Automated Synthesis
of Symbolic Instruction Encodings
from I/0 Samples

Patrice Godefroid Ankur Taly

Microsoft Research Stanford University

PLDI'2012 Page 1 June 2012

Need for Symbolic Instruction Encodings

11

//
//

12:

:mov eax,

mov cl,

shl eax,

Jnz 12
jmp

divwv

Is this safe *?

Is eax

13: ..

inpl
inp?2
cl

13

ebx,

= 0 °?

eax

4

PLDI'2012

Symbolic Execution is a key
component of precise binary
program analysis tools

- SAGE, BitBlaze, BAP, etc.

- Static analysis tools

Page 2 June 2012

Problem: Symbolic Instruction Encoding

Bit Vector[X] Instruction Bit Vector[Y]

Inp, : —> Op;

20

Inp, : —> Op,,

(" . . .)
Problem: Given a processor and an instruction name,

symbolically describe the input-output function for the

Kms’rrucflon y

« Express the encoding as bit-vector constraints
(ex: SMT-Lib format)

PLDI'2012 Page 3 June 2012

So far, only manual solutions...

* From the instruction architecture manual (X86, ARM, ...)
implemented by the processor

Limitations:
SHLD—Double Precision Shift Left (Continued)
Operation . .
COUNT < COUNT MOD 32; ° TedIOUS, expensive
FCOUNT 20 - X86 has more than 300 unique
THEN . . :
no operation IhSTI"UCTIOhS, €C(Ch WlTh N].O
ELSE
IF COUNT = SIZE OPCOdCS, 2000 pages
THEN (* Bad parameters *)
DEST is undefined: —_—— = ° Er‘r‘or‘-pr‘one
CF, OF, SF, ZF, AF, PF de undefinsd;-: i . .
LSS P) o - Written in English, many corner
Clasmontodonomon) cases
0 Bit(DEST, i) — Bit(DEST, i — COUNT); * Imprease
oD; S . der- f d
O GOUNT - 1 DOWNTO 0 pec is often under-specifie
o BIT[DEST, i] — BIT[SAC, i - COUNT + SIZE|; °© Partial
T - Not all instructions are covered

Fl;

X86 spec for SHLD Can we trust the spec ?

PLDI'2012 Page 4 June 2012

ere: Automated Synthesis Approach

Searches for a function f
that respects truth table

Partial
Truth-
table S
Sample inputs) —__—
(C with in-lined
assembly)

Function

/

Synthesis
engine

Goals:

As automated as possible so that we can boot-strap a symbolic
execution engine on an arbitrary instruction set
- But search spaces are enormous (ex: 22048 8-bit to 8-bit functions!)

As precise as possible: f'must capture behavior for inputs outside
the partial truth table Sas well

- But exhaustive sampling is impossible (32x32bits = 2764 inputs!)

PLDI'2012 Page 5 June 2012

Challenge: Enormous Search Space

[3f: Nioes O~ (i) (Higher-order quantifier)]

How can we reduce the search space ?

Solution: Templates (Program Sketching, Oracle-guided component synthesis)

- A template is a parametric function 7(c,,...,c,,i,0) with certain unknown
parameters/coeffs c,,....c,

- A concretization of the template is obtained by substituting specific
values for the coefficients

- Restrict the search space to all possible concretizations of T(c,,...,c,,i,0)

[Fc,....Cpl N pes I(c,,...,c,,i,0) (First-order quantifier)]

Warning: this fails if tfemplate cannot express the actual function

PLDI'2012 Page 6 June 2012

Designing Templates

Design Principles

« Template T(c,,...,c,,i) must be expressible using bit-vector
constraints (for compactness requirements)

* Must capture the common structure of a set of instructions
- A template abstracts a set of concrete instructions

* Must not have too much freedom => enormous search space
* Must not have too little freedom => cover too few instructions

Architecture-specification is useful
* help in grouping instructions based on similar behaviors
* help in capturing the common structure

PLDI'2012 Page 7 June 2012

Intel X86 Instruction Set

- Complex Instruction-set Architecture (CISC)
- 300+ unique instructions, each with ~10 OPCodes

Carry Flag
Overflow Flag

Zero Flag

Sign Flag

Parity Flag

« Assumption: behavior is independent of where the operands come from
« We want a symbolic function from iy, i, i; to res;, res, and the E-FLAGS

PLDI'2012 Page 8 June 2012

This Work: ALU Instructions from X86

- Why ALU? Current bit-vector solvers provide the necessary
building blocks

* 46 relevant unique instructions (irrelevant instr: vov, roan, ..)
- Each has approx. 6 to 21 instances (8/16/32 bits, 2Result + 5 EFLAGS)

« Based on the spec, we divide ALU instructions into 3 groups:
- Bit-shift instructions (BS): s, sur, zor,
- Bit-wise instructions (BW): 2no, 0, no1,
- Arithmetic instructions (ARI): oo, wus, tmun .

* We define 2 templates (Result + EFlags) for each group
- templates are parametric on the register size (8/16/32)
- Intotal 3*2 = 6 templates to cover 534 ALU instruction instances |

PLDI'2012 Page 9 June 2012

State-of-the-art: Distinguishing Input Synthesis

Incorrect Failed
Template SRlEEs

ENL
FAI

Random
Initial 1/0 SYN >
Samples
PASS If YES,
sample
input
NO

DSample

DONE!!

[Jha-Gulwani-Seshia-Tiwari, ICSE2010]

PLDI'2012 Page 10 June 2012

Problem: too slow ! (or OOM)

Intel XEON 3.07ghz processor, 8GB RAM

PLDT

Instruction | n, n,, S-lters D-Iters | Time(ms)
10 100 31 4 24,168,853
10 1000 31 3 20,107,259
10 10000 31 1 11,754,805
100 100 21 3 16,877,223
100 1000 22 3 17 577 444
100 10000 20 4 21,620,686

SHL32

1000 100 1 1 4 382,472
1000 1000 1 1 4 456,942
1000 10000 1 1 4.707,855
10000 100
10000 1000 Z3 runs out of memory in the DInput phase
10000 10000

D12

New Approach: Smart Sampling

The distinguishing-input check is expensive, can we eliminate i1?

Intuition:

- 2 points are enough to uniquely determine coefficients of a linear femplate,

- 3 points are enough for a circle template

Ex: there are 16 bitwise operations
(functions from 1x1 bits to 1 bit)

/Smar‘r Inputs: A set of inpu’rs\

I is said to be smart for a What are the smart inputs?
template T if for all samples Answer: Inputs must have 4 bit-
obtained using the inputs, wise pairs (0,0),(0,1),(1,0),(1,1)
there exists a unique ololololil1lol0] =12
coefficient up to logical olololol1]0]1]0] 10
equivalence, for which the

K‘rempla’re respects the sampley Smart Inputs for Bit-wise
template is the singleton (12,10) |

PLDI'2012 Page 12 June 2012

Templates Summary

* nisthe size of the input and output bit-vectors (8, 16, 32)

Template Search Smart sample Circuit size | Circuit size
space size [RESULT] [EFLAGS]
Bit-shift (2n+2)*" 132 (log(n)+2) |Om) O(1)
Bit-wise 16 1 O(1) O(1)
Arithmetic 2] Dn 3 O(1) O(1)

PLDI'2012

Page 13

June 2012

Synthesis with Templates and Smart Sampling

Core™i7

ISman
Inputs

Incorrect
Template

Unique
function

Synthesis is much faster!
Instr Exhaust | DInput Smart Sampl
ANDS 26,478 48 (=551) 3(=16)
AND16 | - 55 4(=14)
AND32 | - 71 4(+18)
MULS 32,462 189 (+172) | 17 (+11)
MUL16 | - 609 20 (+-30)
MUL32 | - 1,997 29 (+68)
SHLS 181,857 | 21.501(=9) | 867 (+-25)
SHL16 | - 250,105 8,064 (=-31)

PLDIZ SHL32 4,382,472 303,970 (+14)

FAIL

PASSl

DONE!!

new "smart sampling” synthesis
algorithm takes <2 hours with Z3
to synthesis functions for 534
x86 instruction instances

June 2012

Lessons Learned

Uncovered behaviors for "undefined” cases

Ex: app/sus: Overflow Flag (OF)
- X86 Spec: OF is set "according to the result”

- Intel XEON3.7: Is set only when XOR of MSB of the two inputs
is negation of MSB of output!

Discrepancies found compared to spec

Ex: IMUL[8] 65, 254
- X86 Spec: OF is set 10 0
- Intel XEON3.7: OF is set tol

PLDI'2012 Page 15 June 2012

Discrepancies Found Across Machines

- X86 Spec and Intel XEON3.7 and Core?2 (left laptop): instructions
ROL, SHL, SHR do not set OF if count argument is not 1

- Intel I7-2620M 2.8ghz (right laptop): OF is set to 1 even for
certain cases where count argument > 1

PLDI'2012 Page 16 June 2012

Current Limitations

* Instructions like cvrxcuc set EFLAGS according to an
intermediate value that is throw away at the end

- difficult to construct a template for such instructions

- Instructions like b1V, 1D 1V crash on certain inputs (example:
when quotient is > register range)

- these pre-conditions are currently hard-wired in the system
- in future we would like to synthesize them automatically

» Instruction like s, sar leave ZF, PF, SF “"unchanged”
when count operand = O

- therefore ZF, PF, SF must also be inputs to the functions
- currently we sample all instructions after clearing all flags

PLDI'2012 Page 17 June 2012

Conclusion

Automated Synthesis of Symbolic Instruction Encodings
for X86-ALU instructions

- 6 abstract instruction templates

- for 534 x86 ALU instructions (8/16/32bits, outputs, EFLAGS)
- hnew “smart sampling” synthesis algorithm takes <2 hours with Z3
- building blocks are bit-vector constraints (SMT-lib format)

- synthesis against specific x86 processor as I/0 oracle :

Instruction
| Bit Vector[X] | | | Bit Vector[Y] l
\l/

Inp, ? ﬁ Op;

Inp,

Future work: x64, AMD64, ARM, SIMD instructions,
floating point instructions,...

PLDI'2012 Page 18 June 2012

Related Work

Deriving Abstract Transfer Functions for Embedded CPUs

- Ex: [HOIST, Regehr et al.]

- Like us, but small CPUs (8-bits), large encodings (BDDs), abstraction
(simplifications -> imprecise)

Black-box analysis of processors/assemblers

- Ex: [DERIVE, Hsieh-Engler-Back], [Giano, Forin et al.]

- Emphasis on testing all aspects (addressing modes, clock cycles, privilege levels)
of a processor (no symbolic/circuit generation)

Connection with Machine Learning

- Close connection between smart inputs for a template and VC dimension of a
concept class, to be explored in the future

Automatic Program Synthesis

- From I/0O examples [Gulwani et al., ...], "Program Sketching” ("templates”) [Bodik
et al., Solar-Lezama et al.,...]

- Here, new app. domain, smart sampling, verification oracle is a black box

PLDI'2012 Page 19 June 2012

