Model Checking
with Multi-Valued Logics

Glenn Bruns Patrice Godefroid

Bell Laboratories, Lucent Technologies
Multi-Valued Model Checking: Definition

- Kripke structure K where, in every state, every atomic proposition is mapped to an element of a lattice L.
 - Example:

- Multi-valued temporal logic:
 - Syntax: unchanged
 - Semantics: unchanged except \land is meet in L, \lor is join in L
 - Example: $\phi = p \land \text{EX } p$

- $[K \models \phi]$ (“model checking”) returns a value in L.
 - Example: $[(K,s_0) \models p \land \text{EX } p] = (c \land (d \lor b)) = b$
Motivation: Applications

• Model Checking using 3-valued abstractions
 – Automatically abstract a program into a 3-valued model K
 – Check any temporal property ϕ on this model
 – If $[K \models \phi] = \frac{1}{2}$, refine the model and repeat the process

• Temporal-logic query checking
 – Given a “query” ϕ (ex: AG?), what is the set of strongest propositional formulas f (built from P) such that $K \models \phi[? \leftarrow f]$

• Multi-viewpoints model checking
 – What properties do different experts agree on?

• All these problems reduce to “multi-valued model checking”
Two Approaches

- **By reduction**
 - Idea: reduction to several standard, 2-valued model-checking problems
 - Advantage: re-use of existing model checkers
 - New result: simple and general method for reduction

- **Direct (automata-theoretic) approach**
 - Idea: represent the formula by an EAA, and compute product with K
 - Advantage: works in a more “demand-driven” way
 - New result: maximum-value theorem for EAA and general automata-theoretic approach to multi-valued model checking
Lattices and Negation

• We consider finite (hence complete) distributive lattices.
 – Complete: \(\forall X \subseteq L: \land \{X\} \) and \(\lor \{X\} \) exist in \(L \)
 – Distributive: \(x \land (y \lor z) = (x \land y) \lor (x \land z) \)

• A join-irreducible element \(x \) of a distributive lattice \(L \) is an element that is not \(\bot \) and for which \((x = y \lor z) \Rightarrow (x = y \text{ or } x = z) \)

• DeMorgan lattice: every \(x \in L \) has a unique complement \(\neg \neg x \) such that \(\neg \neg x = x \), DeMorgan’s laws hold, and \((x \leq y) \Rightarrow (\neg y \leq \neg x) \)
Reduction Method (Approach 1)

• Given K, $\phi \in \mu$-calculus, and a finite distributive DeMorgan L

 – Push \neg inwards (using DeMorgan laws) to get ϕ in positive normal form.

 – $\forall x \in L$, define K_x as K except that $\theta_x(s)(p) = \theta(s)(p) \geq x$

 – Let $J(L)$ denote the (finite) set of join-irreducible elements of L.

 – Lemma 1: Given K over L, s in K, $x \in J(L)$: $(K_x,s) \models \phi \iff x \leq [(K,s) \models \phi]$

 – Theorem 1: $[(K,s) \models \phi] = \lor \{ x \in J(L) \mid (K_x,s) \models \phi \}$

 – Theorem 2: Given a TL, multi-valued model checking $[(K,s) \models \phi]$ for TL
 has the same complexity in K and ϕ as traditional model checking for TL,
 and can be done in time $O(|J(L)|)$.

• Notes:

 – Sometimes complexity in $|J(L)|$ is better than linear…

 – These results can easily be extended to multi-valued transitions…
Comparison with Related Work

• Generalizes reduction methods for specific lattices
 – 3-valued model checking [BrunsGodefroid00]
 – Several other lattices [KonikowskaPenczek02]

• Simplifies other reduction method using join-irreducible elements
 – [GurfinkelChechik03]

• Extends work on “many-valued modal logics” [Fitting92]
 – Reduction to standard Kripke structure vs. “multi-expert models”
 – Join-irreducible elements instead of “proper-prime filters”
 – Fixpoint modal logic vs. modal logic
 – Different treatment of negation (DeMorgan lattices vs. Heyting algebras)

• Different from work on “AC-lattices” [HuthPradhan02]
Extended Alternating Automata (Approach 2)

- Alternating Automaton $A = (\Sigma, S, s_0, \rho, F)$ with input alphabet Σ, transition function ρ, acceptance condition F

- Ex: $\rho(s_0, \sigma, 2) = \sigma(p) \lor ((l, s_0) \land (r, s_0))$ and $F = \{\}$ (equivalent to AF_p in CTL)

- Run: ∞ input tree $T \rightarrow$ run tree R

- T is accepted by A (denoted $T \in L(A)$) if A has an accepting run R on T:
 - every ∞ branch of R satisfies F.

- Extended Alternating Automaton [BrunsGodefroid01]: same as AA except ρ is defined on L with \land and \lor

- Run: ∞ input tree $T \rightarrow$ run tree R labeled with non-\perp elements of L

- T is accepted by A with value v (denoted $T \in L_v(A)$) if A has an accepting v-run R on T:
 - v labels the root node of R
 - every ∞ branch of R satisfies F.
Maximum-value Theorem

- Thm: Let A be a finite tree EAA over L, and let T be an infinite input tree. Then the subset $\{v \mid T \in L_v(A)\}$ of L has a maximum value $\text{Max}(A,T)$.

- Note: nontrivial!
Proof Idea

• Define a lattice V of valuation trees ordered by the sub-tree relation and \leq on L. Since L is complete, V is a complete lattice.

• Define a function $F: V \rightarrow V$ that computes the transition function ρ.

• Runs correspond to fixpoints of F.

• Apply Knaster-Tarski’s theorem to F (order-preserving on V): “the join R of all runs (fixpoints of F) is a run (fixpoint of F).”

• Problem: R may not be accepting! (since the join of infinitely-many finite paths may not be accepting…)

• Solution: provide a construction to eliminate all infinite non-accepting paths in R while preserving the label of its root node…
Model Checking with EAA

• Automata-theoretic approach to multi-valued model checking (extends [KupfermanVardiWolper00]):
 – Translate ϕ into a tree EAA A_ϕ such that $[T \models \phi] = \text{Max}(A_\phi, T)$
 (translation similar to the traditional one except for atomic propositions)
 – Compute the product $A_{K,\phi}$ of K and A_ϕ (a word EAA on 1-letter alphabet)
 – Theorem: $[K \models \phi] = \text{Max}(A_{K,\phi})$
 – Computing $\text{Max}(A_{K,\phi})$ has the same complexity in $|A_{K,\phi}|$ as checking language emptiness in regular word AA on 1-letter alphabet, and can be done in time $O(|h(L)|)$.
 – Example: if Buchi acceptance condition, quadratic time in $|A_{K,\phi}|$, or even linear time in $|A_{K,\phi}|$ if the EAA is also ‘weak’ (e.g., for CTL).
Example

- Consider the lattice L_3
- Consider the formula $\phi = \text{AF } p \ (= \mu X.p \vee \Box X)$
- A_ϕ is a tree EAA on L_3 with $\rho(q_0,\sigma,2) = \sigma(p) \vee ((l,q_0) \wedge (r,q_0))$ and $F=\{\}$
- Given K below, $A_{K,\phi}$ is a word EAA on 1-letter alphabet $\{a\}$ with $\rho((s_0,q_0),a,1) = 0 \vee ((s_1,q_0) \wedge (s_2,q_0))$, $\rho((s_1,q_0),a,1) = 1/2 \vee (s_1,q_0)$, $\rho((s_2,q_0),a,1) = 1 \vee (s_2,q_0)$, and $F=\{\}$
- $[K \models \phi] = \text{Max}(A_{K,\phi}) = 1/2$
Summary and Conclusions

• Summary: two approaches to multi-valued model checking
 – By reduction
 • Advantage: re-use of existing model-checking tools
 • New result: simple and general method based on join-irreducible elements for finite distributive DeMorgan lattices and full μ-calculus
 – Direct, automata-theoretic
 • Advantage: more “on-the-fly”/demand-driven
 • New result: maximum-value theorem for EAA and general automata-theoretic approach for DeMorgan lattices and full μ-calculus

• Future work:
 – Complementation of EAA…
 – Detailed study of algorithms for computing Max(EAA) (infinite games + lattice equations)…
 – Other applications: quantitative games for resource optimization?