(\varphi(g) \) is a disjunction of path constraints expressed in terms of input preconditions and output postconditions:
 \[
 \varphi(g) = \lor \varphi(w) \quad \text{with} \quad \varphi(w) = \text{pre}(w) \land \text{post}(w)
 \]
 expressed in terms of g’s inputs and outputs
 - g’s outputs are treated as symbolic inputs to a calling function f
SMART = Scalable DART

• Unlike interprocedural static analysis:
 - Summaries may include information about concrete values (to allow partial symbolic reasoning)
 - Each summary needs to be grounded in some concrete execution (to guarantee that no false alarm is ever generated): here, “must” summaries, not “may” summaries!
 - Bottom-up strategy for computing summaries is problematic (generates too many spurious summaries and too few relevant summaries – see paper)
 - Top-down strategy to compute summaries on a demand-driven basis from concrete calling contexts: SMART algorithm
 - SMART = Systematic Modular Automated Random Testing
 - Same path coverage as DART but can be exponentially faster!
 - See paper…
Example

```c
int is_positive(int x) {
    if (x>0) return 1;
    return 0;
}
#define N 100
void top(int s[N]) {//N inputs
    int i,cnt=0;
    for (i=0;i<N;i++)
        cnt=cnt+is_positive(s[i]);
    if (cnt == 3) error(); //(*)
    return;
}
```

Program P={top,is_positive} has 2^N feasible whole-program paths
DART will perform 2^N runs

SMART will perform only 4 runs!

- 2 to compute the summary
 $\Phi = (x>0 \land \text{ret}=1) \lor (x=<0 \land \text{ret}=0)$
 for function is_positive()

- 2 to execute both branches of (*),
 by solving the constraint

\[
(s[0]>0 \land \text{ret}_0=1) \lor (s[0]=<0 \land \text{ret}_0=0)) \\
(s[1]>0 \land \text{ret}_1=1) \lor (s[1]=<0 \land \text{ret}_1=0)) \\
... \lor (s[N-1]>0 \land \text{ret}_{N-1}=1) \lor (s[N-1]=<0 \land \text{ret}_{N-1}=0)) \\
\land (\text{ret}_0+\text{ret}_1+...+\text{ret}_{N-1} = 3)
\]
Results

• Theorem: SMART provides same path coverage as DART
 - Corollary: same branch coverage, assertion violations,…

• Complexity: if b bounds the number of intraprocedural paths, number of runs by SMART is **linear** in b
 (while number of runs by DART can be **exponential** in b)
 - Similar to interprocedural static analysis,
 Hierarchical-FSM/Pushdown-system verification…

• Notes: arbitrary program blocks ok, recursion ok,
 concurrency is orthogonal (but arguably inherently non-compositional in general…)}
Conclusions

• DART is a promising new approach
 - Already detected hard-to-find bugs in several applications...

• Two main limitations: constraint solver + path explosion

• Here, drastic solution to path explosion!
 - compute symbolic test summaries that are grounded in concrete executions (“must”) for compositional dynamic test generation
 - completely eliminates path explosion due to interprocedural (interblock) paths, by using formulas with lots of disjunctions
 - those formulas can be solved using existing constraint solvers

• Bottom-line: A SMART search is necessary to make the “DART approach” scalable to large programs!
Back-up slides
Example with Bounded Recursion

```c
#define N 100
int s[N]; // N inputs
int rec_is_pos(int i) {
    if (i == N) return 0; //(**)
    if (s[i]>0)
        return 1+rec_is_pos(i+1);
    return rec_is_pos(i+1);
}

void top() {
    int cnt;
    cnt=rec_is_pos(0);
    if (cnt == 3) error(); //(*)
    return;
}
```

Program $P=\{\text{top, is_positive}\}$ has 2^N feasible whole-program paths
(test (**)) is input independent!

DART will perform 2^N runs

SMART will perform only 4 runs!

- 2 to compute the summary

 $\Phi = (\text{in}>0 \land \text{ret}=1) \lor (\text{in}<0 \land \text{ret}=0)$

 in inner-most call to rec_is_pos()

- 2 to execute both branches of (*),

 by solving the recursive constraint

 $$[(s[0]>0 \land \text{ret}_0=1+\text{ret}_1) \lor (s[0]<0 \land \text{ret}_0=\text{ret}_1)]$$

 $$\land ... \land [(s[N-1]>0 \land \text{ret}_{N-1}=1) \lor (s[N-1]<0 \land \text{ret}_{N-1}=0)]$$

 $$\land (\text{ret}_0 = 3)$$
Note on Unbounded Recursion

• Example: if there is no bound N in the previous example, program \(P = \{ \text{top, is_positive} \} \) has infinitely many feasible whole-program paths

• Thus DART and SMART (as is) do not terminate!

• For finite-state programs with unbounded recursion, use dynamic programming techniques as in interprocedural static analysis and pushdown system verification

 - Example:

    ```
    int foo(int x) {
      if (x>0) return f(x)
      else return f(-x)
    }
    ```

• Otherwise, use techniques for infinite-state program analysis (example: loop/stack invariants for unbounded inputs - see paper)