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Security is- Critical (to Microsoft)

A Software security bugs can be very expensive:
d Cost of each Microsoft Security Bulletin: $Millions
d Cost due to worms (Slammer, CodeRed Blaster, etc.): $Billions

A Many security exploits are initiated via files or packets

0 Ex: MS Windows includes parsers for hundreds of file formats

ASecurity testing: -doohlulnatri nbgu gf ¢

d Write A/V (always exploitable), Read A/V (sometimes
exploitable), NULL -pointer dereference, division -by-zero
(harder to exploit but still DOS attacks), etc.
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Hunting for Security Bugs

1

AMain techniques use

d Code inspection (of binaries) and ‘
0 Blackbox fuzz testing P
{’7’

A Blackbox fuzz testing:
d Aform of blackbox random testing [Miller+90]
0 Randomlyfuzz (=modify) a well -formed input
0 Grammar-based fuzzing: r ul es t hatf ernmeddén &
heuristics about how to fuzz (e.g., using probabilistic weights)
A Heavily used in security testing

d Simple yet effective: many bugs found this way é

d At Microsoft, fuzzing is mandated by the SDL A
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Blackbox Fuzzing

A Examples: Peach, Protos, Spike, Autodafe , etc.

A Why so many blackbox fuzzers ?
d Because anyone can write (a simple) one in a week -end!

d Conceptually simple, yet effect.i

ASophisticatioronés in the oad
d Test harnesses (e.g., for packet fuzzing)

d Grammars (for specific input formats)

ANote: usually, nwmageddctiodted
d No attempt to cover each state/rule in the grammar

d When probabilities, no global optimization (simply random walks)
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Introducing Whitebox Fuzzing

A ldea: mix fuzz testing with dynamic test generation
d Symbolic execution
d Collect constraints on inputs
d Negate those, solve with constraint solver, generate new inputs
0 Adosystematic dynamic DARIBt gener

A Whitetbox Fuzzing = ODART meets F

Two Parts:
1. Foundation: DART (Directed Automated Random Testing)
2. Key ext elWbitecbhbonmBugz»ni ngd), i @AAEe mer
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Automatic Code -Driven Test Generation

Problem:

Given a sequential program with a set of input parameters,
generate a set of inputs that maximizes code coverage

= 0odautomate test generation

Thisis noto modbealsed testingbo
(= generate tests from an FSM spec)
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How? (1) Static: Test Generation

AStatic analysis to partition
| Ki ng76, é]

A Ineffective whenever symbolic reasoning is not possible

dwhich is frequent I n practiceeée (
arithmetic, calls to complex OS or library functions, etc.)

Example:

int obscure(int x, inty) { Candt statically
if (x==hash(y)) error(); values for x and y
return O: t hat satisfy o0x-=
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