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Test Generation is Big Business 

• #1 application for SMT solvers today (CPU usage) 

• SAGE @ Microsoft:  
– 1st whitebox fuzzer for security testing 

– 200+ machine years (since 2008)     

– 200+ million constraints 

– 100s of apps, 100s of security bugs 

– Example: Win7 file fuzzing 

    ~1/3 of all fuzzing bugs found by SAGE   

     (missed by everything else…) 

– Bug fixes shipped (quietly) to 1 Billion+ PCs 

– Millions of dollars saved 
• for Microsoft + time/energy for the world Blackbox  

Fuzzing 

+ Regression 

All Others SAGE 

How fuzzing bugs were found 

(Win7, 2006-2009) : 



Page 3 June 2011 PLDI‟2011 

Test Generation: How? 

• Most precise: dynamic test generation 

– Dynamic symbolic execution to collect constraints on inputs 

– Negate those, solve new constraints to get new tests 

– Repeat   systematic state-space exploration   (= DART) 

 

 

void top(char input[4]) { 

   int cnt = 0; 

   if (input[0] == ‘b’) cnt++; 

   if (input[1] == ‘a’) cnt++; 

   if (input[2] == ‘d’) cnt++; 

   if (input[3] == ‘!’) cnt++; 

   if (cnt >= 4) crash(); 

} 

input = “good” 

I0!=„b‟ 

I1!=„a‟ 

I2!=„d‟ 

I3!=„!‟ 

Implemented in SAGE 

Optimized for large x86 trace analysis (ex: Excel) 

Path constraint: 

goo! 

bood 

gaod 

godd 

 I0=„b‟ 

 I1=„a‟ 

 I2=„d‟ 

 I3=„!‟ 

 SAT SMT 

solver 



Page 4 June 2011 PLDI‟2011 

Problem: Symbolic Reasoning is Imprecise 

• For large complex programs (pointer manipulations, 
complex arithmetic, calls to OS/library functions, etc.) 

• Imprecision forces approximation 

• How? (1) Static test generation ([King76,…]) 

– Static analysis to partition the program‟s input space 

– Ineffective whenever precise symbolic reasoning is not possible 

Example: 

int obscure(int x, int y) { 

  if (x==hash(y)) error(); 

  return 0; 

} 

Can‟t statically generate 
values for x and y 
that satisfy “x==hash(y)” ! 
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How? (2) Dynamic Test Generation 

Example: 

int obscure(int x, int y) { 

  if (x==hash(y)) error(); 

  return 0; 

} 

 

 

 

 

- start with (random) x=33, y=42 Run 1 : 

- solve: x==567   solution: x=567  

- execute concretely and symbolically: 
   if (33 != 567)   |    if (x != hash(y)) 

constraint too complex 
 simplify it: x != 567 

- new test input: x=567, y=42 

Run 2 : the other branch is executed 
 All program paths are now covered ! Observations:  

– “Unknown/complex symbolic expressions can be simplified using 
concrete runtime values” [DART, PLDI‟05] 

– Let‟s call this step “concretization” (ex: hash(y)  567) 

– Dynamic test generation extends static test generation with 
additional runtime information: it is more powerful 

 

 

 

 

 

How often?  When exactly?  Why?    this work! 
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Unsound and Sound Concretization 

• Concretization is not always sound 
int foo(int x, int y) { 

  if (x==hash(y)) { 

     if (y==10) error(); 

  } … 

} 

• Definition:  A path constraint pc for a path w is sound if                     
every input satisfying pc defines an execution following w 

• Sound concretization: add concretization constraints 

 

• Theorem: path constraint is now always sound.   Is this better? No 

– Forces us to detect all sources of imprecision (expensive/impossible…) 

– Can prevent test generation and “good” divergences 

Run: x=567, y=42 
pc:         x==567  and  y!=10 
New pc: x==567  and  y==10 
New inputs: x=567, y=10 
Divergence! 

pc and new pc are unsound ! 

pc:         y==42  and  x==567  and  y!=10       (sound) 
New pc: y==42  and  x==567  and  y==10      (sound) 
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Idea: Using Uninterpreted Functions 

• Modeling imprecision with uninterpreted functions 
int obscure(int x, int y) { 

  if (x==hash(y)) error(); 

  return 0; 

} 

• How to generate tests?  
– Is (∃x,y,h:)  x=h(y) SAT?  Yes, but so what? (ex: x=y=0, h(0)=0) 

– Need universal quantification ! 

(∀h:) ∃x,y: x=h(y)   is this first-order logic formula valid? 

 Yes. Solution (strategy): “fix y, set x to the value of h(y)” 

• Test generation from validity proofs ! (not SAT models) 
– Necessary but not sufficient: what “value of h(y)”?  

 

 

Run: x=33, y=42 
 
pc:          x != h(y) 
 
New pc:  x == h(y) 
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Need for Uninterpreted Function Samples 

• Record I/O UF samples 
int obscure(int x, int y) { 

  if (x==hash(y)) error(); 

  return 0; 

} 

• Use UF samples to interpret a validity proof/strategy 
– “fix y, set x to the value of h(y)”  set y=42, x=567 

• Or new pc:    (∀h:) ∃x,y: (567=h(42)) => (x=h(y))    is valid? 

• Higher-order test generation = 
– models imprecision using  Uninterpreted Functions 

– records UF samples as concrete input/output value pairs 

– generates tests from validity proofs of FOL formulas 

Key: a “higher-order” logic representation of path constraints 

Run: x=33, y=42 
 
Record:  567 == h(42) 
 
pc:          x!=h(y) 
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Higher-Order Test Generation is Powerful 

• Theorem: HOTG is as powerful as sound concretization 
– Can simulate it (both UFs and UF samples are needed for this) 

• Higher-Order Test Generation is more powerful 
Ex 1:   (∀h:) ∃x,y: h(x)=h(y)            is valid  (solution: set x=y) 

Ex 2: (∀h:) ∃x,y: h(x)=h(y)+1       is invalid 

    But   (∀h:) ∃x,y: (h(0)=0 ∧ h(1)=1) => h(x)=h(y)+1       is valid 

               (solution: set x=1, y=0) 

Ex 3: 
int foo(int x, int y) { 

  if (x==hash(y)) { 

     if (y==10) error(); 

  } … 

} 

 

Run: x=567, y=42 
pc:         x==h(y) and y!=10 
New pc: (∀h:)∃x,y: (h(42)=567) => x=h(y) ∧  y=10  
is valid. Solution: set y=10, set x=h(10)  
2-step test generation: 
   - run1 with y=10, x=567 to learn h(10) =66 
   - run2 with y=10, x=66 ! 
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Implementability Issues 

• Tracking all sources of imprecision is problematic 

– Excel on a 45K input bytes executes 1 billion x86 instructions 

• Imprecision cannot always be represented by UFs 

– Unknown input/output signatures, nondeterminism,… 

• Capturing all input/output pairs can be very expensive 

• Limited support from current SMT solvers 

–   ∃X:Ф(F,X) is valid   iff   ∀X:¬Ф(F,X) is UNSAT 

– little support for generating+parsing UNSAT „saturation‟ proofs 

• In practice, HOTG can be used for targeted reasoning 
about specific user-defined complex/unknown functions 
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Application: Lexers with Hash Functions 

• Parsers with input lexers using hash functions for fast 
keyword recognition 
Initially, forall language keywords: addsym(keyword, hashtable) 

When parsing the input: 

X=findsym(inputChunk, hashtable); // is inputChunk in hashtable? 

if (x==52)  … // how to get here? 

• With higher-order test generation: 

– Represent hashfunct by one UF h 

– Capture all pairs (hashvalue,h(keyword)) 

– If “h(inputChunk)==52” and  “(52,h(„while‟))” -> inputChunk=„while‟ 

– This effectively inverses hashfunct only for all keywords 

– Sufficient to drive executions through the lexer ! 
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Other Related Work 

• Modeling imprecision with UFs is well-known in program 
verification of universal properties 

– “may” abstractions, universal quantifiers only, validity checks 

– Here, novelty is for existential properties  

• Test generation is only one way to verify existential 
properties of programs 

– More generally, one can build “must” abstractions 

– Alternation ∀∃ is also used then 

• Test generation as a game is not new 

– in model-based testing, testing for reactive systems, etc. 

– but from validity proofs of FOL formulas with UFs is new 
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Conclusions 

• Higher-order test generation = UFs + UF samples +   
test generation from validity checks of FOL formulas 

• A new powerful form of test generation 

• Tracking all sources of incompleteness is unrealistic, 
targeted use of UFs is more practical (ex: lexer with h) 

• A formal tool to define the limits of test generation 

• Explains in what sense dynamic test generation              
is more powerful than static test generation 

– only in its ability to record concrete values in path constraints 

– concrete values are ultimately needed for test generation 


