Model Checking Vs. Generalized Model Checking: Semantic Minimizations for Temporal Logics

Patrice Godefroid
Bell Laboratories

Michael Huth
Imperial College
Verification via Automatic Abstraction

• Implemented in software model checkers like SLAM, BLAST,…

• Traditional iterative abstraction procedure:
 1. Abstract: generate a finite abstraction A from the concrete program C such that A simulates C (using predicate abstraction, theorem proving)
 2. Check: given any universal temporal-logic formula ϕ, compute $[A \models \phi]$:
 if $[A \models \phi] = \text{true}$, then return true (we then know $[C \models \phi] = \text{true}$)
 3. Refine: (checking of A is inconclusive) refine A, then go to Step 1
 • Ex: with predicate abstraction, add predicates to refine the model

• Limitations:
 – Restricted to universal properties (no existential properties)
 – $[A \models \phi] = \text{false}$ does not imply anything about C
 – Could the analysis be more precise for an acceptable cost?
A Solution: 3-Valued Models and Logics

- Richer models A that distinguish what is true/false/unknown of C
 - Example: “partial Kripke structure” [Fitting92, Bruns-G99]
 - Other example: “Modal Transition System” (may/must trans.) [Larsen+88]
 - These formalisms are all equally expressive [G-Jagadeesan03]

- Reasoning about 3-valued models requires 3-valued temporal logic
 - Ex: \([(M,s) \models p] = \text{true}, \quad [(M,s) \models AXp] = \text{false}, \quad [(M,s) \models EXp] = \bot\]

- Complexity of 3-valued MC = complexity of MC [Bruns-G00]
New Abstract-Check-Refine Process

• New procedure for automatic abstraction: (3 improvements)
 [G-Jagadeesan02, G-Huth-Jagadeesan01,…]

 1. Abstract: generate a 3-valued abstraction \(A \) from the concrete program \(C \) that preserves \(true, false, unknown \) properties of \(C \) (same cost)
 (Formally, \(A \preceq C \) where \(\preceq \) is the abstraction preorder on 3-valued models)

 2. Check: given any temporal-logic formula \(\phi \),
 • (3-valued model checking) compute \([A \models \phi] : \) (same cost)
 if \([A \models \phi] = true\) or \(false\), then return \(true\) or \(false\) (respectively)
 • (generalized model checking)
 if there is no concretization \(C \) of \(A \) such that \(C \) satisfies \(\phi \), return false
 if there is no concretization \(C \) of \(A \) such that \(C \) violates \(\phi \), return true

 3. Refine: (checking of \(A \) is inconclusive) refine \(A \), then go to Step 1
Generalized Model Checking (GMC)

• Definition: [Bruns-G00]
 Given a program abstraction A and a temporal logic formula φ, does there exist a concretization C of A such that C satisfies φ?

• GMC is a generalization of both
 – Satisfiability (SAT)
 – Model Checking (MC)

• GMC can be more expensive than MC (since it includes SAT)
 – in |φ| (but worst-case and φ is usually short) [Bruns-G00]
 – in |A| (quadratic) but linear for persistence (incl. safety) properties [G-J02]

• GMC can also be more precise than MC…
Example where GMC is more precise than MC

Program $P()$ {
 int $x, y = 1, 0$;
 $x, y = 2*f(x), f(y)$;
 $x, y = 1, 0$;
}

Property “(eventually y is odd) and (always, x is odd or y is even)”

is represented by the LTL formula $\phi = F(q) \land G(p \lor \neg q)$

$MC(A, \phi) = \bot$ …but $GMC(A, \phi) = false$!
How often is GMC more precise than MC?

• Motivation for this paper!

• More generally, how to reduce GMC(A,φ) to MC(A,φ’)? (independently of A)

• φ’ is called a semantic minimization of φ; problem already studied for Propositional Logic (PL) [Blamey80, Reps-Loginov-Sagiv02]

• Theorem: [Blamey80] for all φ ∈ PL, there is a sem min φ’ ∈ PL

• Note: |φ’| can be much larger than |φ|! (since computing φ’ is as hard as GMC, which is as hard as SAT, hence NP-hard for PL)

• What about temporal logics?
Semantic Minimizations for PML and μL

- Propositional Modal Logic (PML): $\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \text{EX} \phi$

- **Theorem:** For all $\phi \in \text{PML}$, there is a sem min $\phi' \in \text{PML}$

- **Proof idea:**
 - build a tree automaton $A^3(\phi)$ that accepts a 3-valued labeled tree T^3 iff there exists a 2-valued tree T such that $T^3 \leq T$ and T satisfies ϕ
 - Translate $A^3(\phi)$ back into a PML formula ϕ' of modal depth $O(|\phi|)$ (possible because $A^3(\phi)$ cannot distinguish trees at depths greater than $|\phi|$)

- Modal mu-calculus (μL): $\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \text{EX} \phi \mid Z \mid \mu Z.\phi$

- **Theorem:** For all $\phi \in \mu L$, there is a sem min $\phi' \in \mu L$

- **Proof idea:** similar as above
Semantic Minimizations for CTL, LTL and CTL*

- For CTL, LTL and CTL*, GMC is PTIME-hard in $|A|$ [G-03]…

- …while MC is known to be NLOGSPACE-complete in $|A|$

- … therefore, GMC(A, ϕ) cannot be reduced to MC(A, ϕ') unless NLOGSPACE = PTIME !

- **Theorem:**
 The sem min of the CTL formula $\phi = A[(EX q_1)U(q_1 \rightarrow q_2)]$ is the μL formula $\phi' = \mu Z_1.(q_1 \rightarrow q_2) \lor [\mu Z_2.AX Z_1 \land EX(q_1 \land (q_2 \lor Z_2))],$ which is not expressible in CTL*

- Proof idea: ϕ' is obtained with previous construction of $A^3(\phi)$; CTL* cannot express unbounded alternation (and/or graph reach.)
Semantic Minimizations: Summary

- PL, PML and μL are closed under semantic minimizations
- while CTL, LTL and CTL* are not
- But for all $\phi \in$ CTL* (thus CTL,LTL), there is a sem min $\phi' \in \mu$L
- Note on first-order logic over binary relations (FOL): since SAT is undecidable, so is GMC, while MC is decidable. Thus, sem min cannot exist for all formulas of FOL.
Self-Minimization

- When do we have $\phi' = \phi$? Such ϕ are called self-minimizing.

- For any self-minimizing formula ϕ, $\text{GMC}(A,\phi) = \text{MC}(A,\phi)$ that is, GMC and MC have the same precision.

- Checking for self-minimization semantically:
 - Compare the automaton $A^3(\phi)$ with an automaton $A^3(\models \phi)$ that accepts exactly all 3-valued labeled trees T^3 such that $[T^3 \models \phi] = \text{true}$.
 - By construction, $L(A^3(\phi)) \subseteq L(A^3(\models \phi))$.
 - If $L(A^3(\models \phi)) \subseteq L(A^3(\phi))$, then ϕ is self-minimizing.
 - If $\phi \in \mu L$, these automata are parity tree automata and $A^3(\phi)$ can be of size exponential in $|\phi|$.
 - Thus, such a semantic (automata-based) check is precise but expensive!
Syntactic Tests for Self-Minimization

- Checking for self-minimization **syntactically**:
 - linear in |ϕ| but incomplete (less precise than semantic check)

- Example of **sufficient** condition: (*)
 Any formula that does not contain any atomic proposition in mixed polarity (in its negation normal form) is self-minimizing.

- Many frequently-used formulas satisfy this condition:
 - (absence) AG(q → AG(¬p)), (universality) AG(q → AG p)
 - (existence) EF p, (response) AG(p → AF q), etc.

- (*) is not necessary: (¬q₁ ∨ q₂) ∧ (¬q₂ ∨ q₁) is self-minimizing
Temporal Patterns of Self-Minimization

• In the paper, we present grammars to identify syntactically self-minimizing formulas

(details omitted here)

• Related work: study of temporal logics and normal forms for which satisfiability is efficiently decidable
 – [Emerson-Evangelist-Srinivasan90, Janin-Walukiewicz95, Demri-Schnoebelen99, Henzinger-Kupferman-Majumdar03, etc.]
Conclusions

- Study of precision of MC vs. GMC for verification via abstraction
- More generally, study of how to reduce GMC(A,φ) to MC (A,φ’)
- φ’ is called a semantic minimization of φ
- Like PL, PML and µL are closed under semantic minimizations, but CTL, LTL and CTL* are not
- Checking for self-minimizing formulas:
 - semantically (precise but expensive automata-based algorithms)
 - syntactically (sufficient conditions only, linear in |φ|)
- Good news: in practice, many formulas are self-minimizing, and MC is as precise as GMC for those