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Model Checking via Automatic Abstraction

• Implemented in software model checkers like SLAM, BLAST,…

• Traditional iterative abstraction procedure:

1. Abstract:
– generate a finite abstraction A from the concrete program C   such that       

A simulates C   (using predicate abstraction, theorem proving)

2. Check:
– given any universal temporal-logic formula f, compute [A |= f] :
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– given any universal temporal-logic formula f, compute [A |= f] :
if [A |= f] = true, then return true  (we then know [C |= f] = true)

3. Refine:
– Otherwise ([A |= f] = false), refine A, then go to Step 1
– Ex: with predicate abstraction, add predicates to refine the model A

• Limitations:

– Restricted to universal properties (no existential properties)

– [A |= f] = false does not imply anything about C

– Could the analysis be more precise for an acceptable cost?



• Richer models A that distinguish what is 
true/false/unknown of C
– Ex: “partial Kripke structure” [Fitting92, Bruns-G99]

A Solution: 3-Valued Models and Logics

s p=true

p=false

MM
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– Ex: “Modal Transition System” (may/must trans.) [Larsen+88]

– These formalisms are all equally expressive [G-Jagadeesan03]

• Reasoning about 3-val. models requires 3-val. temp. logic
– Ex: [(M,s) |= p] = true, [(M,s) |= AXp] = false, [(M,s) |= EXp] = ⊥

• Complexity of 3-valued MC = complexity of MC [Bruns-G00]

p=⊥



New Abstract-Check-Refine Process

• New automatic-abstraction procedure: (3 improvements) 
[G-Huth-Jagadeesan01,…]

1. Abstract: generate a 3-valued abstraction A from the concrete 
program C that preserves true, false, unknown properties of C      
(same cost)
– Formally, A « C with the abstraction preorder « on 3-valued models
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2. Check: given any temporal-logic formula f,
• (3-valued model checking) compute [A |= f] :               (same cost)

if [A |= f] = true or false, then return true or false (respectively) 

• Otherwise  (generalized model checking) 

-if there is no concretization C of A such that C satisfies f, ret false

-if there is no concretization C of A such that C violates f, ret true

3. Refine: Otherwise, refine A, then go to Step 1



• Definition: [Bruns-G00]                                                          
Given a program abstraction A and a temporal logic 
formula f, does there exist a concretization C of A such 
that C satisfies f?

• GMC is a generalization of both
– Satisfiability (SAT)

Generalized Model Checking (GMC)
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– Satisfiability (SAT)

– Model Checking (MC)

• GMC can be more expensive than MC (includes SAT)
– in |f| (but worst-case and f is usually short) [Bruns-G00]

– in |A| (polynomial) but linear for e.g. safety properties [G-J02]

• GMC can also be more precise than MC…



Ex where GMC is more precise than MC

Program P( ) {Program P( ) {

int x,y = 1,0;int x,y = 1,0;

x,y = 2*f(x), f(y);x,y = 2*f(x), f(y);

x,y = 1,0;x,y = 1,0;

}}

Predicate abstractionPredicate abstraction

p: “x is odd”p: “x is odd”

q: “y is odd”q: “y is odd”

p=true, q=falsep=true, q=false

p=false, q= p=false, q= 

p=true, q=falsep=true, q=false

AA

⊥⊥
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Property “(eventually y is odd) and (always, x is odd or y is even)”Property “(eventually y is odd) and (always, x is odd or y is even)”

MC(MC(A,fA,f) = ) = ⊥⊥ …but  GMC(A,f) = false!…but  GMC(A,f) = false!

is represented by the LTL formula  f = F(q) is represented by the LTL formula  f = F(q) ∧∧ G(p G(p ∨∨ ¬¬q)q)

p=true, q=falsep=true, q=false



What is the complexity of GMC?

• [Bruns-Godefroid00]:

– Branching-Time Logics: GMC has the same complexity as SAT

– Linear-Time Logics: GMC is harder than SAT and MC
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• This paper: 2EXPTIME-complete !
Wrong!



New Result: LTL GMC is 2EXPTIME-compl.

• New upper bound: given a PKS M and a LTL formula f,
– Translate f into a NBW A  (exponential blow-up)

– Translate A into a DPW A’  (exponential blow-up) (*)

– Combine M with A’ to get a APW A’’ over 1-letter alphabet

– Check that L(A’’) is non-empty  (polynomial time)

– Theorem: L(A’’) is non-empty  iff   GMC(M,f) = true
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– Theorem: L(A’’) is non-empty  iff   GMC(M,f) = true

– Note: in [BG00], step (*) is missing and the direct ABW A’’ 
construction is wrong as L(A’’) is underapproximate

• New lower-bound:
– Theorem: GMC for LTL is 2EXPTIME-hard

– Proof: reduction from 2EXPTIME-hard LTL realizability 
problem [Pnueli-Rosner89]



New: Linear Completeness Preorder

• The previous results are for the traditional abstraction 
preorder « on 3-valued models:   a « c implies

– a =< c:    For all p, L(a,p) =< L(c,p)
where ⊥ =< true, ⊥ =< false,   true =< true, false =< false, ⊥ =< ⊥

– For every a->a’, there exists c->c’ such that a’ « c’

– For every c->c’, there exists a->a’ such that a’ « c’
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– For every c->c’, there exists a->a’ such that a’ « c’

• New linear completeness preorder:  a «L c implies

– For every w in L(a), there exists w’ in L(c) such that w =< w’

– For every w’ in L(c), there exists w in L(a) such that w =< w’

• Theorem: a «L c  iff  (for all f in LTL: [a |= f] =< [c |=f] )

– 3-valued LTL logically characterizes «L



GMC for LTL with «L

• For f in LTL, GMC(M, f, «L) is defined as
– Does there exists M’ such that M «L M’ and [M’ |= f] = true ?

• Theorem: GMC(M, f, «L) is EXPSPACE-complete
– Upper bound: translate f into a NBW A (exponential blow-up), 

– build a 3-valued NBW A’ such that                                              
w in L(A’) iff there is w =< w’ and [w’ |= f] = true, 

Page 10 January 2009VMCAI’2009

w in L(A’) iff there is w =< w’ and [w’ |= f] = true, 

– check L(M) ⊆ L(A’)  (space logarithmic in |M| and polynomial in 
|A’| [SistlaVardiWolper87], hence space exponential in |f|)

– Lower bound: reduction from EXPSPACE-hard tiling problem 
[vanEmdeBoas97]

• Thus, GMC(M, f, «L) is “only” EXPSPACE-complete (vs. 
2EXPTIME-complete) and requires only space log in |M|!



Comparing « and «L

• Theorem: for any LTL formula f, 

– M « M’   implies    M «L M’,

– hence    GMC(M,f) = true   implies    GMC(M, f, «L) = true

• The opposite is not true: 

– LTL f = (p (p ∧∧ XpXp) ) ∨∨ (¬p (¬p ∧∧ ¬¬XpXp)) s p=⊥
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– LTL f = (p (p ∧∧ XpXp) ) ∨∨ (¬p (¬p ∧∧ ¬¬XpXp))

–– [s |= f] = [s |= f] = ⊥⊥

–– GMC(s, f, GMC(s, f, «L) = true

– but  GMC(s, f) = false  !

• GMC(M, f, «L) is weaker (and cheaper) than GMC(M, f)

s

p=true

p=false

p=⊥

MM



Model Complexity of GMC

• GMC(M, f, «L) requires only logarithmic space in |M|

• but GMC(M, f) is polynomial (PTIME-complete) in |M|

– The degree of the polynomial depends on the DPW Af for f

• Theorem:
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– LTL GMC(M,f) is linear in |M| for weak (incl. safety) properties
• Proof: the DPW for f is then a DWW, and the product with M is a   
1-letter-alphabet AWW, whose emptiness can be checked in lin time

– LTL GMC(M,f) is quadratic in |M| for response, persistence and 
generalized reactivity[1] properties
• Proof: the DPW for is then a DBW, DCW or DPW with 3-priorities, 
and the product with M is a 1-letter-alphabet ABW, ACW or APW 
with 3-priorities, whose emptiness can be checked in quadratic time



Conclusions: LTL GMC Revisited

• LTL GMC(M,f) is 2EXPTIME-complete
– instead of EXPTIME-complete [BG00]

• New linear completeness preorder «L

• GMC(M, f, «L) is only EXPSPACE-complete
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• and requires only logarithmic space in |M|

• While GMC(M,f) is polynomial (PTIME-complete) in |M|

• but only linear or quadratic in |M| in many cases
– linear for safety and weak properties

– quadratic for response, persistence, generalized reactivity[1]


