
Page 1 June 2012 PLDI’2012

Automated Synthesis

of Symbolic Instruction Encodings
from I/O Samples

Patrice Godefroid Ankur Taly

 Microsoft Research Stanford University

Page 2 June 2012 PLDI’2012

Need for Symbolic Instruction Encodings

Symbolic Execution is a key
component of precise binary
program analysis tools

- SAGE, BitBlaze, BAP, etc.

- Static analysis tools

l 1 : m o v e a x , i n p 1

 m o v c l , i n p 2

 s h l e a x , c l

 j n z l 2

 j m p l 3

l 2 : d i v e b x , e a x

/ / I s t h i s s a f e ?

/ / I s e a x ! = 0 ?

l 3 : …

Page 3 June 2012 PLDI’2012

Problem: Symbolic Instruction Encoding

Instruction

Inp1

Inpn

Op1

Opm

?

Problem: Given a processor and an instruction name,
symbolically describe the input-output function for the
instruction

• Express the encoding as bit-vector constraints
 (ex: SMT-Lib format)

Bit Vector[X] Bit Vector[Y]

Page 4 June 2012 PLDI’2012

So far, only manual solutions…

• From the instruction architecture manual (X86, ARM, …)
implemented by the processor

X86 spec for SHLD

Limitations:

• Tedious, expensive
- X86 has more than 300 unique
 instructions, each with ~10

OPCodes, 2000 pages
• Error-prone

- Written in English, many corner
cases

• Imprecise
- Spec is often under-specified

• Partial
- Not all instructions are covered

• Can we trust the spec ?

Page 5 June 2012 PLDI’2012

Here: Automated Synthesis Approach

Goals:

• As automated as possible so that we can boot-strap a symbolic
execution engine on an arbitrary instruction set

– But search spaces are enormous (ex: 22048 8-bit to 8-bit functions!)

• As precise as possible: f must capture behavior for inputs outside
the partial truth table S as well
– But exhaustive sampling is impossible (32x32bits = 2^64 inputs!)

Sample inputs
(C with in-lined

assembly)

Synthesis
engine

Partial
Truth-
table S

Function
f

Searches for a function f
that respects truth table

Page 6 June 2012 PLDI’2012

Challenge: Enormous Search Space

How can we reduce the search space ?

Solution: Templates (Program Sketching, Oracle-guided component synthesis)

– A template is a parametric function T(c1,…,cn,i,o) with certain unknown
parameters/coeffs c1,…,cn

– A concretization of the template is obtained by substituting specific
values for the coefficients

– Restrict the search space to all possible concretizations of T(c1,…,cn,i,o)

∃f: ∧i,o ∈S o = f(i) (Higher-order quantifier)

∃c1,…,cn: ∧i,o∈S T(c1,…,cn,i,o) (First-order quantifier)

Warning: this fails if template cannot express the actual function

Page 7 June 2012 PLDI’2012

Designing Templates

Architecture-specification is useful
• help in grouping instructions based on similar behaviors
• help in capturing the common structure

Design Principles

• Template T(c1,…,cn,i) must be expressible using bit-vector
constraints (for compactness requirements)

• Must capture the common structure of a set of instructions

- A template abstracts a set of concrete instructions

• Must not have too much freedom => enormous search space

• Must not have too little freedom => cover too few instructions

Page 8 June 2012 PLDI’2012

Intel X86 Instruction Set

• Complex Instruction-set Architecture (CISC)
– 300+ unique instructions, each with ~10 OPCodes

Core
Operation

Carry Flag

Overflow Flag

Zero Flag

Sign Flag

Parity Flag

res1

res2

E-Flags

Store result 1:
reg, addr

Store result 2:
reg, addr

Fetch operand 3:
reg, addr or const

Fetch operand 2:
reg, addr or const

Fetch operand 1:
reg, addr or const

i1

i2

i3

• Assumption: behavior is independent of where the operands come from
• We want a symbolic function from i1, i2, i3 to res1, res2 and the E-FLAGS

Page 9 June 2012 PLDI’2012

This Work: ALU Instructions from X86

• Why ALU? Current bit-vector solvers provide the necessary
building blocks

• 46 relevant unique instructions (irrelevant instr: M O V , L O A D , …)

– Each has approx. 6 to 21 instances (8/16/32 bits, 2Result + 5 EFLAGS)

• Based on the spec, we divide ALU instructions into 3 groups:

- Bit-shift instructions (BS): S H L , S H R , R O L , …

- Bit-wise instructions (BW): A N D , O R , N O T , …

- Arithmetic instructions (ARI): A D D , M U L , I M U L …

• We define 2 templates (Result + EFlags) for each group

- templates are parametric on the register size (8/16/32)

- In total 3*2 = 6 templates to cover 534 ALU instruction instances !

Page 10 June 2012 PLDI’2012

State-of-the-art: Distinguishing Input Synthesis

Failed

Samples

Initial I/O

Samples

Random

Testing

DONE!!

Incorrect

Template

DInput ?

NO

If YES,

sample

input

DSample YES

PASS

FAIL
FAIL

SYN

VERIFY

Function

[Jha-Gulwani-Seshia-Tiwari, ICSE’2010]

Page 11 June 2012 PLDI’2012

Problem: too slow ! (or OOM)

Instruction nsyn nver

S-Iters D-Iters Time(ms)

SHL32

10 100 31 4 24,168,853

10 1000 31 3 20,107,259

10 10000 31 1 11,754,805

100 100 21 3 16,877,223

100 1000 22 3 17,577,444

100 10000 20 4 21,620,686

1000 100 1 1

4,382,472

1000 1000 1

1

4,456,942

1000 10000 1

1

4,707,855

10000 100
Z3 runs out of memory in the DInput phase

10000 1000

10000 10000

Intel XEON 3.07ghz processor, 8GB RAM

Page 12 June 2012 PLDI’2012

New Approach: Smart Sampling

• The distinguishing-input check is expensive, can we eliminate it?

• Intuition:
– 2 points are enough to uniquely determine coefficients of a linear template,

– 3 points are enough for a circle template

– …

Smart Inputs: A set of inputs
I is said to be smart for a
template T if for all samples
obtained using the inputs,
there exists a unique
coefficient up to logical
equivalence, for which the
template respects the samples

0 0 0 0 1 1 0 0

0 0 0 0 1 0 1 0

Ex: there are 16 bitwise operations
(functions from 1x1 bits to 1 bit)

What are the smart inputs?
Answer: Inputs must have 4 bit-
wise pairs (0,0),(0,1),(1,0),(1,1)

Smart Inputs for Bit-wise
template is the singleton (12,10) !

=12

=10

Page 13 June 2012 PLDI’2012

Templates Summary

Template Search
space

Smart sample
size

Circuit size
[RESULT]

Circuit size
[EFLAGS]

Bit-shift (2n+2)32n 32

 (log(n)+2) O(n) O(1)

Bit-wise 16 1 O(1) O(1)

Arithmetic 21

 22n 3 O(1) O(1)

• n is the size of the input and output bit-vectors (8, 16, 32)

Page 14 June 2012 PLDI’2012

Synthesis with Templates and Smart Sampling

Smart

Inputs

Random

Testing

DONE!!

PASS

FAIL

Incorrect

Template

FAIL

SYN

VERIFY

Unique

function

Synthesis is much faster!

new “smart sampling” synthesis
algorithm takes <2 hours with Z3
to synthesis functions for 534
x86 instruction instances

Page 15 June 2012 PLDI’2012

Lessons Learned

• Uncovered behaviors for “undefined” cases

 Ex: ADD/SUB : Overflow Flag (OF)

– X86 Spec: OF is set “according to the result”

– Intel XEON3.7: Is set only when XOR of MSB of the two inputs
is negation of MSB of output!

• Discrepancies found compared to spec

 Ex: IMUL[8] 65, 254

– X86 Spec: OF is set to 0

– Intel XEON3.7: OF is set to 1

Page 16 June 2012 PLDI’2012

Discrepancies Found Across Machines

– X86 Spec and Intel XEON3.7 and Core2 (left laptop): instructions
ROL, SHL, SHR do not set OF if count argument is not 1

– Intel I7-2620M 2.8ghz (right laptop): OF is set to 1 even for
certain cases where count argument > 1

Page 17 June 2012 PLDI’2012

Current Limitations

• Instructions like C M P X C H G set EFLAGS according to an
intermediate value that is throw away at the end
– difficult to construct a template for such instructions

• Instructions like D I V , I D I V crash on certain inputs (example:
when quotient is > register range)

– these pre-conditions are currently hard-wired in the system

– in future we would like to synthesize them automatically

• Instruction like S H L , S H R leave ZF, PF, SF “unchanged”
when count operand = 0
– therefore ZF, PF, SF must also be inputs to the functions

– currently we sample all instructions after clearing all flags

Page 18 June 2012 PLDI’2012

Conclusion

• Automated Synthesis of Symbolic Instruction Encodings
for X86-ALU instructions

– 6 abstract instruction templates

– for 534 x86 ALU instructions (8/16/32bits, outputs, EFLAGS)

– new “smart sampling” synthesis algorithm takes <2 hours with Z3

– building blocks are bit-vector constraints (SMT-lib format)

– synthesis against specific x86 processor as I/O oracle :

• Future work: x64, AMD64, ARM, SIMD instructions,
floating point instructions,…

Page 19 June 2012 PLDI’2012

Related Work

• Deriving Abstract Transfer Functions for Embedded CPUs
– Ex: [HOIST, Regehr et al.]

– Like us, but small CPUs (8-bits), large encodings (BDDs), abstraction
(simplifications -> imprecise)

• Black-box analysis of processors/assemblers
– Ex: [DERIVE, Hsieh-Engler-Back], [Giano, Forin et al.]

– Emphasis on testing all aspects (addressing modes, clock cycles, privilege levels)
of a processor (no symbolic/circuit generation)

• Connection with Machine Learning
– Close connection between smart inputs for a template and VC dimension of a

concept class, to be explored in the future

• Automatic Program Synthesis
– From I/O examples [Gulwani et al., …], “Program Sketching” (“templates”) [Bodik

et al., Solar-Lezama et al.,…]

– Here, new app. domain, smart sampling, verification oracle is a black box

