Software Model Checking
via Static and Dynamic
Program Analysis

Patrice Godefroid

Bell Laboratories, Lucent Technologies

00000000

Overview of Software Model Checking

e Part |: The Dynamic Approach (Systematic Testing)
— VeriSoft

o Part Il: The Static Approach (Automatic Abstraction)

— SLAM and predicate abstraction, 3-valued model checking, generalized
model checking

e Part Ill: Combining the Static and Dynamic Approaches
— DART, Compositional Dynamic Test Generation (SMART)

» Disclamer: emphasis on what influenced the speaker, not an
exhaustive survey

 Main references. see the bibliography of the abstract

MOVEP 2006 Page 2 June 2006

‘Model Checking”

__________ "Il B |e| c —_— %:\

itttk ittt deadlock

>
A

Each component is modeled by a FSM.

Model Checking (MC) = systematic state-space exploration = exhaustive testing

“Model Checking” = *“check whether the system satisfies atemporal-logic formula’
— Example: G(p->Fq) isan LTL formula

Simple yet effective technique for finding bugs in high-level hardware and software
designs (examples. Formal Check for Hardware, SPIN for Software, etc.)

Once thoroughly checked, models can be compiled and used as the core of the
implementation (examples: SDL, VFSM, etc.)

MOVEP 2006 Page 3 June 2006

Model Checking of Software

« Challenge: how to apply model checking to analyze softwar €?

— “Real” programming languages (e.g., C, C++, Java),
— “Red” size (e.g., 100,000’ s lines of code).

e Two main approaches to software model checking:

_ state-space exploration _
Modeling languages » Model checking

A

(SLAM, Bander a,
abstraction | Feaver, BLAST,...) adaptation

_ state-space exploration v _
Programming languages » Systematic testing

(Verisoft, JPF, CMC, Bogor,...)

MOVEP 2006 Page 4

June 2006

Part I:

The Dynamic Approach (Systematic Testing)

000000000

Dynamic Approach: Systematic Testing (V eriSoft)

o State Space = “product of (OS) processes’ (Dynamic Semantics)

— Processes communicate by executing operations on com. objects.

— Operations on com. objects are visible, other operations are invisible.
— Only executions of visible operations may be blocking.

— The systemisin aglobal state when the next operation of each processis
visible.
— State Space = set of global states + transitions between these.

'S0
THEOREM: Deadlocks and assertion violations are
preserved in the “ state space” as defined above. Q/ (K
, ©
deadl ock ,
| 4 v
-

MOVEP 2006 Page 6 June 2006

V er1 Soft

» Controls and observes the execution of concurrent processes of the system under test by
Intercepting system calls (communication, assertion violations, etc.).

o Systematically drives the system along all the paths (=scenarios) in its state space
(=automatically generate, execute and evaluate many scenarios).

« Fromagiveninitial state, one can always guarantee a complete coverage of the state
space up to some depth.

* Note: analyzes “closed systems’; requires test driver(s) possibly using “VS toss(n)”.

Veri Soft l 0

System Processes b

> e

..

v

o 4;

£

v o

o fer

e
¥
I]
8

4———@‘/0

MOVEP 2006 Page 7 June 2006

Ver1Soft State-Space Search

o Automatically searchesfor:
— deadlocks,
— assertion violations,

— divergences (a process does not communicate with the rest of the system
during more than x seconds),

— livelocks (a process is blocked during x successive transitions).
» A scenario (=path in state space) is reported for each error found.

e Scenarios can be replayed interactively using the V eri Soft
simulator (driving existing debuggers).

MOVEP 2006 Page 8 June 2006

The VeriSoft S mulator

File Reset Hext Event Move Go To End Quit
Process_1 | | Process_2 |
VS_togs(3)=1

send_to_gueuwe(§,10 room_is_hot)

rey_from_gueve(],10)=room_is_hot

Assertion violation!

MOVEP 2006

Home

Zoom In

Zoom Qut Labels Quit

Move the pointer over a node to see which state it represents.

ey: ERERGERORE] veccocks: 0 Aot 0

(initial _state)

Vs toss(F)=1

send_to_guene(1,

rov_from_quewve(d,

Dismiss
E]
Step Hext Continue Print Quit
{ Text Regular Expression:
c]
Tney " . -
Step Hext Continue Print Quit AND
wH — — Labels
13_goor_closed=L; send_to_queue(1,10, roon_is_hot) w1
| 1faéfiff°°m_h°t) send_to_queue(1,10, roon_is_cool) |= m 2
Vs o Isend_to_queue(1,10,open_door)
: send_to_queue(1,10,close_door)
it test +/ rev_fron_queue(1,10)=roon_is_hot|
if (is room hot &% is_door_closed) rev_fron_queue(1,10)=roon_is_coo
i FT]
comeback $ verisoft main,c -simul errorl,path
H goe —IAhome/god/verizoftsbin shome/god verizoft/bindverizoft_simul_Sun05_5,5,1,0 -
void Envirorme IVERIFY -g main.c
shonesgod/verizoft/bindsinul , tel errorl,path
i Loading s==,M5 for state space wiew {please waitl,..
Dione,

Page 9

0, room_is_hot)

o) =roon_is_hot

Match

Processes

Clear

buttons: L=go to state; M=center view; R=examine

]

Quit

June 2006

Originality of VeriSoft

e VeriSoft isthefirst systematic state-space exploration tool for
concurrent systems composed of processes executing arbitrary
code (e.g., C, C++,...) [POPL9Y].

o VeriSoft looks simple! Why wasn't this done before?

* Previoudly existing state-space exploration tools:
— restricted to the analysis of models of software systems;
— each state is represented by a unique identifier;
— visited states are saved in memory (hash-table, BDD,...).

« With programming languages, states are much more complex!

e Computing and storing a unique identifier for every stateis
unrealistic!

MOVEP 2006 Page 10 June 2006

“State-Less’ Search

o Don’'t store visited states in memory: still terminates when state
space is finite and acyclic... but terribly inefficient!

o Example: dining philosophers (toy example)

— For 4 philosophers, a state-less search explores 386,816 transitions, instead
of 708: every transition is executed on average 546 times!

500000 T T T T T T T T

ASQ000
A0 -
150000 -

100000
Tranmtichs

250000 -
Classical =—
000 -
Slale—less -
150000 -

100000 -
50000 -

4] o - th 1
1 2 k| 4 5 & T a 9 L

Philesaphels
MOVEP 2006 Page 11 June 2006

Partial-Order Reduction in Model Checking

o A state-less search in the state space of a concurrent system can
be much more efficient when using “partial-order methods’.

* POR agorithms dynamically prune the state space of a concurrent
system by eliminating unnecessary interleavings while preserving
specific correctness properties (deadlocks, assertion violations,...).

e Two main core POR techniques.
— Persistent/stubborn sets (Vamari, Godefroid,...)
— Sleep sets (Godefroid, .. .)

[Note: checking more elaborate properties require other extensions

— Ex: ample sets (Peled) are persistent sets satisfying additional
conditions sufficient for LTL model checking
Not used here as VeriSoft only checks reachability properties]

MOVEP 2006 Page 12

Lecture Notes in

Computer Seience 1032

Patrice Godefroid

Partial-Order Methods
for the Verification
of Concurrent Systems

An Approach ta the
State-Explosion Problem

June 2006

Persi stent/Stubborn Sets

* Intuitively, aset T of enabled transitionsin sare persistent in s if
whatever one does from s while remaining outside of T does not

Interact with T.

o Example: (qlisemptijzn S)

Reachable states
without executing
any transition
of T

{P1:Send(gl,ml)} ispersistentins

P1 > P3

Send(q1,m1) lSend(ql,m3) Send(q2,m5) _

Y=ROV(q2) "Z:RCV @) Thg most advancgd algori .thmsfor
} Send(@2md) EEYY atically) computing persistent sets
lSend(ql,mZ) stop (Send(@Lm6) are based on “stubborn sets”

stop [Vamari]

stop

« Limitation: need info on (static) system structure.
» VeriSoft only exploitsinfo on next transitions and “system fileVS’.

June 2006

Page 13

MOVEP 2006

Sleep Sets

o Slegp Sets exploit local independence (commutativity) among
enabled transitions. One sleep set is associated with each state.

« Example oy G
' lSend(ql,x) Send(g2,m)
iSend(qZ,z) Send(ql.y)
¢ ¢
—>
P1:Send(ql :Send(q2,m)

Sleep={ P1:Send(q1,x)}
PL:Send(q22) F2Rd@M \ by qniqry) Transitionsin Sleep
% ™ are not explored!

= = . ¢ ¢ = ¢
e Limitation: alone, no state reduction.

» Sleep sets are easy to implement in VeriSoft since they only require
information on next transitions.

MOVEP 2006 Page 14 June 2006

An Efficient State-Less Search

* With POR algorithms, the pruned state space looks like atree!

 Thus, no need to store intermedi ate states!

O 500000
Ny o
O _4 0 seeco | ?
t\ \ 150000 |
O Trahsitichs e
+ O . (persistent sets) ol
N\ s
o\ ® | |
t’ S0000 |- !
O Y PR S

(sleep sets)

« Without POR algorithms, a state-less search in the state space
of a concurrent system is untractable.

E’hiluﬁnphcls

MOVEP 2006 Page 15 June 2006

VeriSoft - Summary

o Two key features distinguish V eri Soft from other model checkers

— Does not require the use of any specific modeling/programming language.
— Performs a state-less search.

« Use of partial-order reduction is key in presence of concurrency.
* |In practice, the search istypically incomplete.

 Fromagiven initial state, VeriSoft can always guarantee a
complete coverage of the state space up to some depth.

MOVEP 2006 Page 16 June 2006

Users and Applications

« Development of research prototype started in 1996.

o VeriSoft 2.0 available outside L ucent since January 1999:
— 100’ s of licensesin 25+ countries, in industry and academia
— Free download at http://www.bell-labs.com/projects/verisoft

» Examples of applications in Lucent:
— 4ESS HBM unit testing and debugging (telephone switch maintenance)
— WaveStar 40G R4 integration testing (optical network management)
— 7R/E PTS Feature Server unit and integration testing (voice/data signaling)
— CDMA Cdll-Site Call Processing Library testing (wireless call processing)

MOVEP 2006 Page 17 June 2006

Example of Industrial Application: CDMA

« CDMA Base Station Call-processing VeriSoft
software library involves complex dynamic 1
resource-allocation algorithms and handoffs | s v
scenarios (100,000’ s lines of C/C++ code). |
() Test driver [V\éﬂ]ikfr?g ©

R

Automated Testing Interface

—t

 How to test reliably this software? V eri Soft

— Increased test coverage from O(10) to CDMA
O(1,000,000) scenarios. Cdl —» Rest of the
— Automatic regression testing for multiple Prlf)'cb ngr System...
cell-sites and releases (more than 1,500 \orary
Veri Soft runs in 2000-2001). v ! v *
— Found several critical bugs...[|CSE2002] Hw Simulation Environment

MOVEP 2006 Page 18 June 2006

Discussion: Strengths of V eri Soft

o Used properly, very effective at finding bugs

— can quickly reveal behaviors virtually impossible to detect using
conventional testing techniques (due to lack of controllability and
observabhility)

— compared with conventional model checkers, no need to modd the
application!
 Eliminates this time-consuming and error-prone step
o VeriSoftisWYSIWY G: great for reverse-engineering

« Versatile: language independence is akey strength in practice

« Scalable: applicable to very large systems, although incomplete

— the amount of nondeterminism visible to VeriSoft can be reduced at the
cost of completeness and reproducibility (not limited by code size)

MOVEP 2006 Page 19 June 2006

Discussion: Limitations of V eri Soft

Requires test automation:
— need to run and evaluate tests automatically (can be nontrivial)
— If test automation is already available, getting started is easy

* Need be integrated in testing/execution environment
— minimally, need to intercept VS tossand VS assert

— intercepting/handling communication system calls can be tricky...

Requires test drivers/environment models (like most MC)

Specifying properties: the more, the better... (like MC)
— Restricted to safety properties (ok in practice); use Purify!

State explosion... (like MC)

MOVEP 2006 Page 20

June 2006

Discussion: Conclusions

VeriSoft (like model checking) is not a panacea.
— Limited by the state-explosion problem,...
— Requires some training and effort (to write test drivers, properties, etc.).
— “Model Checking is a push-button technology” is a myth!

Used properly, VeriSoft is very effective at finding bugs.
— Concurrent/reactive/real-time systems are hard to design, develop and test.
— Traditional testing is not adequate.
— “Model checking” (systematic testing) can rather easily expose new bugs.

These bugs would otherwise be found by the customer'!

So the real question is“How much ($) do you care about bugs?’

MOVEP 2006 Page 21 June 2006

The Sta

Part |

1c Approach (Automa

000000000

ic Abstraction)

Model Checking of Software

« Challenge: how to apply model checking to analyze softwar €?

— “Real” programming languages (e.g., C, C++, Java),
— “Red” size (e.g., 100,000’ s lines of code).

e Two main approaches to software model checking:

_ state-space exploration _
Modeling languages » Model checking

A

(SLAM, Bander a,
abstraction | Feaver, BLAST,...) adaptation

_ state-space exploration v _
Programming languages » Systematic testing

(Verisoft, JPF, CMC, Bogor,...)

MOVEP 2006 Page 23

June 2006

Static Approach: Automatic Abstraction (SLAM)

* Abstract-Check-Refine” Loop:

1. Abstract: generate a (may) abstraction via static program analysis
Ex: predicate abstraction and boolean program

2. Check: “model check” the abstraction

3. Refine: map abstract error traces back to code, or refine the abstraction
(e.g., by adding predicates); goto 1

A
Pirr?tg;ainf(A Predicate abstraction Q p=true
X = h(_x) -’ p: “x is odd”
It (Odd(X)) p=_
abort(); // error! o0 ot
x=0 O p=fadse

}

MOVEP 2006 Page 24 June 2006

Main |ldeas and | ssues

1. Abstract: extract a“model” out of concrete program via static analysis
* Which programming languages are supported? ((subset of) C, Java, Ada,
Domain-Specific Language?)
o Additional assumptions? (Pointers? Recursion? Concurrency?...)
 What isthetarget modeling language? ((C)(E)FSMs, PDAS,...)
o Can/must the abstraction process be guided by the user? How?

2. Model check the abstraction
* What properties can be checked? (Safety? Liveness?,...)
* How to model the environment? (Closed or open system ?...)
« Which model-checking algorithm? (New algos for PDAS, use SAT solvers...)
* |sthe abstraction “conservative’? (l.e., isthe static analysis “sound’ ?)

3. Map abstract counter-examples back to code, or refine the abstraction
« Behaviors violating the property may have been introduced during Step 1
* How to map scenarios leading to errors back to the code?
 When an error trace is spurious, how to refine the abstraction?

MOVEP 2006 Page 25 June 2006

Lots of Recent Work...

e Examples of tools:

— SLAM (Microsoft): see previous slides;, now part of Microsoft Windows
device-driver development toolkit

— Bandera (Kansas U.): Javato SPIN/SMV/* using user-guided abstraction
mapping and slicing/abstract-interpretation/*

— FeaVer (Bell Labs): C to SPIN using user-specified abstraction mapping
— BLAST (Berkeley): similar to SLAM but “lazy abstraction refinement”
— Etc! (+ Toolsfor static analysis of concurrent programs, Ada, etc.)

o Examples of frameworks. (automatic abstraction refinement)

— [Graf,Saidi,...], [Clarke,Grumberg,Jha,...], [Ball,Rgjamani,Podel ski,...],
[Dill,Das,...], [Khurshan,Namjoshi,...], [Dwyer,Pasareanu,Visser,...],
[Bruns,Godefroid,Huth,Jagadeesan,Schmidit...], [Henzinger, Jhala,
Maumdar,Sutre,...], and many more!

MOVEP 2006 Page 26 June 2006

Abstraction for Verification and Falsification

Using 3-valued models and logics, Generalized Model Checking...

See other dides here:

i

Slides.pdf

MOVEP 2006 Page 27 June 2006

Part |11

Combining the Static and Dynamic
Approaches

Page 28 June 2006

Model Checking of Software: Today

Two complementary approaches to software model checking:

state-space exploration

Modeling languages
A

abstraction

(SLAM, Bander a,
FeaVer, BLAST,...)

state-space exploration

» Model checking

adaptation

\ 4

Programming languages

Automatic Abstraction (static analysis):
ldea: parse code to generate an abstract
model that can be analyzed using model
checking

*No execution required but language
dependent

*May produce spurious counterexamples
(unsound bugs)

«Can prove correctness (complete) in theory
(but not in practice...)

MOVEP 2006

Page 29

» Systematic testing
(Verisoft, JPF, CMC, Bogor,...)

Systematic Testing (dynamic analysis):
ldea: control the execution of multiple test-
drivers/processes by intercepting systems
calls

|_anguage independent but requires
execution

«Counterexamples arise from code (sound
bugs)

*Provide a complete state-space coverage up
to some depth only (typically incomplete)

June 2006

Model Checking of Sofware: What Next?

o Genera idea combine static and dynamic analysis

* Motivation: take the best of both approaches
(precision of dynamic analysis AND efficiency of static analysis)

 Example: DART (Directed Automated Random Testing)
— See[PLDI’'2005] with N. Klarlund and K. Sen (summer intern, UIUC)

— Can be viewed as extending the V eriSoft approach to data nondeterminism
(see also [PLDI’ 98, Colby-Godefroid-Jagadeesan] for an earlier attempt)

— Uses static program analysis and symbolic execution techniques (including
theorem proving) for systematic test-input generation and execution

— One way to combine static and dynamic analysis for SW model checking...

MOVEP 2006 Page 30 June 2006

DART = Directed Automated Random Testing

1. Automated extraction of program interface from source code
2. Generation of test driver for random testing through the interface

3. Dynamic test generation to direct executions along alternative

program paths oo o
°
Together: (1)+(2)+(3) = DART (2) + (3) I .
(1)
Et) C Et

Any program (that compiles) can be run and tested automatically:
No need to write any test driver or harness code!

DART detects program crashes, assertion violations, etc.

MOVEP 2006 Page 31 June 2006

Example (C code)

Int double(int) { - (1) Interface extraction:
 parameters of top-level function

» external variables

} * return values of external functions

return 2 * x;

- (2) Generation of test driver for random testing:

void test_me(int x, inty) { main(){
int z = double(x); int tmp1 = randomInt();
if (z==y) { int tmp2 = randomint();
if (y == x+10) test_me(tmpl,tmp2);
abort(); /* error */ 1
} - C|0osed (self-executable) program that can be run
} Problem: probability of reaching abort() is extremely low!

MOVEP 2006 Page 32 June 2006

DART Step (3): Directed Search

main(X{ Concrete Symbolic
int t1 = randomInt(); Execution Execution

int t2 = randomint();
test_me(tl1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, inty) { creste symbolic
int z = double(x); X=H,y=9 variablesx, y
if (z==y) {
if (y == x+10)

abort(); /* error */

MOVEP 2006 Page 33

Path
Constraint

June 2006

DART Step (3): Directed Search

main({ Concrete Symbolic Path
int t1 = randomint(); Execution Execution Constraint

int t2 = randomint();
test_me(tl1,t2);

}

int double(int x) {return 2 * x; }

void test._ me(int x, inty) { create symbolic
int z = double(x); Y =36,y =90, Variabzlef;;yx
if (z==y) { 2= 1
f (y == x+10)

abort(); /* error */

MOVEP 2006 Page 34 June 2006

DART Step (3): Directed Search

main({ Concrete Symbolic Path
int t1 = randomint(); Execution Execution Constraint

int t2 = randomint();

test_me(t1,t2); Solve: 2 * x == y

}

int double(int x) {return 2 * x; }

Solution: x =1,y =2

void test_me(int x, inty) { creste symbolic
int z = double(x); variablesx, y
if (z==y) { iy
if (y == x+10)
abort(); /* error */
4} Xf36,y=99, 7=2%x W& v
} z2=72

MOVEP 2006 Page 35 June 2006

DART Step (3): Directed Search

main(){
int t1 = randomint();
int t2 = randomint();
test me(tl,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, inty) {

int z = double(x);
if (z==y) {
if (y == x+10)

abort(); /* error */

MOVEP 2006

Concrete Symbolic
Execution Execution

create symbolic
x=1y=2 variablesx, y

Page 36

Path
Constraint

June 2006

DART Step (3): Directed Search

main(){
int t1 = randomint();
int t2 = randomint();
test me(tl,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, inty) {

int z = double(x);

If (z==y) {
if (y == x+10)

abort(); /* error */

MOVEP 2006

Concrete
Execution

x=1y=2,

z2=2

Page 37

Symbolic
Execution

create symbolic
variables x, y

Z2=2%*X

Path
Constraint

June 2006

DART Step (3): Directed Search

main(){
int t1 = randomint();
int t2 = randomint();
test me(tl,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, inty) {
int z = double(x);

if (z==y) {

if (y == x+10)

abort(); /* error */

MOVEP 2006

Concrete
Execution

x=1y=2)z

Page 38

2

Symbolic
Execution

create symbolic
variables x, y

Z=2%*X

Path

Constraint

2*X==y

June 2006

DART Step (3): Directed Search

main(){
int t1 = randomint();
int t2 = randomint();
test me(tl,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, inty) {
int z = double(x);
if (z==y) {
if (y == x+10)

abort(); /* error */

}
<
}

MOVEP 2006

Concrete Symbolic Path
Execution Execution Constraint

Solve: (2* x ==y) A (y ==x +10)

Solution: x =10,y =20

create symbolic
variables x, y
2*X==y
y!=x+10
x=1y=2lz=2 Z=2*X
v v v

Page 39 June 2006

DART Step (3): Directed Search

main(X{ Concrete Symbolic
int t1 = randomInt(); Execution Execution

int t2 = randomint();
test_me(tl1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, inty) { creste symbolic
int z = double(x); x=1.y=2 variablesx, y
if (z==y) {
if (y == x+10)

abort(); /* error */

MOVEP 2006 Page 40

Path
Constraint

June 2006

DART Step (3): Directed Search

main({ Concrete Symbolic Path
int t1 = randomint(); Execution Execution Constraint

int t2 = randomint();
test_me(tl1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, inty) { create symbolic
int z = double(x); variablesx, y
_ x=10,y=20Jz=20 zZ=2*X
if (z==y) {
if (y == x+10)
abort(); /* error */
}
v v v

MOVEP 2006 Page 41 June 2006

DART Step (3): Directed Search

main({ Concrete Symbolic Path
int t1 = randomint(); Execution Execution Constraint

int t2 = randomint();
test_me(tl1,t2);

}

int double(int x) {return 2 * x; }

void test_me(int x, inty) { create symbolic
int z = double(x); vaniablesx, y
if (z==y) { —=
x =10,y =20)z =20 7=2% x 2* x==y
if (y == x+10)

abort(); /* error */

MOVEP 2006 Page 42 June 2006

DART Step (3): Directed Search

main(){ Concrete Symbolic Path

int t1 = randomint(); Execution Execution Constraint

int t2 = randomint();
test_me(tl1,t2);

} Program Error

int double(int x) {return 2 * x; }

void test_me(int x, inty) { catelmbolic
int z = double(x); variablesx, y
if (z==y) { 2% x==y
if (y == x+10)
< x=10,y=20,lz=20 z=2*x y==x+10

abort(); /* error */

MOVEP 2006 Page 43 June 2006

Directed Search: Summary

Dynamic test generation to direct executions along alternative

program paths

collect symbolic constraints at branch points (whenever possible)

negate one constraint at a branch point to take other branch (say b)

call constraint solver with new path constraint to generate new test inputs
next execution driven by these new test inputs to take alternative branch b
check with dynamic instrumentation that branch b is indeed taken

Repeat this process until all execution paths are covered

May never terminate!

o Significantly improves code coverage vs. pure random testing

MOVEP 2006

Page 44 June 2006

Novelty: Use of Concrete Vauesin Symbolic Execution

void foo(int x,int y){ * Assume we can reason about linear
constraints only
Int z = x*x*x; /* could be z = h(x) */
o [|nitidlyx=3andy =7 (randomly

if (y ==2) { generated)
abort(); /* error */ « Concrete z = 27, but symbolic z = x*x*X
1 — Cannot handle symbolic value of z!
— Stuck?

MOVEP 2006 Page 45 June 2006

Novelty: Use of Concrete Vauesin Symbolic Execution

void foo(int x,int y){
Int z = x*x*x; /* could be z = h(x) */
it (y ==2) {

abort(); /* error */

-
Replace symbolic expression
by concrete value when

symbolic expression becomes
unmanageable (e.g. non-linear)

}

N _/

NOTE: whenever symbolic execution is
stuck, static analysis becomes imprecisel

MOVEP 2006

Assume we can reason about linear
constraints only

Initially x =3 andy =7 (randomly
generated)

Concrete z = 27, but symbolic z = x*x*x
— Cannot handle symbolic value of z!
Stuck?

— NO! Useconcretevaluez = 27
and proceed. ..

Take else branch with constraint y = 27
Solvey == 27 to take then branch

Execute next runwithx =3andy = 27

DART findsthe error!

June 2006

Comparison with Static Analysis

1 foobar(int x, int y){

2 If (x> 0N

3 if (x>0 && y==10){
4 abort(); /* error */
5 }

6 }else{

7 if (x>0 && y==20){
8 abort(); /* error */
9 |}

10 }

11}

MOVEP 2006

Page 47

Symbolic execution is stuck at line 2...
Static analysis tools will conclude that
both aborts may be reachable

— “Sound” toolswill report both, and
thus one false alarm

— “Unsound” tools will report “no
bug found”, and miss a bug

Static-analysis-based test generation
techniques are helpless here !!!

In contrast, DART finds the only error
(line 4) with high probability
(but cannot prove line 8 is unreachable)

Unlike static analysis, all bugs reported
by DART are guaranteed to be sound

June 2006

Other Advantages of Dynamic Analysis

1 struct foo { int i; char c; }

2

3 bar (struct foo *a) {
4 if (a->c ==0) {
5 *((char *)a + sizeof(int)) = 1;

6 if (a->c 1= 0) {

MOVEP 2006

abort();

Dealing with dynamic datais easier
with concrete executions

Due to limitations of alias analysis,
static analysis tools cannot determine
whether “a>c” has been rewritten

— “the abort may be reachable”

In contrast, DART finds the error
easily (by solving the linear constraint
a>c==0)

In summary, all bugs reported by
DART are guaranteed to be sound!

But DART may not terminate...

Page 48 June 2006

DART for C: Implementation Details

CIL (Berkeley)’

prgm.c dart (OCaml, C)

test_driver.c ‘/

prgm_instrumented.c '
C compiler
> prgm.exe
dart.c l

Constraint solver(s) 3 possible outcomes: ¢ Error found
(e.g., Ip_solve.so) « Complete coverage

 Run forever...

MOVEP 2006 Page 49 June 2006

Some Experimental Results

Experimental results with a DART prototype for C are very encouraging:

« Benchmark: Needham-Schroeder authentication protocol
(400 lines of C code with aknown attack)

— DART takes about 1 min (9,926 runs) to discover the known attack (1GHz P-111)

— Previoustools (like VeriSoft, BLAST, static analyzers,...) do not find the attack

» VeriSoft does not find the attack in 24 hours of search (albeit with a different, concurrent
and nondeterministic, Dolev-Y ao intruder model)

« BLAST reports aspurious error after 6 minutes of search (due to imprecision of current
alias-analysis used), or hangs with “interpolant” optimization turned on (after acall to
Simplify with a formula containing 40,000+ variables and 68,000+ clauses)

e 0SIP (Open Source SIP library; 30,000 lines of C code)

— DART found away to crash 65% of the 600 externally visible functions
in the oSIP API within 1,000 runs per function

— Analysisrevealed a new attack to crash the oSIP parser
(by remotely send it a single particular message!)

MOVEP 2006 Page 50 June 2006

Related Work

« Static analysis and automatic test generation based on static analysis.
limited by symbolic execution technology (see previous discussion)

« Random testing (fuzz tools, etc.): poor coverage

* Dynamic test generation (Korel, Gupta-Mathur-Soffa, etc.)
— Attempt to exercise a specific program path
— DART attemptsto cover all executable program paths instead (like model checking)

— Also, DART has been implemented for C and applied to large examples
(handles full C, function calls, unknown functions, exploits simultaneous concrete
and symbolic executions, has run-time checks to detect incompleteness,...)

* Independent, closely related work on directed search [Cadar-Engler, SPIN’ 05]

 The DART approach (idea, formalization, tool architecture) isindependent of
specific constraint types or solvers; those params define DART implementations

— Ex: DART implementation with pointer in-/equality constraints [Sen et a., FSE’05]
— Ex: DART implementation with bit-level symbolic execution [Engler et a., S& P 06]

MOVEP 2006 Page 51 June 2006

New Results: Introducing SMART (to appear)

* Problem: Executing all feasible program paths does not scale!
— Number of paths can be exponential (even if loop-free) or infinite (loops)
— E.g., in 0SIP, branch coverage stuck around 30% due to path explosion...

e ldea: compositional dynamic test generation (SMART algorithm)
— Likeinterprocedural static analysis. use summaries of individual functions

— If f() callsg(), analyzeltest g() separately, summarize the results, and
use g()’s summaries when testing f()

e summaries may now include information about concrete values
 d()’soutputs are treated as symbolic inputs to f()

— Strategies for computing summaries:
 bottom-up: easier to implement but many unused summaries
 top-down: compute summaries on a demand-driven basis
SMART = “Systematic Modular Automated Random Testing”

MOVEP 2006 Page 52 June 2006

SMART = Modular DART

Theorem: SMART provides same path coverage as DART

« Same “local path” reachability, branch coverage, assertion violations,...
1 //'locate index of first character cin s

int locate(char *s, int ¢) {
int i=0;

if (s[i] == 0) return -1;
I++;
}
9 returni
10}
11 void top(char *input) {
12 intz;
13
14 z = locate(input,'a’);
15 if (z==-1) return -1,

2
3
4
5 while (s[i] = ¢) {
6
7
8

16 if (input[z+1] !="") return 1; // success

17 return O;
18 }

MOVEP 2006

/] error

/l failure

» Assume input (and s) are null-terminated and
of maximum length n
* locate() has at most 2n execution paths
Ex of summaries:
(0] ==c)=>ret=0
(0] '=c) & (0] ==0) =>ret=-1
(J0]'=0) & (0] '=0) & (J1] ==c)=>ret=1
etc.
* top() has at most 3 execution paths
o P={top(),locate()} has at most 3n execution paths
* DART search agorithm explores 3n paths
« SMART search algorithm explores 2n+2paths
Sum vs. product: linear vs. exponential!
(Similar to HSM/PDS verification...)
* Claim: SMART search is necessary to make the
“DART approach” scalable!

Page 53 June 2006

Extensions (see [IFM’ 2005])

e Faster constraint solvers
— Ex: DART on NS with conjunctions only (1) or with digunctions (2)

depthlerror? Implementation 1 Implementation 2

1 no 5 runs {<1 second) 4 rung {<1 second)
2 no 85 runs (<1 second) 30 runs (<1 gecond)
3 no | 6,260 runs (22 seconds) | 554 runs (<1 second)
4 | yes (328,459 runsg {18 minutes)(9,926 runs {57 seconds)

e More constraint types and decision procedures

— for pointers, arrays, strings, bit-vectors, etc. (default: random testing)

e Concurrency

— Scheduling nondeterminism is orthogonal to input data nondeterminism

— Use partial-order reduction for concurrency (multi-threaded/process)

MOVEP 2006 Page 54 June 2006

Future Work: Longer Term (see [IFM’2005])

e Combining further static and dynamic software model checking
— EX: use program slicing to focus dynamic search towards specific code
— Ex: use DART as asubroutine to test path feasibility inside static analyzer

« Specifying preconditions (and postconditions)

— Either using tool-friendly annotations (logic) or input-filtering code

— How to interpret code as precisely asif specified directly in logic?
We need “ constraint inference” capabilities...

oO~NO O WDN

9
10}

MOVEP 2006

int locate(char *s, int ¢) {
int i=0;

while (s[i] != ¢) {

if (s[i] == 0) return -1;
I++;

}

return i;

From

(0] ==c)=>ret=0

(d0]!'=c) & (0] == 0) =>ret=-1

(d0]!'=¢c) & (J0] '=0) & (1] ==c)=>ret=1

etc.
To

Ji:gi]=c& (V<i:(dj]'=c) & (dj] '=0)) => ret=i
etc.

Page 55 June 2006

Conclusions

» Past: two complementary approaches to software model checking
— Dynamic Approach: Systematic Testing (Ex: VeriSoft)
— Static Approach: Automatic Abstraction (Ex: SLAM)

* Future: combine both approaches (Ex: DART)
— DART = Directed Automated Random Testing

— No manually-generated test driver required (fully automated)
» Asautomated as static analysis but with higher precision
« Starting point for testing process

— No false darms but may not terminate
— Smarter than pure random testing (with directed search)

— Can work around limitations of symbolic execution technology
« Symbolic execution is an adjunct to concrete execution
« Randomization helps where automated reasoning is difficult

o Still plenty of work to do before “software model checking for the masses’ !

MOVEP 2006 Page 56 June 2006

