
Page 1 June 2014ICSE’2014

Micro Execution

Patrice Godefroid

Microsoft Research

Page 2 June 2014ICSE’2014

What is Micro Execution?

void foo(char *p) { // p is a 4-byte input
char v = *p; // *p is a 1-byte input
return;

}

void test-driver() {
char* buffer = malloc(10);
memcpy(buffer, “hello”);
foo(buffer);

}

allocate memory

input data

known I/O signature

Micro Execution is the ability to run any code fragment
without a user-provided test driver or input data

Page 3 June 2014ICSE’2014

What is Micro Execution?

void foo(char *p) { // p is a 4-byte input
char v = *p; // *p is a 1-byte input
return;

}

Micro Execution is the ability to run any code fragment
without a user-provided test driver or input data

VM for test isolation and generation
allocates memory

provides input values

intercepts all memory operations

can execute any code

Page 4 June 2014ICSE’2014

What is Micro Execution?

Micro Execution is the ability to run any code fragment
without a user-provided test driver or input data

– The user selects any function or code location in any dll/exe

– A runtime VM starts executing the code at that location,
catches all memory operations before they occur, and provides
input values according to a customizable memory policy

Ex: “an input is any value read from an uninitialized function argument,
plus any dereference to a previous input (recursive definition)”

void foo(char *p) { // p is a 4-byte input

char v = *p; // *p is a 1-byte input

return;

}

Note: under this policy, uninitialized global-var reads are not inputs

(other memory policies can be defined)

Start here

Page 5 June 2014ICSE’2014

MicroX

• MicroX is a first prototype VM allowing micro execution of
x86 binary code

– Implemented as an extension of Nirvana (processor emulator)

– Execute any x86 code in any (user-mode) Windows dll or exe

– No source code, no pdb required

– The user defines the starting point

– Use a default memory policy, or define a new one…

– Input values can be generated randomly, be zero, read from a file,
read from a process dump, or be generated by SAGE

• SAGE = tool for dynamic test generation with SMT constraint solving,
widely used at Microsoft for security testing (see [ICSE’2013])

– Stops when crash, max instr count reached, exec leaves the dll,…

– No test driver required:
• Inputs/Outputs are discovered dynamically by MicroX

Page 6 June 2014ICSE’2014

Example

[...]
1: push ebp ; foo starts here
2: mov ebp, esp
3: push ecx
4: mov eax, DWORD PTR [ebp+8] ; p
5: mov cl, BYTE PTR [eax] ; *p
6: mov BYTE PTR [ebp-1], cl ; v
7: mov esp, ebp
8: pop ebp
9: ret 0

[...]

void foo(char *p) { // p is a 4-byte input
char v = *p; // *p is a 1-byte input
return;

}

1: initEIP is 72B51005

2: initEBP is 001EF988

3: Read Mem Access at address 001EF990 of 4 bytes

4: Initializing 4 input bytes:

5: [0]=78 [1]=14 [2]=20 [3]=00

6: Adding 00201478 to list of known addresses

7: SetGuestEffectiveAddress returned 00201440

8: Read Mem Access at address 00201478 of 1 bytes

9: Initializing 1 input bytes: [0]=29

10: SetGuestEffectiveAddress returned 0020C490

11: Write Mem Access at address 001EF987 of 1 bytes

12: SetGuestEffectiveAddress returned 001EF987

13: END: ExitProcess is called

14: ***** External Memory Stats: *****

15: Number of Mem Accesses: 2 (2 Reads, 0 Writes)

16: Number of Addresses: 2 (total 5 bytes)

17: Number of Inputs: 2 (total 5 bytes)

18: ***** Native Memory Stats: *****

19: Number of Module Accesses: 0 (0 Reads, 0 Writes)

20: Number of Other Accesses: 1 (0 Reads, 1 Writes)

21: ***** General Stats: *****

22: Number of Unique Instructions After Start: 9

23: Number of Warnings: 0

24: Number of Errors: 0

is compiled into (x86)

micro executed

Start here

Page 7 June 2014ICSE’2014

How is MicroX implemented?

• Program instrumentation: using micro-operations (not new)

• External memory manager

– Maps program-visible addrs to invisible ExternalMemory addrs

– Maintains R/W consistency, consistent addressing (ptr arith,…)

– 100% dynamic, see paper for details

• Input value generation

– Random, zero, native, file, process-dump modes

– Next iterations can be generated with SAGE

mov eax, [ecx]

...

GenerateEffectiveAddress

...

PREMemoryAccessCallBack

...

mov eax, [EffectiveAddress]

...

micro-operations New: EffectiveAddress

can be hijacked here

Page 8 June 2014ICSE’2014

Limitations of Micro Execution

• False Positives (spurious bugs)

– Micro execution makes sense mostly if all inputs are unconstrained

– Otherwise, crashes may be unrealistic, and guidance is needed to
specify realistic input constraints, either by the user or by a whole
program analysis tool (SAGE…)

• False Negatives (missed bugs)

– May miss bugs if input set is too small (e.g., ignore a global variable)
 adjust memory policy

– Poor test coverage? Use dynamic test generation (SAGE), …

• Can only find bugs that are local to the code under test

The next applications largely avoid those limitations

– Work in progress

Page 9 June 2014ICSE’2014

Application 1: API Fuzzing

• New API fuzzer packaging MicroX+SAGE:

– Specify a dll name and a list of dll-exported functions
• No need for number of args, types, test driver!

– Automatically run MicroX+SAGE on each function for 1min

Page 10 June 2014ICSE’2014

Application 1: API Fuzzing & Diffing

• Repeat on another dll version and diff the results
– ~1,800 dlls in c:\windows\system32 alone

• Remarks: Micro execution is…
– Fast and automatic, zero-cost test-setup

– Good code coverage (thanks to SAGE)

– Generates tons of data… (ex: useful for API diffing)

Page 11 June 2014ICSE’2014

Application 2: Parser Isolation & Fuzzing

• Identify parsing code buried anywhere

– Ex: packet parsers

• Start micro executing that code

– MicroX discovers automatically its I/O

– Input values are initialized from a dump

– Packet values are fuzzed with SAGE

• Note: MicroX + dump = “micro-fork”

– State is recreated partially (no bottom
stack) and lazily (on-demand)

Page 12 June 2014ICSE’2014

Application 3: Targeted Fuzzing

• Fast precise analysis of components of large parsers

– Ex: with SAGE
• a single symbolic execution of MS Excel takes ~1 hour

– 47Kbytes input file, ~1.5 billion x86 instructions, ~25,000 constraints

• a single symbolic execution of one function buried in Excel, running
with MicroX, may take only ~1 second !

• Automatic program decomposition

– Identify sub-parser and fuzz them in isolation

• Compositional testing

– Memorize the sub-parser results with symbolic test summaries

Page 13 June 2014ICSE’2014

Application 4: Unit/Program Verification

• The ANI Windows parser
350+ fcts in 5 DLLs, parsing in ~110 fcts in
2 DLLs, core = 47 fcts in user32.dll 

• Is “attacker memory safe”
= no attacker-controllable buffer overflow

• How? Compositional exhaustive testing
- “perfect” symbolic execution in SAGE
(max precision, no divergences, no x86
incompleteness, no Z3 timeouts, etc.),
- manual bounding of input-dependent loops
(only ~10 input bytes + file size), and
- 5 user-guided simple summaries

• And modulo fixing a few bugs… 

• 100% dynamic (=zero static analysis)

• 1st Windows image parser proved attacker
memory safe

• See “Proving Memory Safety of the ANI
Windows Image Parser using Compositional
Exhaustive Testing”, MSR-TR-2013-120, with
intern Maria Christakis

Page 14 June 2014ICSE’2014

Application 5: Malware Detection

• Think of MicroX as an “eval(x86-code)” function

– Can run any code to see if it uncloaks itself and then does
something malicious

• Note: work in progress, see paper for more

Page 15 June 2014ICSE’2014

Related Work

• Static program analysis

– Simulates the execution of program paths

– Uses abstraction:
• often “over-approximate” abstractions

• Hence imprecision triggers false alarms!

• Micro execution: locality but with precision

– Concrete execution: testing

– No false alarms due to abstraction (since NO abstraction)

– Only cause of false alarms: lack of environment assumptions
• Micro execution may start in an unrealistic initial state

Page 16 June 2014ICSE’2014

Other Related Work

• Automatic test-driver generation (“closing” open systems)
– Through static program transformations (PLDI’98, etc.)

– Automatic static input-interface discovery and test gen (DART,...)

• Automatic dynamic test generation
– SAGE, Pex, KLEE, S2E, etc.

– API specific or need test driver with “symbolic” inputs (“param. unit tests”)

• Automatic sub-component mock/stub/shim creation
– Still requires a run-time environment

– Orthogonal and complementary to micro execution

• How to specify input preconditions and output postconditions
– Test driver, Code Contracts,…

– Memory policy = “abstract” test driver - how to edit & refine mem. policies?

• Etc. (see paper)

Page 17 June 2014ICSE’2014

Conclusion

Micro Execution is the ability to run any code fragment
without a user-provided test driver or input data

– Key: a runtime environment which can intercept and redirect
input/output memory operations before they occur, and can
provide input values according to general rules

– MicroX = 1st VM for test isolation and generation

– Can start/stop executions anywhere and enables local, fast,
precise, dynamic analysis of small code fragments & executions

– Lowers the cost of test setup (no test driver)

– How to get the best of static and dynamic program analysis
• Speed/locality of static analysis with precision of dynamic analysis

• Enables automatic program decomposition, compositional testing,…

– Many potential applications – but what is the “killer app”?

