
Page 1 November 2015HVC’2015

Between Testing and Verification:

Software Model Checking
via Systematic testing

Patrice Godefroid

Microsoft Research

Page 2 November 2015HVC’2015

“Model Checking”

• Model Checking (MC) is

– check whether a program satisfies a property by exploring its state space

– systematic state-space exploration = exhaustive testing

– “check whether the system satisfies a temporal-logic formula”

• Simple yet effective technique for finding bugs in high-level hardware and
software designs

• Once thoroughly checked, models can be compiled and used as the core of
the implementation

BA C

deadlock

Each component is modeled by a FSM.

Page 3 November 2015HVC’2015

Insight: Model Checking is Super Testing

• Simple yet effective technique for finding bugs

cost

(money)

coverage

(bugs)

testing

model checking

verification

Page 4 November 2015HVC’2015

Software Model Checking

• How to apply model checking to analyze software?

– “Real” programming languages (e.g., C, C++, Java),

– “Real” size (e.g., 100,000’s lines of code)

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

(SLAM, Bandera,
FeaVer, BLAST,…)

Concurrency: VeriSoft, JPF, CMC, CHESS, Cuzz,…

Data inputs: DART, EXE, SAGE, Pex,…
Dynamic

Page 5 November 2015HVC’2015

Part 1

Dynamic Software Model Checking

Dealing with Concurrency

Page 6 November 2015HVC’2015

Dynamic Semantics (VeriSoft, POPL’97)

• State Space = “product of (OS) processes”

– Processes communicate by executing operations on com. objects

– Operations on com. objects are visible, other ops are invisible

– Only executions of visible operations may be blocking

– The system is in a global state when the next operation of each
process is visible

– State Space = set of global states + transitions between these

THEOREM: Deadlocks and assertion violations are

preserved in the “state space” as defined above.

deadlock

s0

Page 7 November 2015HVC’2015

VeriSoft

• Controls and observes the execution of visible operations of concurrent processes
by intercepting system calls (communication, assertion violations, etc.)

• Systematically drives the system along all the paths (=executions) in its state space
(=automatically generate, execute and evaluate many executions)

• From a given initial state, one can always guarantee a complete coverage of the state
space up to some depth

• Note: analyzes “closed systems”; requires test driver(s) possibly using “VS_toss(n)”

Run-Time Scheduler

BA C

System Processes

deadlock

s0

Page 8 November 2015HVC’2015

VeriSoft State-Space Search

• Automatically searches for:

– deadlocks,

– assertion violations,

– divergences (a process does not communicate with the rest of
the system during more than x seconds),

– livelocks (a process is blocked during x successive transitions)

• A scenario (=path in state space) is reported for each
error found

• Scenarios can be replayed interactively using the
VeriSoft simulator (driving existing debuggers)

Page 9 November 2015HVC’2015

The VeriSoft Simulator

Page 10 November 2015HVC’2015

Originality of VeriSoft

• VeriSoft = first systematic state-space exploration tool
for concurrent systems composed of processes
executing arbitrary code (e.g., C, C++,…) [POPL97]

• VeriSoft looks simple! Why wasn’t this done before?

• Previously existing state-space exploration tools:
– restricted to the analysis of models of software systems

– each state is represented by a unique identifier

– visited states are saved in memory (hash-table, BDD,…)

• With programming languages, states are much more
complex!

• Computing and storing a unique identifier for every
state is unrealistic!

Page 11 November 2015HVC’2015

“State-Less” Search

• Don’t store visited states in memory: still terminates
when state space is finite and acyclic…
but terribly inefficient!

• Example: dining philosophers (toy example)
– For 4 philosophers, a state-less search explores 386,816 transitions,

instead of 708: every transition is executed on average 546 times!

Page 12 November 2015HVC’2015

• A state-less search in the state space of a concurrent system can
be much more efficient when using “partial-order methods”

• POR algorithms dynamically prune the state space of a concurrent
system by eliminating unnecessary interleavings while preserving
specific correctness properties (deadlocks, assertion violations,...)

• Two main core POR techniques:

– Persistent/stubborn sets (Valmari, Godefroid,…)

– Sleep sets (Godefroid,…)

Partial-Order Reduction

[Note: checking more elaborate properties require other extensions

– Ex: ample sets (Peled) are persistent sets satisfying additional

conditions sufficient for LTL model checking

Not used here as VeriSoft only checks reachability properties]

Page 13 November 2015HVC’2015

• With POR algorithms, the pruned state space looks like a tree!

• Thus, no need to store intermediate states!

An Efficient State-Less Search

t

t

t’

t’

t

t’

t t’

t’

(persistent sets)

(sleep sets)

Without POR algorithms, a systematic state-less search in the state space

of a concurrent system is untractable

Page 14 November 2015HVC’2015

VeriSoft - Summary

• Two key innovations:

1. Does not use any specific modeling/programming language

2. Performs a state-less search

• Use of partial-order reduction is key in presence of
concurrency

• In practice, the search is typically incomplete !

• From a given initial state, can always guarantee a
complete coverage of the state space up to some depth

Page 15 November 2015HVC’2015

Users and Applications

• Development of research prototype started in 1996

• VeriSoft 2.0 available outside Lucent since January 1999:

– 100’s of licenses in 25+ countries, in industry and academia

– Free download at http://www.bell-labs.com/projects/verisoft

• Examples of applications in Lucent:
– 4ESS HBM unit testing and debugging (telephone switch maintenance)

– WaveStar 40G R4 integration testing (optical network management)

– 7R/E PTS Feature Server unit and integration testing (voice/data signaling)

– CDMA Cell-Site Call Processing Library testing (wireless call processing)

Page 16 November 2015HVC’2015

Application: 4ESS HBM (Small)

• HBM code = 100s lines of EPL (assembly) ,
controls millions of calls every day,
behaves unexpectedly in the field

• Translate EPL code to C code
(using existing partial translator)

• Build test harness for HBM C code, model
its environment (using “VS_toss(n)”), add
“VS_assert(0)” (took only a few hours!)

• Discovered several flaws in software and
its documentation... [ISSTA98]

Example of scenario found:

DLNHBM

Page 17 November 2015HVC’2015

• CDMA Base Station Call-processing
software library involves complex
dynamic resource-allocation algorithms
and handoffs scenarios (100,000’s lines
of C/C++ code)

• How to test reliably this software?
VeriSoft

– Increased test coverage from O(10) to
O(1,000,000) scenarios

– Automatic regression testing for multiple
cell-sites and releases (more than 1,500
VeriSoft runs in 2000-2001)

– Found several critical bugs…[ICSE2002]

Application: CDMA Call Processing (Large)

Automated Testing Interface

Hw Simulation Environment

CDMA

Call

Processing

Library

Rest of the

System…

Test driver

VeriSoft

Walsh code

checking

mobileMSC

CE
Cell 1

CE
Cell 2

CECell 3

CE

Page 18 November 2015HVC’2015

Discussion

• VeriSoft (like model checking) is not a panacea

– Limited by the state-explosion problem,…

– Requires some training and effort (to write test drivers, properties…)

• Used properly, VeriSoft is very effective at finding bugs

– Cheap, scalable (applicable to large systems) although incomplete

– Concurrent/reactive systems are hard to design, develop and test

– Traditional testing is not adequate

– “Model checking” (systematic testing) can rather easily find new bugs

• These bugs would otherwise be found by the customer !

• So the real question is “How much ($) do you care about bugs?”

Page 19 November 2015HVC’2015

What about Multi-Threaded Programs?

• Software model checking via systematic testing works
well for message-passing programs

– Systematically exploring their state spaces up to (say) 50
message exchanges cover a lot of their functionality

• What about shared-memory programs?

– Up to 50 read/write covers nothing !

– Much more challenging…

• Some useful techniques:

– Dynamic Partial Order Reduction [POPL’05] (10+ tools)

– Preemption bounding (e.g., CHESS)

– Concurrency heuristics (e.g., Cuzz)

Page 20 November 2015HVC’2015

CHESS (MSR): Preemption Bounding

• For multi-threaded concurrent software (Win32, CLR)

• Focus on executions with small number of preemptions
– Heuristic: many bugs can be found with few preemptions

• Many bugs found this way
– Can deal with very larger state spaces, complementary to (D)POR

x = 1;
if (p != 0)
{

x = p->f;
}

x = 1;
if (p != 0)
{

x = p->f;
}

p = 0;

Thread 1 Thread 2

preemption

non-preemption

Page 21 November 2015HVC’2015

CHESS Status

• Open source at: http://chesstool.codeplex.com/

• Platform for concurrency research [Musuvathi, Qadeer,…]
– Preemption bounding [PLDI ‘07]

– Fair stateless model checking [PLDI ‘08]

– Weak memory model verification [CAV ‘08]

– Data-race detection [PLDI ’09]

– Concurrency coverage [TACAS ‘08]

– Linearizability checking [PLDI ‘10]

– Partial-order reduction and preemption bounding [OOPSLA ‘13]

• Used to systematically test concurrency libraries in MS products
– Task parallel library (TPL), Concurrency runtime (ConcRT), Concurrency

coordination runtime (CCR), Singularity

– Both to find unknown bugs and to reproduce known bugs

http://chesstool.codeplex.com/

Page 22 November 2015HVC’2015

Other: Concurrency Heuristics

• Heuristics for partially exploring large state spaces
– Genetic algorithms (with property-specific fitness functions)

– Heuristics based on concurrent dependencies

CrThrd (child);

p = malloc();

Parent

do_init();

p->f ++;

Child

If dereference before initialization, BUG!

Thus, ONE ordering constraint is sufficient for this bug

 heuristic = delay malloc() as much as possible!

Page 23 November 2015HVC’2015

Cuzz (MSR): Concurrency Fuzzing

• Randomize thread schedules by delaying threads, with
probability guarantees [ASPLOS’10]

• Now part of MS
AppVerifier and
Driver Verifier

• Found bugs in large MS products (SQL server, IE,…)

– Increase the coverage of existing tests

– Increase the reproducibility of bugs

Page 24 November 2015HVC’2015

Some Other Related Tools

• Java PathFinder : uses a modified Java Virtual Machine

• CMC : stores partial state representations

• MaceMC : for Mace DSL, heuristics for ‘liveness’
properties

• MoDist : for distributed systems

• ISP : for MPI programs

• Etc. (the list above is not exhaustive !)

Page 25 November 2015HVC’2015

Part 2

Dynamic Software Model Checking

Dealing with Data Inputs

Page 26 November 2015HVC’2015

Automatic Code-Driven Test Generation

Problem:

Given a sequential program with a set of input parameters,
generate a set of inputs that maximizes code coverage

= “automate test generation using program analysis”

Example: Powerpnt.exe <filename>

– Millions of lines of C/C++, complex input format, dynamic
memory allocation, data structures of various shapes and sizes,
pointers, loops, procedures, libraries, system calls, etc.

Page 27 November 2015HVC’2015

How? (1) Static Test Generation

• Static analysis to partition the program’s input space
[King76,…]

• Ineffective whenever symbolic reasoning is not possible

– which is frequent in practice… (pointer manipulations, complex
arithmetic, calls to complex OS or library functions, etc.)

Example:

int obscure(int x, int y) {

if (x==hash(y)) error();

return 0;

}

Can’t statically generate
values for x and y
that satisfy “x==hash(y)” !

Page 28 November 2015HVC’2015

How? (2) Dynamic Test Generation

• Run the program (starting with some random inputs),
gather constraints on inputs at conditional statements,
use a constraint solver to generate new test inputs

• Repeat until a specific program statement is reached
[Korel90,…]

• Or blend with model checking !

– repeat to try to cover ALL feasible program paths

– DART = Directed Automated Random Testing
= systematic dynamic test generation [PLDI’05,…]

– detect crashes, assertion violations, use runtime checkers
(Purify, Valgrind, AppVerifier,…)

Page 29 November 2015HVC’2015

DART = Directed Automated Random Testing

Example:

int obscure(int x, int y) {

if (x==hash(y)) error();

return 0;

}

- start with (random) x=33, y=42Run 1 :

- solve: x==567 solution: x=567

- execute concretely and symbolically:
if (33 != 567) | if (x != hash(y))

constraint too complex
 simplify it: x != 567

- new test input: x=567, y=42

Run 2 : the other branch is executed
All program paths are now covered !

• Observations:

– Dynamic test generation extends static test generation with
additional runtime information: it is more powerful

– see [DART in PLDI’05], [PLDI’11]

– The number of program paths can be infinite: may not terminate!

– Still, DART works well for small programs (1,000s LOC)

– Significantly improves code coverage vs. random testing

Page 30 November 2015HVC’2015

DART Implementations

• Defined by symbolic execution, constraint generation and solving
– Languages: C, Java, x86, .NET,…

– Theories: linear arithmetic, bit-vectors, arrays, uninterpreted functions,…

– Solvers: lp_solve, CVCLite, STP, Disolver, Z3,…

• Examples of tools/systems implementing DART:
– EXE/EGT (Stanford): independent [’05-’06] closely related work (became KLEE)

– CUTE = same as first DART implementation done at Bell Labs

– SAGE (MSR) for x86 binaries and merges it with “fuzz” testing for finding
security bugs (more next)

– PEX (MSR) for .NET binaries in conjunction with “parameterized-unit tests” for
unit testing of .NET programs

– YOGI (MSR) for checking the feasibility of program paths generated statically
using a SLAM-like tool

– Vigilante (MSR) for generating worm filters

– BitScope (CMU/Berkeley) for malware analysis

– CatchConv (Berkeley) focus on integer overflows

– Splat (UCLA) focus on fast detection of buffer overflows

– Apollo (MIT/IBM) for testing web applications …and many more!

Page 31 November 2015HVC’2015

An Application: SAGE @ Microsoft

• #1 application of SMT solvers today (CPU usage)

• Why? Security Testing

• Software security bugs can be very expensive:
– Cost of each Microsoft Security Bulletin: $Millions

– Cost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

• Many security vulnerabilities are in file & packet parsers
– Ex: MS Windows includes parsers for hundreds of file formats

• Security testing: “hunting for million-dollar bugs”
– Write A/V (always exploitable), Read A/V (sometimes

exploitable), NULL-pointer dereference, division-by-zero
(harder to exploit but still DOS attacks), etc.

Page 32 November 2015HVC’2015

Hunting for Security Bugs

• Main techniques used by “black hats”:

– Code inspection (of binaries) and

– Blackbox fuzz testing

• Blackbox fuzz testing:

– A form of blackbox random testing [Miller+90]

– Randomly fuzz (=modify) a well-formed input

– Grammar-based fuzzing: rules that encode “well-formed”ness +
heuristics about how to fuzz (e.g., using probabilistic weights)

• Heavily used in security testing

– Simple yet effective: many bugs found this way…

– At Microsoft, fuzzing is mandated by the SDL

Page 33 November 2015HVC’2015

Introducing Whitebox Fuzzing [NDSS’08]

Idea: mix fuzz testing with dynamic test generation

– Dynamic symbolic execution to collect constraints on inputs,
negate those, solve new constraints to get new tests,
repeat “systematic dynamic test generation” (= DART)

(Why dynamic ? Because most precise ! [PLDI’05, PLDI’11])

• Apply to large applications (not unit)

• Start with a well-formed input (not random)

• Combine with a generational search (not DFS)
– Negate 1-by-1 each constraint in a path constraint

– Generate many children for each parent run

– Challenge all the layers of the application sooner

– Leverage expensive symbolic execution

• Implemented in the tool SAGE

Gen 1
parent

Page 34 November 2015HVC’2015

Example

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 4) crash();

}

input = “good”

I0!=‘b’

I1!=‘a’

I2!=‘d’

I3!=‘!’

Negate each constraint in path constraint
Solve new constraint new input

Path constraint:

good

goo!

bood

gaod

godd

 I0=‘b’

 I1=‘a’

 I2=‘d’

 I3=‘!’

Gen 1 SAT

SMT

solver

Page 35 November 2015HVC’2015

The Search Space

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 4) crash();

}

If symbolic execution is perfect
and search space is small,
this is verification !

Page 36 November 2015HVC’2015

Some Experiments

• Seven applications – 10 hours search each

App Tested #Tests Mean Depth Mean #Instr. Mean Input
Size

ANI 11468 178 2,066,087 5,400

Media1 6890 73 3,409,376 65,536

Media2 1045 1100 271,432,489 27,335

Media3 2266 608 54,644,652 30,833

Media4 909 883 133,685,240 22,209

Compressed
File Format

1527 65 480,435 634

Excel 3008 6502 923,731,248 45,064

Most much (100x) bigger than ever tried before!

Page 37 November 2015HVC’2015

SAGE (Scalable Automated Guided Execution)

• Whitebox fuzzing introduced in SAGE

• Performs symbolic execution of x86 execution traces
– Builds on Nirvana, iDNA and TruScan for x86 analysis

– Don’t care about language or build process

– Easy to test new applications, no interference possible

• Can analyse any file-reading Windows applications

• Several optimizations to handle huge execution traces
– Constraint caching and common subexpression elimination

– Unrelated constraint optimization

– Constraint subsumption for constraints from input-bound loops

– “Flip-count” limit (to prevent endless loop expansions)

Page 38 November 2015HVC’2015

Check for

Crashes

(AppVerifier)

Code

Coverage

(Nirvana)

Generate

Constraints

(TruScan)

Solve

Constraints

(Z3)

Input0
Coverage

Data
Constraints

Input1

Input2

…

InputN

SAGE Architecture

Page 39 November 2015HVC’2015

Since 2007: many new security bugs found
(missed by blackbox fuzzers, static analysis)

– Apps: image decoders, media players, document processors,…

– Bugs: Write A/Vs, Read A/Vs, Crashes,…

– Many triaged as “security critical, severity 1, priority 1”
(would trigger Microsoft security bulletin if known outside MS)

– Example: WEX Security team for Win7
• Dedicated fuzzing lab with 100s machines

• 100s apps (deployed on 1 billion+ computers)

• ~1/3 of all fuzzing bugs found by SAGE !

SAGE Results

Page 40 November 2015HVC’2015

Impact of SAGE (in Numbers)

• 500+ machine-years
– Runs in the largest dedicated fuzzing lab in the world

– Largest computational usage ever for any SMT solver

• 100s of apps, 100s of bugs (missed by everything else)
– Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs

– Millions of dollars saved (for Microsoft and the world)

• “Practical Verification”:
– Eradicate all buffer overflows in all Windows parsers

• <5 security bulletins in all SAGE-cleaned Win7 parsers, 0 since 2011
• If nobody can find bugs in P, P is observationally equiv to “verified”!
• Reduce costs & risks for Microsoft, increase those for Black Hats

2000 2005 2010 2015

Blackbox Fuzzing Whitebox Fuzzing “Practical Verification”

Page 41 November 2015HVC’2015

Pex & Moles (MSR): Unit Testing for .NET

• User specifies a
“parameterized unit test”,
leverages code contracts

• Pex automatically generates
tests (using modified DART
algorithm)

• Moles: framework for mock-
object creation

• See rise4fun.com and
pex4fun.com

• Over 40,000 downloads

• Re-named IntelliTest and
Fakes in VisualStudio’2015 ->

Feedback (2015)…

• Very early days for Visual Studio 2015
upgrade cycle

• Just 2 months since shipping (7/20/2015)

• Favourable response from early adopters

• IntelliTest NUnit Extension - 1557 downloads

• IntelliTest xUnit.net Extension - 1239
downloads

• Positive sentiment on twitter.

• Growing “asks” on uservoice already.

From http://bbcode.codeplex.com/

https://visualstudiogallery.msdn.microsoft.com/bd30bf3f-4183-4b00-a245-1875316b8cd3
https://visualstudiogallery.msdn.microsoft.com/bf74d890-a81e-4e49-beb7-1ad3a4e012af
https://visualstudio.uservoice.com/forums/121579-visual-studio?query=IntelliTest
http://bbcode.codeplex.com/

Code Hunt

Age: 13+

Platform: via a web browser

Description: A game for practicing programming
and running coding contests.
Successive puzzles are presented with
test cases only, no specifications.
Players have to first work out the
pattern and then code the answer.

Languages: C# and Java

Adoption: Over 300,000 users (8,000 a week, 90% returning users) world-wide

Teaches: Imperative programming
Testing skills

Tech: Uses Pex to check solutions, open source data available for analysis

Page 44 November 2015HVC’2015

Conclusion: Dynamic Software Model Checking

• Dynamic Software Model Checking
– Concurrency: equivalence classes of program executions using

partial-order reduction

– Data inputs: equivalence classes of program executions using
(dynamic) symbolic execution

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

(SLAM, Bandera,
FeaVer, BLAST,…)

Concurrency: VeriSoft, JPF, CMC, CHESS, Cuzz,…

Data inputs: DART, EXE, SAGE, Pex,…
Dynamic

Page 45 November 2015HVC’2015

Conclusion

• Dynamic Software Model Checking

– Scales to industrial-size software

– Dozens of tools and applications over the last 20 years
• In industry and academia

– Can find bugs that traditional testing cannot find !

– Significant impact
• Ex: SAGE found bugs in Windows and Office apps used by billions

• And many more examples of applications !

– Yet not enough impact !
• Need better algorithms and tools (especially for concurrency!)

• Need better scalability, precision, automation,… usefulness !

• Need more “killer apps” and users

