Micro Execution

Patrice Godefroid

Microsoft Research

ICSE'2014 Page 1 June 2014

What is Micro Execution?

foo(buffer);

} I/O signature

void foo(char *p) { // p is a 4-byte input
char v = *p; // *p 1s a 1l-byte input
return;

}

Micro Execution is the ability to run any code fragment
without a user-provided test driver or input data

ICSE'2014 Page 2 June 2014

What is Micro Execution?

can execute any code
_ _ _ intercepts all memory operations
VM for test isolation and generation
allocates memory

provides input values

void foo(char *p) { // p is a 4-byte input
char v = *p; // *p 1s a 1l-byte input
return;

}

Micro Execution is the ability to run any code fragment
without a user-provided test driver or input data

ICSE'2014 Page 3 June 2014

What is Micro Execution?

Micro Execution is the ability to run any code fragment
without a user-provided test driver or input data

- The user selects any function or code location in any dll/exe

- A runtime VM starts executing the code at that location,
catches all memory operations before they occur, and provides
input values according to a customizable memory policy

Ex: "an input is any value read from an uninitialized function argument,
Start here Plus any dereference to a previous input (recursive definition)"

™ void foo(char *n) { // p 1s a 4-byte input
char v = *p; // *p 1s a 1l-byte 1input
return;

Note: under this policy, uninitialized global-var reads are not inputs
(other memory policies can be defined)

ICSE'2014 Page 4 June 2014

MicroX

* MicroX is a first prototype VM allowing micro execution of
x86 binary code

- Implemented as an extension of Nirvana (processor emulator)
- Execute any x86 code in any (user-mode) Windows dIl or exe
- No source code, no pdb required

- The user defines the starting point

- Use a default memory policy, or define a new one...

- Input values can be generated randomly, be zero, read from a file,
read from a process dump, or be generated by SAGE

+ SAGE = tool for dynamic test generation with SMT constraint solving,
widely used at Microsoft for security testing (see [ICSE'2013])

- Stops when crash, max instr count reached, exec leaves the dll,...

- No test driver required:
* Inputs/Outputs are discovered dynamically by MicroX

ICSE'2014 Page 5 June 2014

Example

Start here

vo}ﬁ foo(char *p) { // p is a 4-byte input

}

Ooo~NOYUVLIDE WN R

char v
return;

push
mov
push
mov
mov
mov
mov
pop
ret

ICSE'2014

*p; // *p 1s a 1l-byte 1input
Is compiled into (x86)

ebp : foo starts here

ebp, esp

ecx

eax, DWORD PTR [ebp+8] ; p

cl, BYTE PTR [eax] ;P

BYTE PTR [ebp-1], cl PV

esp, ebp

ebp

micro executed

O I

Page 6

N hk®

11:
12:

13:

14.
15:
16:
17:

18:
19:
20:

21:
22:
23:
24:

iNitEIP is 72B51005
initEBP is 001EF988

Read Mem Access at address 001EF990 of 4 bytes
Initializing 4 input bytes:
[0]=78 [1]=14 [2]=20 [3]=00
Adding 00201478 to list of known addresses
SetGuestEffectiveAddress returned 00201440

Read Mem Access at address 00201478 of 1 bytes
Initializing 1 input bytes: [0]=29
SetGuestEffectiveAddress returned 0020C490

Write Mem Access at address 001EF987 of 1 bytes
SetGuestEffectiveAddress returned 001EF987

END: ExitProcess is called

*ekx External Memory Stats: **+**

Number of Mem Accesses: 2 (2 Reads, 0 Writes)
Number of Addresses: 2 (total 5 bytes)

Number of Inputs: 2 (total 5 bytes)

*xekx Native Memory Stats: **+**
Number of Module Accesses: 0 (0 Reads, 0 Writes)
Number of Other Accesses: 1 (0 Reads, 1 Writes)

ek General Stats: ***

Number of Unique Instructions After Start: 9
Number of Warnings: O

Number of Errors: O

June 2014

How is MicroX implemented?

* Program instrumentation: using micro-operations (not new)

GenerateEffectiveAddress New: EffectiveAddress

micro-operations ©
can be hijacked here

mov eax, [ecX]
| PREMemoryAccessCallBack

mov eax, [EffectiveAddress]

- External memory manager
- Maps program-visible addrs to invisible ExternalMemory addrs
- Maintains R/W consistency, consistent addressing (ptr arith,...)
- 100% dynamic, see paper for details

» Input value generation
- Random, zero, native, file, process-dump modes
- Next iterations can be generated with SAGE

ICSE'2014 Page 7 June 2014

Limitations of Micro Execution

False Positives (spurious bugs)
- Micro execution makes sense mostly if all inputs are unconstrained

- Otherwise, crashes may be unrealistic, and guidance is needed to
specify realistic input constraints, either by the user or by a whole
program analysis tool (SAGE...)

False Negatives (missed bugs)

- May miss bugs if input set is foo small (e.g., ignore a global variable)
- adjust memory policy

- Poor test coverage? Use dynamic test generation (SAGE), ...
Can only find bugs that are local to the code under test

The next applications largely avoid those limitations
- Work in progress

ICSE'2014 Page 8 June 2014

Application 1: APT Fuzzing

* New API fuzzer packaging MicroX+SAGE:

Specify a dll name and a list of dll-exported functions

* No need for number of args, types, test driver!

Automatically run MicroX+SAGE on each function for 1min

ICSE'2014

Function Name Unique Instructions | Inputs Memory Accesses | Tests | Crashes
(avg [min-max]) (avg [min-max|) | (avg [min-max|)
_iG4toa_s 179 [124-211] 5 [5-5] 202 [60-323) 23]
_snwscanf_s 164 [76-388] 5 [1-7] 60 [23-155] 18 0
_splitpath_s 142 [142-142] B0 [37-221] 431 [170-1090] 4 0
_strnset_s 82 [48-130 74 [3-215] 201 [B-636] 10 0
_Etrset_s 81 [30-128 27 [1-253] 105 [4-754] 56]
_uiddtoa_s 165 [121-208] 5 [5-5] 242 [68-753) 19]
_uifdtow_s 169 [121-209] 5 [5-5] 258 [68-1105 18]
_ultoa_s 107 [67-164] 36 [4-502] 121 [20-1026] 31 2
_ultow_s 119 [74-167] 25 [4-252] 107 [22-529] 23 2
_vsnprintf_s 222 [116-275] 34 [3-101] 660 [66-2030] 24 0
_iG4tow_s= 181 [124-212] 5 [5-5] 199 [69-319) 21]
_venwprintf_s 144 [130-153] 00 [7-130] 2172 [59-3189] 6 6
_wCsSnsEet_s 70 [36-141] 57 [2-378 1691 [5-100000] 66 4

Table 1: Sample experimental results with 13 exported functions part of ntdll.dll.

Page 9

June 2014

Application 1: API Fuzzing & Diffing

Repeat on another dll version and diff the results
- ~1,800 dlls in c:\windows\system32 alone

Remarks: Micro execution is...

- Fast and automatic, zero-cost test-setup

- Good code coverage (thanks to SAGE)

- Generates tons of data... (ex: useful for API diffing)

Sample Micro Execution Statistics

B < & ¢ NNmMmmII NSO RRNEET QS S
A dddddAddddd A dd s adddd NN NSNS ®®

OOOOOO

ICSE'2014 Page 10

June 2014

Application 2: Parser Isolation & Fuzzing

Identify parsing code buried anywhere

- Ex: packet parsers

Start micro executing that code
- MicroX discovers automatically its I/0
- Input values are initialized from a dump
- Packet values are fuzzed with SAGE

Note: MicroX + dump = "micro-fork"

- State is recreated partially (no bottom
stack) and lazily (on-demand)

ICSE'2014 Page 11

[_'_f._—

-

-

- " Satach ties

-

A A A

June 2014

Application 3: Targeted Fuzzing

* Fast precise analysis of components of large parsers

- Ex: with SAGE

- a single symbolic execution of MS Excel takes ~1 hour
- 47Kbytes input file, ~1.5 billion x86 instructions, ~25,000 constraints

- a single symbolic execution of one function buried in Excel, running
with MicroX, may take only ~1 second !

- Automatic program decomposition
- Identify sub-parser and fuzz them in isolation

» Compositional testing
- Memorize the sub-parser results with symbolic test summaries

ICSE'2014 Page 12 June 2014

Application 4: Unit/Program Verification

The ANI Windows parser

350+ fcts in 5 DLLs, parsing in ~110 fcts in
2 DLLs, core = 47 fcts inuser32.dll >

+ TIs “attacker memory safe”
= no attacker-controllable buffer overflow

« How? Compositional exhaustive testing
- "perfect” symbolic execution in SAGE
(max precision, no divergences, no x86
incompleteness, no Z3 timeouts, etfc.),
- manual/ bounding of input-dependent loops
(only ~10 input bytes + file size), and
- 5 user-guided simple summaries

+ And modulo fixing a few bugs... ©

+ 100% dynamic (=zero static analysis)

15" Windows image parser proved attacker
memory safe

+ See "Proving Memory Safety of the ANI
Windows Image Parser using Compositional
Exhaustive Testing", MSR-TR-2013-120, with
intern Maria Christakis

Figure 3. The callgraph of the 47 user32.d11 functions implementing the ANI parser core. Functions are grouped based on the architectural
component of Fig. 2 to which they belong. The different shades and lines of the boxes denote the verification strategy we used to prove
memory safety of each function. Functions are annotated with the number of theirexecution paths. A + indicates that a function contains too
many execution paths to be exhaustively enumerated within 12 hours without using additional techniques for controlling path explosion.

ICSE'2014 Page 13 June 2014

Application 5: Malware Detection

+ Think of MicroX as an "eval(x86-code)” function

- Can run any code to see if it uncloaks itself and then does
something malicious

Note: work in progress, see paper for more

ICSE'2014 Page 14 June 2014

Related Work

- Static program analysis
- Simulates the execution of program paths

- Uses abstraction:
- often “over-approximate” abstractions
* Hence imprecision triggers false alarmsl!

* Micro execution: locality but with precision
- Concrete execution: testing
- No false alarms due to abstraction (since NO abstraction)

- Only cause of false alarms: lack of environment assumptions
* Micro execution may start in an unrealistic initial state

ICSE'2014 Page 15 June 2014

Other Related Work

Automatic test-driver generation (“closing” open systems)
- Through static program transformations (PLDI'98, etc.)
- Automatic static input-interface discovery and test gen (DART,...)

+ Automatic dynamic test generation
- SAGE, Pex, KLEE, S2E, efc.
- API specific or need test driver with "symbolic” inputs ("param. unit tests")

+ Automatic sub-component mock/stub/shim creation
- Still requires a run-time environment
- Orthogonal and complementary to micro execution

» How to specify input preconditions and output postconditions
- Test driver, Code Contracts,...
- Memory policy = "abstract” test driver - how to edit & refine mem. policies?

Etc. (see paper)

ICSE'2014 Page 16 June 2014

Conclusion

Micro Execution is the ability to run any code fragment
without a user-provided test driver or input data

- Key: a runtime environment which can intercept and redirect
input/output memory operations before they occur, and can
provide input values according to general rules

- MicroX = 1st VM for test isolation and generation

- Can start/stop executions anywhere and enables local, fast,
precise, dynamic analysis of small code fragments & executions

- Lowers the cost of test setup (no test driver)

- How to get the best of static and dynamic program analysis
- Speed/locality of static analysis with precision of dynamic analysis
- Enables automatic program decomposition, compositional testing,...

- Many potential applications - but what is the “killer app"?

ICSE'2014 Page 17 June 2014

