
Page 1 June 2011 PLDI‟2011

Higher-Order Test Generation

Patrice Godefroid

Microsoft Research

Page 2 June 2011 PLDI‟2011

Test Generation is Big Business

• #1 application for SMT solvers today (CPU usage)

• SAGE @ Microsoft:
– 1st whitebox fuzzer for security testing

– 200+ machine years (since 2008) 

– 200+ million constraints

– 100s of apps, 100s of security bugs

– Example: Win7 file fuzzing

 ~1/3 of all fuzzing bugs found by SAGE 

 (missed by everything else…)

– Bug fixes shipped (quietly) to 1 Billion+ PCs

– Millions of dollars saved
• for Microsoft + time/energy for the world Blackbox

Fuzzing

+ Regression

All Others SAGE

How fuzzing bugs were found

(Win7, 2006-2009) :

Page 3 June 2011 PLDI‟2011

Test Generation: How?

• Most precise: dynamic test generation

– Dynamic symbolic execution to collect constraints on inputs

– Negate those, solve new constraints to get new tests

– Repeat  systematic state-space exploration (= DART)

void top(char input[4]) {

 int cnt = 0;

 if (input[0] == ‘b’) cnt++;

 if (input[1] == ‘a’) cnt++;

 if (input[2] == ‘d’) cnt++;

 if (input[3] == ‘!’) cnt++;

 if (cnt >= 4) crash();

}

input = “good”

I0!=„b‟

I1!=„a‟

I2!=„d‟

I3!=„!‟

Implemented in SAGE

Optimized for large x86 trace analysis (ex: Excel)

Path constraint:

goo!

bood

gaod

godd

 I0=„b‟

 I1=„a‟

 I2=„d‟

 I3=„!‟

 SAT SMT

solver

Page 4 June 2011 PLDI‟2011

Problem: Symbolic Reasoning is Imprecise

• For large complex programs (pointer manipulations,
complex arithmetic, calls to OS/library functions, etc.)

• Imprecision forces approximation

• How? (1) Static test generation ([King76,…])

– Static analysis to partition the program‟s input space

– Ineffective whenever precise symbolic reasoning is not possible

Example:

int obscure(int x, int y) {

 if (x==hash(y)) error();

 return 0;

}

Can‟t statically generate
values for x and y
that satisfy “x==hash(y)” !

Page 5 June 2011 PLDI‟2011

How? (2) Dynamic Test Generation

Example:

int obscure(int x, int y) {

 if (x==hash(y)) error();

 return 0;

}

- start with (random) x=33, y=42 Run 1 :

- solve: x==567  solution: x=567

- execute concretely and symbolically:
 if (33 != 567) | if (x != hash(y))

constraint too complex
 simplify it: x != 567

- new test input: x=567, y=42

Run 2 : the other branch is executed
 All program paths are now covered ! Observations:

– “Unknown/complex symbolic expressions can be simplified using
concrete runtime values” [DART, PLDI‟05]

– Let‟s call this step “concretization” (ex: hash(y)  567)

– Dynamic test generation extends static test generation with
additional runtime information: it is more powerful

How often? When exactly? Why?  this work!

Page 6 June 2011 PLDI‟2011

Unsound and Sound Concretization

• Concretization is not always sound
int foo(int x, int y) {

 if (x==hash(y)) {

 if (y==10) error();

 } …

}

• Definition: A path constraint pc for a path w is sound if
every input satisfying pc defines an execution following w

• Sound concretization: add concretization constraints

• Theorem: path constraint is now always sound. Is this better? No

– Forces us to detect all sources of imprecision (expensive/impossible…)

– Can prevent test generation and “good” divergences

Run: x=567, y=42
pc: x==567 and y!=10
New pc: x==567 and y==10
New inputs: x=567, y=10
Divergence!

pc and new pc are unsound !

pc: y==42 and x==567 and y!=10 (sound)
New pc: y==42 and x==567 and y==10 (sound)

Page 7 June 2011 PLDI‟2011

Idea: Using Uninterpreted Functions

• Modeling imprecision with uninterpreted functions
int obscure(int x, int y) {

 if (x==hash(y)) error();

 return 0;

}

• How to generate tests?
– Is (∃x,y,h:) x=h(y) SAT? Yes, but so what? (ex: x=y=0, h(0)=0)

– Need universal quantification !

(∀h:) ∃x,y: x=h(y) is this first-order logic formula valid?

 Yes. Solution (strategy): “fix y, set x to the value of h(y)”

• Test generation from validity proofs ! (not SAT models)
– Necessary but not sufficient: what “value of h(y)”?

Run: x=33, y=42

pc: x != h(y)

New pc: x == h(y)

Page 8 June 2011 PLDI‟2011

Need for Uninterpreted Function Samples

• Record I/O UF samples
int obscure(int x, int y) {

 if (x==hash(y)) error();

 return 0;

}

• Use UF samples to interpret a validity proof/strategy
– “fix y, set x to the value of h(y)”  set y=42, x=567

• Or new pc: (∀h:) ∃x,y: (567=h(42)) => (x=h(y)) is valid?

• Higher-order test generation =
– models imprecision using Uninterpreted Functions

– records UF samples as concrete input/output value pairs

– generates tests from validity proofs of FOL formulas

Key: a “higher-order” logic representation of path constraints

Run: x=33, y=42

Record: 567 == h(42)

pc: x!=h(y)

Page 9 June 2011 PLDI‟2011

Higher-Order Test Generation is Powerful

• Theorem: HOTG is as powerful as sound concretization
– Can simulate it (both UFs and UF samples are needed for this)

• Higher-Order Test Generation is more powerful
Ex 1: (∀h:) ∃x,y: h(x)=h(y) is valid (solution: set x=y)

Ex 2: (∀h:) ∃x,y: h(x)=h(y)+1 is invalid

 But (∀h:) ∃x,y: (h(0)=0 ∧ h(1)=1) => h(x)=h(y)+1 is valid

 (solution: set x=1, y=0)

Ex 3:
int foo(int x, int y) {

 if (x==hash(y)) {

 if (y==10) error();

 } …

}

Run: x=567, y=42
pc: x==h(y) and y!=10
New pc: (∀h:)∃x,y: (h(42)=567) => x=h(y) ∧ y=10
is valid. Solution: set y=10, set x=h(10)
2-step test generation:
 - run1 with y=10, x=567 to learn h(10) =66
 - run2 with y=10, x=66 !

Page 10 June 2011 PLDI‟2011

Implementability Issues

• Tracking all sources of imprecision is problematic

– Excel on a 45K input bytes executes 1 billion x86 instructions

• Imprecision cannot always be represented by UFs

– Unknown input/output signatures, nondeterminism,…

• Capturing all input/output pairs can be very expensive

• Limited support from current SMT solvers

– ∃X:Ф(F,X) is valid iff ∀X:¬Ф(F,X) is UNSAT

– little support for generating+parsing UNSAT „saturation‟ proofs

• In practice, HOTG can be used for targeted reasoning
about specific user-defined complex/unknown functions

Page 11 June 2011 PLDI‟2011

Application: Lexers with Hash Functions

• Parsers with input lexers using hash functions for fast
keyword recognition
Initially, forall language keywords: addsym(keyword, hashtable)

When parsing the input:

X=findsym(inputChunk, hashtable); // is inputChunk in hashtable?

if (x==52) … // how to get here?

• With higher-order test generation:

– Represent hashfunct by one UF h

– Capture all pairs (hashvalue,h(keyword))

– If “h(inputChunk)==52” and “(52,h(„while‟))” -> inputChunk=„while‟

– This effectively inverses hashfunct only for all keywords

– Sufficient to drive executions through the lexer !

Page 12 June 2011 PLDI‟2011

Other Related Work

• Modeling imprecision with UFs is well-known in program
verification of universal properties

– “may” abstractions, universal quantifiers only, validity checks

– Here, novelty is for existential properties

• Test generation is only one way to verify existential
properties of programs

– More generally, one can build “must” abstractions

– Alternation ∀∃ is also used then

• Test generation as a game is not new

– in model-based testing, testing for reactive systems, etc.

– but from validity proofs of FOL formulas with UFs is new

Page 13 June 2011 PLDI‟2011

Conclusions

• Higher-order test generation = UFs + UF samples +
test generation from validity checks of FOL formulas

• A new powerful form of test generation

• Tracking all sources of incompleteness is unrealistic,
targeted use of UFs is more practical (ex: lexer with h)

• A formal tool to define the limits of test generation

• Explains in what sense dynamic test generation
is more powerful than static test generation

– only in its ability to record concrete values in path constraints

– concrete values are ultimately needed for test generation

