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Need for Symbolic Instruction Encodings 

Symbolic Execution is a key 
component of precise binary 
program analysis tools 

- SAGE, BitBlaze, BAP, etc. 

- Static analysis tools 

  

l 1 : m o v  e a x ,  i n p 1  

   m o v  c l ,   i n p 2  

   s h l  e a x ,  c l  

   j n z  l 2  

   j m p   l 3  

l 2 :  d i v   e b x ,  e a x  

/ /  I s  t h i s  s a f e  ?  

/ /  I s  e a x  ! =  0  ?   

l 3 :  …  
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Problem: Symbolic Instruction Encoding 

  

Instruction  

Inp1 

Inpn 

Op1 

Opm 

? 

Problem: Given a processor and an instruction name, 
symbolically describe the input-output function for the 
instruction 

• Express the encoding as bit-vector constraints 
     (ex: SMT-Lib format) 

 

Bit Vector[X] Bit Vector[Y] 
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So far, only manual solutions… 

• From the instruction architecture manual (X86, ARM, …) 
implemented by the processor 

  

X86 spec for SHLD 

Limitations: 
 

• Tedious, expensive 
- X86 has more than 300 unique  
    instructions, each with ~10 

OPCodes, 2000 pages 
• Error-prone 

- Written in English, many corner 
cases 

• Imprecise 
- Spec is often under-specified 

• Partial 
- Not all instructions are covered 

• Can we trust the spec ? 
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Here: Automated Synthesis Approach 

Goals: 

• As automated as possible so that we can boot-strap a symbolic 
execution engine on an arbitrary instruction set 

– But search spaces are enormous (ex: 22048 8-bit to 8-bit functions!) 

• As precise as possible: f must capture behavior for inputs outside 
the partial truth table S as well 
– But exhaustive sampling is impossible (32x32bits = 2^64 inputs!) 

   

Sample inputs 
(C with in-lined 

assembly) 

Synthesis 
engine 

 

Partial 
Truth-
table S 

Function  
f 

Searches for a function f 
that respects truth table 
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Challenge: Enormous Search Space 

How can we reduce the search space ? 

Solution: Templates (Program Sketching, Oracle-guided component synthesis) 

– A template is a parametric function T(c1,…,cn,i,o) with certain unknown 
parameters/coeffs c1,…,cn 

– A concretization of the template is obtained by substituting specific 
values for the coefficients 

– Restrict the search space to all possible concretizations of T(c1,…,cn,i,o) 

 

 
 

∃f: ∧i,o ∈S  o = f(i)   (Higher-order quantifier) 

∃c1,…,cn: ∧i,o∈S  T(c1,…,cn,i,o) (First-order quantifier) 

Warning: this fails if template cannot express the actual function 
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Designing Templates 

  

Architecture-specification is useful 
• help in grouping instructions based on similar behaviors    
• help in capturing the common structure 
    

Design Principles 

• Template T(c1,…,cn,i)  must be expressible using bit-vector 
constraints (for compactness requirements) 

• Must capture the common structure of a set of instructions 

- A template abstracts a set of concrete instructions  

• Must not have too much freedom => enormous search space 

• Must not have too little freedom => cover too few instructions 
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Intel X86 Instruction Set 

• Complex Instruction-set Architecture (CISC) 
– 300+ unique instructions, each with ~10 OPCodes 

 

 

Core 
Operation 

Carry Flag  

Overflow Flag 

Zero Flag  

Sign Flag  

Parity Flag  

res1 

res2 

E-Flags 

Store result 1: 
reg, addr 

Store result 2: 
reg, addr 

Fetch operand 3: 
reg, addr or const 

Fetch operand 2: 
reg, addr or const 

Fetch operand 1: 
reg, addr or const 

i1 

i2 

i3 

• Assumption: behavior is independent of where the operands come from 
• We want a symbolic function from i1, i2, i3 to res1, res2 and the E-FLAGS   
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This Work: ALU Instructions from X86 

• Why ALU? Current bit-vector solvers provide the necessary 
building blocks 

• 46 relevant unique instructions (irrelevant instr: M O V , L O A D , … )   

– Each has approx. 6 to 21 instances (8/16/32 bits, 2Result + 5 EFLAGS) 

• Based on the spec, we divide ALU instructions into 3 groups: 

- Bit-shift instructions (BS): S H L , S H R , R O L ,  …  

- Bit-wise instructions (BW): A N D , O R , N O T ,  …  

- Arithmetic instructions (ARI): A D D ,  M U L ,  I M U L  …  

• We define 2 templates (Result + EFlags) for each group 

- templates are parametric on the register size (8/16/32) 

- In total 3*2 = 6 templates to cover 534 ALU instruction instances ! 
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State-of-the-art: Distinguishing Input Synthesis 

  

Failed 

Samples 

Initial I/O 

Samples 

Random 

Testing 

DONE!! 
 

Incorrect 

Template 

DInput ? 
 

NO 

 

If YES, 

sample 

input 

DSample YES 

 

PASS 

FAIL 
FAIL 

SYN 
 

VERIFY 
 

Function 

[Jha-Gulwani-Seshia-Tiwari, ICSE’2010] 
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Problem: too slow ! (or OOM) 

Instruction nsyn nver 

 

S-Iters D-Iters Time(ms) 

 

 

 

 

 

 

 

SHL32 

10   100 31 4 24,168,853 

10  1000 31 3 20,107,259 

10  10000 31 1 11,754,805 

100   100 21 3 16,877,223 

100  1000 22 3 17,577,444 

100  10000 20 4 21,620,686 

1000 100 1 1 
 

4,382,472 

1000 1000 1 
 

1 
 

4,456,942 

1000 10000 1 
 

1 
 

4,707,855 

10000 100  
Z3 runs out of memory in the DInput phase 

10000 1000 

10000 10000 

Intel XEON 3.07ghz processor, 8GB RAM 
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New Approach: Smart Sampling 

• The distinguishing-input check is expensive, can we eliminate it? 

•  Intuition:  
– 2 points are enough to uniquely determine coefficients of a linear template, 

– 3 points are enough for a circle template 

– …  

 
Smart Inputs: A set of inputs 
I is said to be smart  for a 
template T if for all samples 
obtained using the inputs, 
there exists a unique 
coefficient up to  logical 
equivalence, for which the 
template respects the samples     
   

0 0 0 0 1 1 0 0 

0 0 0 0 1 0 1 0 

Ex: there are 16 bitwise operations 
(functions from 1x1 bits to 1 bit) 
 
What are the smart inputs? 
Answer: Inputs must have 4 bit-
wise  pairs (0,0),(0,1),(1,0),(1,1) 

Smart Inputs for Bit-wise 
template is the singleton (12,10) ! 
 

=12 

=10 
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Templates Summary 

Template Search 
space 

Smart sample 
size 

Circuit size 
[RESULT] 

Circuit size 
[EFLAGS] 

Bit-shift (2n+2)32n 32 
 

 (log(n)+2) O(n) O(1) 

Bit-wise 16 1 O(1) O(1) 

Arithmetic 21 
 

 22n 3 O(1) O(1) 

  

•   n is the size of the input and output bit-vectors (8, 16, 32) 
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Synthesis with Templates and Smart Sampling 

  

Smart  

Inputs 

Random 

Testing 

DONE!! 
 

PASS 

FAIL 

Incorrect 

Template 

FAIL 

SYN 
 

VERIFY 
 

Unique 

function 

Synthesis is much faster! 

new “smart sampling” synthesis 
algorithm takes <2 hours with Z3  
to synthesis functions for 534 
x86 instruction instances 
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Lessons Learned 

• Uncovered behaviors for “undefined” cases 

    Ex: ADD/SUB : Overflow Flag (OF) 

– X86 Spec: OF is set “according to the result” 

– Intel XEON3.7: Is set only when XOR of MSB of the two inputs 
is negation of MSB of output!   

• Discrepancies found compared to spec 

    Ex: IMUL[8] 65, 254 

– X86 Spec: OF is set to 0 

– Intel XEON3.7:  OF is set to 1 
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Discrepancies Found Across Machines 

 

 

 

 

 

 

 

 

 

 

– X86 Spec and Intel XEON3.7 and Core2 (left laptop): instructions 
ROL, SHL, SHR do not set OF if count argument is not 1 

– Intel I7-2620M 2.8ghz (right laptop): OF is set to 1 even for 
certain cases where count argument > 1 
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Current Limitations 

• Instructions like C M P X C H G  set EFLAGS according to an 
intermediate value that is throw away at the end 
– difficult to construct a template for such instructions  

• Instructions like D I V , I D I V  crash on certain inputs (example: 
when quotient is > register range) 

– these pre-conditions are currently hard-wired in the system 

– in future we would like to synthesize them automatically  

• Instruction like S H L , S H R  leave ZF, PF, SF “unchanged” 
when count operand = 0  
– therefore ZF, PF, SF  must also be inputs to the functions 

– currently we sample all instructions after clearing all flags 
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Conclusion 

• Automated Synthesis of Symbolic Instruction Encodings 
for X86-ALU instructions 

– 6 abstract instruction templates 

– for 534 x86 ALU instructions (8/16/32bits, outputs, EFLAGS) 

– new “smart sampling” synthesis algorithm takes <2 hours with Z3 

– building blocks are bit-vector constraints (SMT-lib format) 

– synthesis against specific x86 processor as I/O oracle : 

 

 

• Future work: x64, AMD64, ARM, SIMD instructions, 
floating point instructions,… 
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Related Work 

• Deriving Abstract Transfer Functions for Embedded CPUs  
– Ex: [HOIST, Regehr et al.] 

– Like us, but small CPUs (8-bits), large encodings (BDDs), abstraction 
(simplifications -> imprecise) 

• Black-box analysis of processors/assemblers 
– Ex: [DERIVE, Hsieh-Engler-Back], [Giano, Forin et al.] 

– Emphasis on testing all aspects (addressing modes, clock cycles, privilege levels) 
of a processor (no symbolic/circuit generation)  

• Connection with Machine Learning 
– Close connection between smart inputs  for a template and VC dimension of a 

concept class, to be explored in the future 

• Automatic Program Synthesis 
– From I/O examples [Gulwani et al., …], “Program Sketching” (“templates”) [Bodik 

et al., Solar-Lezama et al.,…] 

– Here, new app. domain, smart sampling, verification oracle is a black box 

  


