
LICS’2005 Page 1 June 2005

Model Checking Vs. Generalized Model Checking: Model Checking Vs. Generalized Model Checking:
Semantic Minimizations for Temporal LogicsSemantic Minimizations for Temporal Logics

Patrice Patrice Godefroid Godefroid Michael Michael HuthHuth

Bell Laboratories Bell Laboratories Imperial CollegeImperial College

LICS’2005 Page 2 June 2005

Verification via Automatic AbstractionVerification via Automatic Abstraction

• Implemented in software model checkers like SLAM, BLAST,…

• Traditional iterative abstraction procedure:
1. Abstract: generate a finite abstraction A from the concrete program C

such that A simulates C (using predicate abstraction, theorem proving)

2. Check: given any universal temporal-logic formula φ, compute [A |= φ] :
if [A |= φ] = true, then return true (we then know [C |= φ] = true)

3. Refine: (checking of A is inconclusive) refine A, then go to Step 1
• Ex: with predicate abstraction, add predicates to refine the model

• Limitations:
– Restricted to universal properties (no existential properties)

– [A |= φ] = false does not imply anything about C

– Could the analysis be more precise for an acceptable cost?

LICS’2005 Page 3 June 2005

• Richer models A that distinguish what is true/false/unknown of C
– Example: “partial Kripke structure” [Fitting92, Bruns-G99]

– Other example: “Modal Transition System” (may/must trans.) [Larsen+88]

– These formalisms are all equally expressive [G-Jagadeesan03]

• Reasoning about 3-valued models requires 3-valued temporal logic
– Ex: [(M,s) |= p] = true, [(M,s) |= AXp] = false, [(M,s) |= EXp] = ⊥

• Complexity of 3-valued MC = complexity of MC [Bruns-G00]

A Solution: 3A Solution: 3--Valued Models and LogicsValued Models and Logics

s p=true

p=false
p=⊥

MM

LICS’2005 Page 4 June 2005

New AbstractNew Abstract--CheckCheck--Refine ProcessRefine Process

• New procedure for automatic abstraction: (3 improvements)

[G-Jagadeesan02, G-Huth-Jagadeesan01,…]

1. Abstract: generate a 3-valued abstraction A from the concrete program C
that preserves true, false, unknown properties of C (same cost)
(Formally, A � C where � is the abstraction preorder on 3-valued models)

2. Check: given any temporal-logic formula φ,
• (3-valued model checking) compute [A |= φ] : (same cost)

if [A |= φ] = true or false, then return true or false (respectively)

• (generalized model checking)

if there is no concretization C of A such that C satisfies φ, return false

if there is no concretization C of A such that C violates φ, return true

3. Refine: (checking of A is inconclusive) refine A, then go to Step 1

LICS’2005 Page 5 June 2005

• Definition: [Bruns-G00]
Given a program abstraction A and a temporal logic formula φ,
does there exist a concretization C of A such that C satisfies φ?

• GMC is a generalization of both
– Satisfiability (SAT)

– Model Checking (MC)

• GMC can be more expensive than MC (since it includes SAT)
– in | φ | (but worst-case and φ is usually short) [Bruns-G00]

– in |A| (quadratic) but linear for persistence (incl. safety) properties [G-J02]

• GMC can also be more precise than MC…

Generalized Model Checking (GMC)Generalized Model Checking (GMC)

LICS’2005 Page 6 June 2005

Example where GMC is more precise than MCExample where GMC is more precise than MC

Program P() {Program P() {
intint x,y = 1,0;x,y = 1,0;
x,y = 2* f(x), f(y);x,y = 2* f(x), f(y);
x,y = 1,0;x,y = 1,0;

}}

Predicate abstractionPredicate abstraction
p: “x is odd”p: “x is odd”
q: “y is odd”q: “y is odd”

Property “ (eventually y is odd) and (always, x is odd or y is evProperty “ (eventually y is odd) and (always, x is odd or y is even)”en)”

MC(A,MC(A,φφ) =) = ⊥⊥ …but GMC(A,…but GMC(A,φφ) = false!) = false!

is represented by the LTL formula is represented by the LTL formula φφ = F(q) = F(q) ∧∧ G(p G(p ∨∨ ¬¬q)q)

p=true, q=falsep=true, q=false

p=false, q=p=false, q=⊥⊥

p=true, q=falsep=true, q=false

AA

LICS’2005 Page 7 June 2005

How often is GMC more precise than MC?How often is GMC more precise than MC?

• Motivation for this paper!

• More generally, how to reduce GMC(A,φ) to MC(A,φ’)?
(independently of A)

• φ’ is called a semantic minimization of φ; problem already studied
for Propositional Logic (PL) [Blamey80, Reps-Loginov-Sagiv02]

• Theorem: [Blamey80] for all φ ∈ PL, there is a sem min φ’ ∈ PL

• Note: | φ’ | can be much larger than | φ | ! (since computing φ’ is
as hard as GMC, which is as hard as SAT, hence NP-hard for PL)

• What about temporal logics?

LICS’2005 Page 8 June 2005

Semantic Minimizations for PML and Semantic Minimizations for PML and µµLL

• Propositional Modal Logic (PML): φ ::= p | ¬φ | φ ∧ φ | EX φ

• Theorem: For all φ ∈ PML, there is a sem min φ’ ∈ PML

• Proof idea:
– build a tree automaton A3(φ) that accepts a 3-valued labeled tree T3 iff

there exists a 2-valued tree T such that T3 � T and T satisfies φ
– Translate A3(φ) back into a PML formula φ’ of modal depth O(| φ |)

(possible because A3(φ) cannot distinguish trees at depths greater than | φ |)

• Modal mu-calculus (µL): φ ::= p | ¬φ | φ ∧ φ | EX φ | Ζ | µZ.φ

• Theorem: For all φ ∈ µL, there is a sem min φ’ ∈ µL

• Proof idea: similar as above

LICS’2005 Page 9 June 2005

Semantic Minimizations for CTL, LTL and CTLSemantic Minimizations for CTL, LTL and CTL**

• For CTL, LTL and CTL*, GMC is PTIME-hard in |A| [G-03]…

• …while MC is known to be NLOGSPACE-complete in |A|

• … therefore, GMC(A,φ) cannot be reduced to MC(A,φ’) unless
NLOGSPACE = PTIME !

• Theorem:
The sem min of the CTL formula φ = A[(EX q1)U(q1→ q2)] is the
µL formula φ’ = µZ1.(q1→q2) ∨ [µZ2.AX Z1 ∧ EX(q1∧(q2∨Z2))],
which is not expressible in CTL*

• Proof idea: φ’ is obtained with previous construction of A3(φ);
CTL* cannot express unbounded alternation (and/or graph reach.)

LICS’2005 Page 10 June 2005

Semantic Minimizations: SummarySemantic Minimizations: Summary

• PL, PML and µL are closed under semantic minimizations

• while CTL, LTL and CTL* are not

• But for all φ ∈ CTL* (thus CTL,LTL), there is a sem min φ’ ∈ µL

• Note on first-order logic over binary relations (FOL):
since SAT is undecidable, so is GMC, while MC is decidable.
Thus, sem min cannot exist for all formulas of FOL.

LICS’2005 Page 11 June 2005

SelfSelf--MinimizationMinimization

• When do we have φ’ = φ ? Such φ are called self-minimizing

• For any self-minimizing formula φ, GMC(A,φ) = MC(A,φ)
that is, GMC and MC have the same precision

• Checking for self-minimization semantically:

– Compare the automaton A3(φ) with an automaton A3(|= φ) that accepts
exactly all 3-valued labeled trees T3 such that [T3 |= φ] = true

– By construction, L(A3(φ)) ⊆ L(A3(|= φ))

– If L(A3(|= φ)) ⊆ L(A3(φ)), then φ is self-minimizing

– If φ ∈ µL, these automata are parity tree automata and A3(φ) can be of size
exponential in | φ |

– Thus, such a semantic (automata-based) check is precise but expensive!

LICS’2005 Page 12 June 2005

Syntactic Tests for SelfSyntactic Tests for Self--MinimizationMinimization

• Checking for self-minimization syntactically:

– linear in | φ | but incomplete (less precise than semantic check)

• Example of sufficient condition: (*)
Any formula that does not contain any atomic proposition in
mixed polarity (in its negation normal form) is self-minimizing.

• Many frequently-used formulas satisfy this condition:

– (absence) AG(q → AG(¬ p)), (universality) AG(q → AG p)

– (existence) EF p, (response) AG(p → AF q), etc.

• (*) is not necessary: (¬q1∨q2)∧(¬q2∨q1) is self-minimizing

LICS’2005 Page 13 June 2005

Temporal Patterns of SelfTemporal Patterns of Self--MinimizationMinimization

• In the paper, we present grammars to identify syntactically
self-minimizing formulas

(details omitted here)

• Related work: study of temporal logics and normal forms for
which satisfiability is efficiently decidable
– [Emerson-Evangelist-Srinivasan90, Janin-Walukiewicz95, Demri-

Schnoebelen99, Henzinger-Kupferman-Majumdar03, etc.]

LICS’2005 Page 14 June 2005

ConclusionsConclusions

• Study of precision of MC vs. GMC for verification via abstraction

• More generally, study of how to reduce GMC(A,φ) to MC (A,φ’)

• φ’ is called a semantic minimization of φ

• Like PL, PML and µL are closed under semantic minimizations,
but CTL, LTL and CTL* are not

• Checking for self-minimizing formulas:
– semantically (precise but expensive automata-based algorithms)

– syntactically (sufficient conditions only, linear in | φ |)

• Good news: in practice, many formulas are self-minimizing, and
MC is as precise as GMC for those

