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Verification via Automatic AbstractionVerification via Automatic Abstraction

• Implemented in software model checkers like SLAM, BLAST,…

• Traditional iterative abstraction procedure:
1. Abstract: generate a finite abstraction A from the concrete program C    

such that A simulates C   (using predicate abstraction, theorem proving)

2. Check: given any universal temporal-logic formula φ, compute [A |= φ] :
if [A |= φ] = true, then return true  ( we then know [C |= φ] = true)

3. Refine: (checking of A is inconclusive) refine A, then go to Step 1
• Ex: with predicate abstraction, add predicates to refine the model

• Limitations:
– Restricted to universal properties (no existential properties)

– [A |= φ] = false does not imply anything about C

– Could the analysis be more precise for an acceptable cost?



LICS’2005 Page 3 June 2005

• Richer models A that distinguish what is true/false/unknown of C
– Example: “partial Kripke structure”  [Fitting92, Bruns-G99]

– Other example: “Modal Transition System” (may/must trans.) [Larsen+88]

– These formalisms are all equally expressive [G-Jagadeesan03]

• Reasoning about 3-valued models requires 3-valued temporal logic
– Ex:   [(M,s) |= p] = true,    [(M,s) |= AXp] = false,    [(M,s) |= EXp] = ⊥

• Complexity of 3-valued MC = complexity of MC [Bruns-G00]

A Solution: 3A Solution: 3--Valued Models and LogicsValued Models and Logics

s p=true

p=false
p=⊥

MM
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New AbstractNew Abstract--CheckCheck--Refine ProcessRefine Process

• New procedure for automatic abstraction: (3 improvements)

[G-Jagadeesan02, G-Huth-Jagadeesan01,…]

1. Abstract: generate a 3-valued abstraction A from the concrete program C 
that preserves true, false, unknown properties of C      (same cost)    
(Formally, A � C where � is the abstraction preorder on 3-valued models)

2. Check: given any temporal-logic formula φ,
• (3-valued model checking) compute [A |= φ] :               (same cost)

if [A |= φ] = true or false, then return true or false (respectively) 

• (generalized model checking) 

if there is no concretization C of A such that C satisfies φ, return false

if there is no concretization C of A such that C violates φ, return true

3. Refine: (checking of A is inconclusive) refine A, then go to Step 1
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• Definition: [Bruns-G00]                                                          
Given a program abstraction A and a temporal logic formula φ, 
does there exist a concretization C of A such that C satisfies φ?

• GMC is a generalization of both
– Satisfiability (SAT)

– Model Checking (MC)

• GMC can be more expensive than MC (since it includes SAT)
– in | φ | (but worst-case and φ is usually short) [Bruns-G00]

– in |A| (quadratic) but linear for persistence (incl. safety) properties [G-J02]

• GMC can also be more precise than MC…

Generalized Model Checking (GMC)Generalized Model Checking (GMC)
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Example where GMC is more precise than MCExample where GMC is more precise than MC

Program P( ) {Program P( ) {
intint x,y = 1,0;x,y = 1,0;
x,y = 2* f(x), f(y);x,y = 2* f(x), f(y);
x,y = 1,0;x,y = 1,0;

}}

Predicate abstractionPredicate abstraction
p: “x is odd”p: “x is odd”
q: “y is odd”q: “y is odd”

Property “ (eventually y is odd) and (always, x is odd or y is evProperty “ (eventually y is odd) and (always, x is odd or y is even)”en)”

MC(A,MC(A,φφ) = ) = ⊥⊥ …but  GMC(A,…but  GMC(A,φφ) = false!) = false!

is represented by the LTL formula   is represented by the LTL formula   φφ = F(q) = F(q) ∧∧ G(p G(p ∨∨ ¬¬q)q)

p=true, q=falsep=true, q=false

p=false, q=p=false, q=⊥⊥

p=true, q=falsep=true, q=false

AA
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How often is GMC more precise than MC?How often is GMC more precise than MC?

• Motivation for this paper!

• More generally, how to reduce GMC(A,φ) to MC(A,φ’ )? 
(independently of A)

• φ’  is called a semantic minimization of φ; problem already studied 
for Propositional Logic (PL) [Blamey80, Reps-Loginov-Sagiv02]

• Theorem: [Blamey80] for all φ ∈ PL, there is a sem min φ’  ∈ PL

• Note: | φ’ | can be much larger than | φ | !     (since computing φ’  is 
as hard as GMC, which is as hard as SAT, hence NP-hard for PL)

• What about temporal logics?
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Semantic Minimizations for PML and Semantic Minimizations for PML and µµLL

• Propositional Modal Logic (PML): φ ::= p | ¬φ | φ ∧ φ | EX φ

• Theorem: For all φ ∈ PML, there is a sem min φ’ ∈ PML

• Proof idea:
– build a tree automaton A3(φ) that accepts a 3-valued labeled tree T3 iff

there exists a 2-valued tree T such that T3 � T and T satisfies φ
– Translate A3(φ) back into a PML formula φ’ of modal depth O(| φ |)                                     

(possible because A3(φ) cannot distinguish trees at depths greater than | φ |)

• Modal mu-calculus (µL): φ ::= p | ¬φ | φ ∧ φ | EX φ | Ζ | µZ.φ

• Theorem: For all φ ∈ µL, there is a sem min φ’ ∈ µL

• Proof idea: similar as above
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Semantic Minimizations for CTL, LTL and CTLSemantic Minimizations for CTL, LTL and CTL**

• For CTL, LTL and CTL*, GMC is PTIME-hard in |A| [G-03]…

• …while MC is known to be NLOGSPACE-complete in |A| 

• … therefore, GMC(A,φ) cannot be reduced to MC(A,φ’) unless 
NLOGSPACE = PTIME !

• Theorem:
The sem min of the CTL formula φ = A[(EX q1)U(q1→ q2)] is the 
µL formula φ’ = µZ1.(q1→q2) ∨ [µZ2.AX Z1 ∧ EX(q1∧(q2∨Z2))], 
which is not expressible in CTL*

• Proof idea: φ’ is obtained with previous construction of A3(φ); 
CTL* cannot express unbounded alternation (and/or graph reach.)
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Semantic Minimizations: SummarySemantic Minimizations: Summary

• PL, PML and µL are closed under semantic minimizations

• while CTL, LTL and CTL* are not

• But for all φ ∈ CTL* (thus CTL,LTL), there is a sem min φ’ ∈ µL

• Note on first-order logic over binary relations (FOL):                        
since SAT is undecidable, so is GMC, while MC is decidable. 
Thus, sem min cannot exist for all formulas of FOL.
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SelfSelf--MinimizationMinimization

• When do we have φ’ = φ ?   Such φ are called self-minimizing

• For any self-minimizing formula φ, GMC(A,φ) = MC(A,φ)       
that is, GMC and MC have the same precision 

• Checking for self-minimization semantically:

– Compare the automaton A3(φ) with an automaton A3(|= φ) that accepts 
exactly all 3-valued labeled trees T3 such that [T3 |= φ ] = true

– By construction, L(A3(φ)) ⊆ L(A3(|= φ))

– If L(A3(|= φ)) ⊆ L(A3(φ)), then φ is self-minimizing

– If φ ∈ µL, these automata are parity tree automata and A3(φ) can be of size 
exponential in | φ |

– Thus, such a semantic (automata-based) check is precise but expensive!
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Syntactic Tests for SelfSyntactic Tests for Self--MinimizationMinimization

• Checking for self-minimization syntactically:

– linear in | φ | but incomplete (less precise than semantic check)

• Example of sufficient condition: (*)                                              
Any formula that does not contain any atomic proposition in 
mixed polarity (in its negation normal form) is self-minimizing.

• Many frequently-used formulas satisfy this condition:

– (absence) AG(q → AG(¬ p)),    (universality) AG(q → AG p)

– (existence) EF p,   (response) AG(p → AF q),      etc.

• (*) is not necessary: (¬q1∨q2)∧(¬q2∨q1) is self-minimizing
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Temporal Patterns of SelfTemporal Patterns of Self--MinimizationMinimization

• In the paper, we present grammars to identify syntactically     
self-minimizing formulas

(details omitted here)

• Related work: study of temporal logics and normal forms for 
which satisfiability is efficiently decidable 
– [Emerson-Evangelist-Srinivasan90, Janin-Walukiewicz95, Demri-

Schnoebelen99, Henzinger-Kupferman-Majumdar03, etc.]
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ConclusionsConclusions

• Study of precision of MC vs. GMC for verification via abstraction

• More generally, study of how to reduce GMC(A,φ) to MC (A,φ’)

• φ’ is called a semantic minimization of φ

• Like PL, PML and µL are closed under semantic minimizations, 
but CTL, LTL and CTL* are not

• Checking for self-minimizing formulas:
– semantically (precise but expensive automata-based algorithms)

– syntactically (sufficient conditions only, linear in | φ |)

• Good news: in practice, many formulas are self-minimizing, and 
MC is as precise as GMC for those


