From Blackbox Fuzzing
to Whitebox+< Fuzzing
towards:Verification

2000 2005 2010 2015

Blackbox Fuzzing Whitebox Fuzzing Verification

Patricer Godefroid
Microsoft Research

| SSTAG62010 Pagel July 2010

Acknowledgments

A Joint work with:
O MSR: EI'l a Bouni mova, Davi d Mol na
0 CSE:Mi chael Levi n, Chri1 s Mar s h, L ¢

d Interns Dennis Jeffries (06), David Molnar (07),
Adam Kiezun (07), Bassem Elkarablieh (08),
Cindy RubioGonzal ez (08, 09), Johannes

A Thanks to the entire SAGE team and users !
dZ3: Ni kol aj B orner, Leonardo de
O Wi ndows: Ni ck Bart mon, Eric Doug
d Of fice: Tom Gall agher, Eric Jaryv

d SAGE users all across Microsoft!

| SSTA62010 Page2 July 2010

References

A See http://research.microsoft.com/users/pg

0 DART: Directed Automated Random Testing,
with Klarlund and Sen, PLDI 62005

0 Compositional Dynamic Test Generatic
0 Automated Whitebox Fuzz Testing, wit

0 Demand-Driven Compositional Symbolic Execution,
with Anand and Till mann, TACASG0620038

0 Grammarr-Based Whitebox Fuzzing, with Ki

0 Active Property Checking, with Levir

0 Precise Pointer Reasoning for Dynamic Test Generation,

with EIl karablieh and Levi n, | SSTADG 2(
0 Compositional May-Must Program Analysis: Unleashing The Power of
Al ternation, with Nori, Raj amani anoc

0 Proving Memory Safety of Floating -Point Computations by Combining
Static and Dynamic Program Anal ysi s,

| SSTA62010 Page3 July 2010

Security is- Critical (to Microsoft)

A Software security bugs can be very expensive:
d Cost of each Microsoft Security Bulletin: $Millions
d Cost due to worms (Slammer, CodeRed Blaster, etc.): $Billions

A Many security exploits are initiated via files or packets

0 Ex: MS Windows includes parsers for hundreds of file formats

ASecurity testing: -doohlulnatri nbgu gf ¢

d Write A/V (always exploitable), Read A/V (sometimes
exploitable), NULL -pointer dereference, division -by-zero
(harder to exploit but still DOS attacks), etc.

| SSTA62010 Page4 July 2010

Hunting for Security Bugs

1

AMain techniques use

d Code inspection (of binaries) and ‘
0 Blackbox fuzz testing P
{’7’

A Blackbox fuzz testing:
d Aform of blackbox random testing [Miller+90]
0 Randomlyfuzz (=modify) a well -formed input
0 Grammar-based fuzzing: r ul es t hatf ernmeddén &
heuristics about how to fuzz (e.g., using probabilistic weights)
A Heavily used in security testing

d Simple yet effective: many bugs found this way é

d At Microsoft, fuzzing is mandated by the SDL A

| SSTAG62010

Page5

http://images.google.com/imgres?imgurl=http://seoblackhat.com/images/dr-evil.jpg&imgrefurl=http://seoblackhat.com/2006/10/25/will-google-end-up-like-atari/&h=385&w=520&sz=49&hl=en&start=8&tbnid=njbUJ6JskZd66M:&tbnh=97&tbnw=131&prev=/images?q=Dr.+Evil&gbv=2&svnum=10&hl=en

Blackbox Fuzzing

A Examples: Peach, Protos, Spike, Autodafe , etc.

A Why so many blackbox fuzzers ?
d Because anyone can write (a simple) one in a week -end!

d Conceptually simple, yet effect.i

ASophisticatioronés in the oad
d Test harnesses (e.g., for packet fuzzing)

d Grammars (for specific input formats)

ANote: usually, nwmageddctiodted
d No attempt to cover each state/rule in the grammar

d When probabilities, no global optimization (simply random walks)

| SSTA62010 Page6 July 2010

Introducing Whitebox Fuzzing

A ldea: mix fuzz testing with dynamic test generation
d Symbolic execution
d Collect constraints on inputs
d Negate those, solve with constraint solver, generate new inputs
0 Adosystematic dynamic DARIBt gener

A Whitetbox Fuzzing = ODART meets F

Two Parts:
1. Foundation: DART (Directed Automated Random Testing)
2. Key ext elWbitecbhbonmBugz»ni ngd), i @AAEe mer

| SSTA62010 Page7 July 2010

Automatic Code -Driven Test Generation

Problem:

Given a sequential program with a set of input parameters,
generate a set of inputs that maximizes code coverage

= 0odautomate test generation

Thisis noto modbealsed testingbo
(= generate tests from an FSM spec)

| SSTA62010 Page8 July 2010

How? (1) Static: Test Generation

AStatic analysis to partition
| Ki ng76, é]

A Ineffective whenever symbolic reasoning is not possible

dwhich is frequent I n practiceeée (
arithmetic, calls to complex OS or library functions, etc.)

Example:

int obscure(int x, inty) { Candt statically
if (x==hash(y)) error(); values for x and y
return O: t hat satisfy o0x-=

| SSTA62010 Page9 July 2010

