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Model Checking via Automatic Abstraction

Implemented in software model checkers like SLAM, BLAST,...

Traditional iterative abstraction procedure:

1. Abstract:

- generate a finite abstraction A from the concrete program € such that
A simulates C (using predicate abstraction, theorem proving)

2. Check:
- given any universal temporal-logic formula f, compute [A |= f]:
if [A |= f] = true, then return true (we then know [C |= f] = true)

3. Refine:
- Otherwise ([A |= f] = false), refine A, then go to Step 1
- Ex: with predicate abstraction, add predicates to refine the model A

Limitations:

- Restricted to universal properties (no existential properties)
- [A |= f] = false does not imply anything about C

- Could the analysis be more precise for an acceptable cost?
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A Solution: 3-Valued Models and Logics

* Richer models A that distinguish what is
true/false/unknown of C

- Ex: "partial Kripke structure” [Fitting92, Bruns-G99]
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- Ex: "Modal Transition System” (may/must trans.) [Larsen+88]
- These formalisms are all equally expressive [6-Jagadeesan03]

» Reasoning about 3-val. models requires 3-val. temp. logic
- Ex: [(M,s) |= p] = true, [(M,s) |= AXp] = false, [(M,s) |= EXp]= L

+ Complexity of 3-valued MC = complexity of MC [Bruns-600]
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New Abstract-Check-Refine Process

- New automatic-abstraction procedure: (3 improvements)
[6-Huth-Jagadeesan01,...]

1. Abstract: generate a 3-valued abstraction A from the concrete
program C that preserves true, false, unknown properties of C
(same cost)

- Formally, A « C with the abstraction preorder « on 3-valued models

2. Check: given any temporal-logic formula f,
(3-valued model checking) compute [A |= f]: (same cost)
if [A |= f] = true or false, then return true or false (respectively)
Otherwise (generalized model checking)
-if there is no concretization C of A such that C satisfies f, ret false
-if there is no concretization C of A such that C violates f, ret true

3. Refine: Otherwise, refine A, then go to Step 1

VMCAT'2009 Page 4 January 2009



Generalized Model Checking (GMC)

Definition: [Bruns-G00]
Given a program abstraction A and a temporal logic
formula f, does there exist a concretization C of A such

that C satisfies f?
SAT

MC
* GMC is a generalization of both 1 L Stk
- Satisfiability (SAT) M /C\
- Model Checking (MC) P:m,@ pfalse

* GMC can be more expensive than MC (includes SAT)
- in |f| (but worst-case and f is usually short) [Bruns-GOO]
- in |A| (polynomial) but linear for e.qg. safety properties [6-J02]

* GMC can also be more precise than MC...
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Ex where GMC is more precise than MC

A

Program P() { O p=true, g=false

Predicate abstraction

Int X,y = 1,0, el * ’9
— D% . p: “x1s odd |
i:g ; %,Of;(X), f(Y)a q: “y iS Odd” 5 p:fa]se, L
}

6 p=true, q=false

Property “(eventually y 1s odd) and (always, x 1s odd or y 1s even)”

1s represented by the LTL formula f=F(q) A G(p v 7q)

MCA)) =1 ...but GMC(A,f) = false!
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What is the complexity of GMC?

+ [Bruns-Godefroid00]:

- Branching-Time Logics: GMC has the same complexity as SAT
- Linear-Time Logics: GMC is harder than SAT and MC

Logic MC SAT GMC
PL Linecar NP-Complete NP-Complete
PML Linear PSPACE-Complete | PSPACE-Complete
CTL Linear EXPTIME-Complete | EXPTIME-Complete
p-calculus NPMeo-NP EXPTIME-Complete | EXPTIME-Complete
LTL PSPACE-Complete | PSPACE-Complete | deeReteetatiagbete
|

Wrong!
This paper: 2EXPTIME-complete | —
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New Result: LTL GMC is 2EXPTIME-compl.

New upper bound: given a PKS M and a LTL formula f,
- Translate f into a NBW A (exponential blow-up)

- Translate A into a DPW A" (exponential blow-up) (*)

- Combine M with A’ o get a APW A" over 1-letter alphabet

- Check that L(A") is hon-empty (polynomial time)

- Theorem: L(A") is non-empty iff GMC(M, f) = true

- Note: in [BGOO], step (*) is missing and the direct ABW A"
construction is wrong as L(A") is underapproximate

New lower-bound:
- Theorem: GMC for LTL is 2EXPTIME-hard

- Proof: reduction from 2EXPTIME-hard LTL realizability
problem [Pnueli-Rosner89]
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New: Linear Completeness Preorder

The previous results are for the traditional abstraction
preorder « on 3-valued models: a « c implies

- a=<c: Foradllp,L(ap)=<L(cp)

where 1 =< true, L =< false, true =< true, false =< false, 1 =< L
- For every a->a’, there exists c->c' such that a’ « ¢’
- For every c->c’, there exists a->a’ such that a' « ¢’

New linear completeness preorder: a « c implies
- For every w in L(a), there exists w' in L(c) such that w =< w'
- For every w' in L(c), there exists w in L(a) such that w =< w'

Theorem: a « ¢ iff (forall finLTL: [a |= f]=<[c [=f])

- 3-valued LTL logically characterizes «
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GMC for LTL with «,
For finLTL, GMC(M, f, «|) is defined as

Does there exists M' such that M «, M" and [M' |= ] = true ?

+ Theorem: GMC(M, f, «) is EXPSPACE-complete

Upper bound: translate f into a NBW A (exponential blow-up),

build a 3-valued NBW A’ such that
win L(A") iff there isw =< w' and [w' |= f] = true,

check L(M) € L(A") (space logarithmic in |M| and polynomial in
|A'| [SistlaVardiWolper87], hence space exponential in |f])

Lower bound: reduction from EXPSPACE-hard tiling problem

[vanEmdeBoas97]

Thus, GMC(M, f, «) is "only" EXPSPACE-complete (vs.
2EXPTIME-complete) and requires only space log in [M|!
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Comparing « and «

+ Theorem: for any LTL formula f,
- M« M implies M« M,
- hence GMC(M,f)=true implies GMC(M, f, «) = true

-+ The opposite is not true:
- LTLf=(p A Xp) v (-p A -Xp) s . p=L

M ®)
" s 5 fl=d1 / \ p=tal
= GMC(S, f, «L) = frue C 5 *

- but GMC(s, f) = false |

p=true

« GMC(M, f, «|) is weaker (and cheaper) than GMC(M, f)
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Model Complexity of GMC

« GMC(M, f, «) requires only logarithmic space in |M|

+ but GMC(M, f) is polynomial (PTIME-complete) in [M|
- The degree of the polynomial depends on the DPW A; for f

- Theorem:

- LTL GMC(M f) is linear in |M| for weak (incl. safety) properties

* Proof: the DPW for f is then a DWW, and the product with M is a
1-letter-alphabet AWW, whose emptiness can be checked in lin time

- LTL GMC(M,f) is quadratic in |M| for response, persistence and
generalized reactivity[1] properties
* Proof: the DPW for is then a DBW, DCW or DPW with 3-priorities,

and the product with M is a 1-letter-alphabet ABW, ACW or APW
with 3-priorities, whose emptiness can be checked in quadratic time
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Conclusions: LTL GMC Revisited

+ LTL GMC(M ) is 2EXPTIME-complete
- instead of EXPTIME-complete [BGOO]

* New linear completeness preorder «;

* GMC(M, f, «) is only EXPSPACE-complete

- and requires only logarithmic space in |M|

+ While GMC(M f) is polynomial (PTIME-complete) in |M|

» but only linear or quadratic in |[M| in many cases
- linear for safety and weak properties
- quadratic for response, persistence, generalized reactivity[1]
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