Model Checking Vs. Generalized Model Checking:
Semantic Minimizations for Temporal Logics

Patrice Godefroid Michael Huth

Bell Laboratories Imperial College

5555555555555555555555

Verification via Automatic Abstraction

* |Implemented in software model checkerslike SLAM, BLAST,...

e Traditional iterative abstraction procedure:

1. Abstract: generate afinite abstraction A from the concrete program C
such that A smulates C (using predicate abstraction, theorem proving)

2. Check: given any universal temporal-logic formula @, compute [A |= ¢ :
if [A |= @] =true, then return true (wethen know [C |= @] = true)

3. Refine: (checking of A isinconclusive) refine A, then go to Step 1
» EXx: with predicate abstraction, add predicates to refine the model

 Limitations:
— Restricted to universal properties (no existential properties)
— [A |= @] = false does not imply anything about C
— Could the analysis be more precise for an acceptable cost?

LICS’2005 Page 2 June 2005

A Solution: 3-Valued Models and Logics

* Richer models A that distinguish what is true/false/unknown of C

— Example: “partial Kripke structure” [Fitting92, Bruns-G99]
S o p=true

Co:/ \OD o=false

p=U
— Other example: “Modal Transition System” (may/must trans.) [Larsen+88]

— Theseformalisms are all equally expressive [G-Jagadeesan(03]

* Reasoning about 3-valued models requires 3-valued temporal logic
— Ex: [(M,s) |=p] =true, [(M,s) |=AXp] =fdse, [(M,s) |- EXp] =01

e Complexity of 3-valued MC = complexity of MC [Bruns-G0Q]

LICS’2005 Page 3 June 2005

New Abstract-Check-Refine Process

 New procedure for automatic abstraction: (3 improvements)
[G-Jagadeesan02, G-Huth-Jagadeesan01,...]

1.

LICS'2005

Abstract: generate a 3-valued abstraction A from the concrete program C
that preserves true, false, unknown propertiesof C (same cost)
(Formally, A < C where < isthe abstraction preorder on 3-valued models)

Check: given any temporal-logic formula ¢,

o (3-valued model checking) compute [A |= q) : (same cost)
If [A |= @] =trueor false, then return true or false (respectively)

* (generalized model checking)
If thereisno concretization C of A such that C satisfies ¢, return false
If there is no concretization C of A such that C violates @, return true

Refine: (checking of A isinconclusive) refine A, then go to Step 1

Page 4 June 2005

Generalized Model Checking (GMC)

o Définition: [Bruns-GOO]
Given a program abstraction A and atemporal logic formula @,
does there exist a concretization C of A such that C satisfies ¢?

SAT
« GMC isageneralization of both q

MC
L 52 e
_ satisfiability (SAT) ! p=tal
— Model Checking (MC) /
pnztrm:8 p—false

« GMC can be more expensive than MC (since it includes SAT)
— In| @| (but worst-case and @ is usually short) [Bruns-G0Q]
— In|A| (quadratic) but linear for persistence (incl. safety) properties [G-J02]

« GMC can also be more precise than MC...

LICS’2005 Page 5 June 2005

Example where GMC Is more precise than MC

A
Rrogram_P() { Predicate abstraction Q petrue gfdlse
ntxy = 10 p: “X isodd” "
X,y = 2*f(x), f(y); N . olse o
Xy =10: g: “yisodd p=false, g=L
}

é p=true, g=false

Property “(eventually y isodd) and (always, x isodd or y is even)”
IS represented by the LTL formula ¢@=F(q) A G(p V —Q)

MC(A,p) =0 ...but GMC(A,p) = fase!

LICS’2005 Page 6 June 2005

How often is GM C more precise than MC?

Motivation for this paper!

More generally, how to reduce GMC(A,p) to MC(A,q)?
(independently of A)

@ iscalled asemantic minimization of ¢; problem already studied
for Propositional Logic (PL) [Blamey80, Reps-L oginov-Sagiv02]

Theorem: [Blamey80] for all @ € PL, thereisasemmin @ € PL

Note: | @ | can be much larger than | @|! (Since computing @ IS
as hard as GMC, which isas hard as SAT, hence NP-hard for PL)

What about temporal logics?

LICS’2005 Page 7 June 2005

Semantic Minimizations for PML and L

Propositional Modal Logic (PML): @::=p|—-@|@A @|EX @
Theorem: For al @ € PML, thereisasemmin @ € PML

Proof idea:

— build atree automaton A3((p) that accepts a 3-valued labeled tree T3 iff
there existsa2-valued tree T suchthat T2 < T and T satisfies ¢

— Trandate A3(g) back into aPML formula @ of moda depth O(| @)
(possible because A3(¢) cannot distinguish trees at depths greater than | @)

Modal mu-calculus (UL): @::=p| Q| A Q|EX @|Z |uZ.@
Theorem: For al @ € uL, thereisasemmin @ € pL

Proof idea: ssmilar as above

LICS’2005 Page 8 June 2005

Semantic Minimizationsfor CTL, LTL and CTL"®

 For CTL,LTL and CTL", GMCisPTIME-hardin|A|[G-03]...

...while MC is known to be NLOGSPA CE-complete in |A]

... therefore, GMC(A, @) cannot be reduced to MC(A,¢') unless
NLOGSPACE = PTIME!

e Theorem:
The sem min of the CTL formula@= A[(EX g,)U(gl— q,)] iIsthe
pL formula@ = pZ,.(q;—0qy) V [MZ,.AX Z; A EX(apA(AVZ))],
which is not expressiblein CTL"

* Proof idea: ¢ isobtained with previous construction of A3(q);
CTL" cannot express unbounded alternation (and/or graph reach.)

LICS’2005 Page 9 June 2005

Semantic Minimizations: Summary

 PL, PML and pL are closed under semantic minimizations
e whileCTL, LTL and CTL" are not
e Butforal e CTL" (thusCTL,LTL), thereisasemmin@ < pL

* Note on first-order logic over binary relations (FOL):
since SAT is undecidable, so is GMC, while MC is decidable.
Thus, sem min cannot exist for all formulas of FOL.

LICS’2005 Page 10 June 2005

Self-Minimization
« Whendowehave@ =¢@? Such @arecaled self-minimizing

e For any salf-minimizing formula @, GMC(A,®) = MC(A,0)
that is, GMC and MC have the same precision

e Checking for salf-minimization semantically:

— Compare the automaton A3(¢@) with an automaton A3(]= @) that accepts
exactly all 3-valued labeled trees T2 such that [T3 |= @] = true

— By construction, L(A3(@) C L(A3(|= o))
— If L(A3(]= @) C L(A¥@)), then @is self-minimizing

— If @ € L, these automata are parity tree automata and A3(¢) can be of size
exponentia in | @|

— Thus, such a semantic (automata-based) check is precise but expensive!

LICS’2005 Page 11 June 2005

Syntactic Tests for Self-Minimization

e Checking for saelf-minimization syntactically:

— linear in | @ | but incomplete (less precise than semantic check)

« Example of sufficient condition: (*)
Any formulathat does not contain any atomic proposition in
mixed polarity (in its negation normal form) is self-minimizing.

o Many frequently-used formulas satisfy this condition:
— (absence) AG(g — AG(—p)), (universality) AG(q— AGDp)
— (existence) EF p, (response) AG(p —+ AFQ), elc.

e (*)Isnot necessary: (—d,;Vd,)A(—0,VQ,) IS self-minimizing

LICS’2005 Page 12 June 2005

Temporal Patterns of Self-Minimization

 Inthe paper, we present grammars to identify syntactically
self-minimizing formulas

ps = M| R |08 | psiAps | PsygV PSys
EXps | AXps | EGps | AGps
(details omitted here) AFpsy | Alpsy,Upsy 4]
o8 u= M| R | ps | osVos| oszg Aos3g

EXos | AXos | EFos | AFos
EGoss | ElossUos] | mef(05)

Figure 1. ps (os) generates pessimistically (op-
timistically) self-minimizing formulas (resp.);
M ranges over monotone formulas of L, R
over formulas in (8); # and ¥ (3) are as in Def-
inition 3(5); (S ranges over finite subsets of
os; and r=f(-) is as in Definition 4.

* Related work: study of temporal logics and normal forms for
which satisfiability is efficiently decidable

— [Emerson-Evangelist-Srinivasan90, Janin-Walukiewicz95, Demri-
Schnoebelen99, Henzinger-Kupferman-Maumdar03, etc.]

LICS’2005 Page 13 June 2005

Conclusions

o Study of precision of MC vs. GMC for verification via abstraction
« More generally, study of how to reduce GMC(A,p) to MC (A,9)
e (¢ Iscaled asemantic minimization of ¢

e LikePL, PML and pL are closed under semantic minimizations,
but CTL, LTL and CTL" are not

e Checking for self-minimizing formulas:
— semantically (precise but expensive automata-based agorithms)
— syntactically (sufficient conditions only, linear in| @|)

e (Good news: in practice, many formulas are self-minimizing, and
MC is as precise as GMC for those

LICS’2005 Page 14 June 2005

