# LTL Generalized Model Checking Revisited

#### Patrice Godefroid

Nir Piterman

Microsoft Research

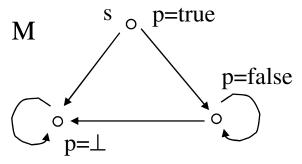
**Imperial** College

## Model Checking via Automatic Abstraction

- Implemented in software model checkers like SLAM, BLAST,...
- Traditional iterative abstraction procedure:
  - 1. Abstract:
    - generate a finite abstraction A from the concrete program C such that A simulates C (using predicate abstraction, theorem proving)
  - 2. Check:
    - given any universal temporal-logic formula f, compute [A |= f]:
      if [A |= f] = true, then return true (we then know [C |= f] = true)
  - 3. Refine:
    - Otherwise ([A |= f] = false), refine A, then go to Step 1
    - Ex: with predicate abstraction, add predicates to refine the model A
- Limitations:
  - Restricted to universal properties (no existential properties)
  - [A |= f] = false does not imply anything about C
  - Could the analysis be more precise for an acceptable cost?

## A Solution: 3-Valued Models and Logics

- Richer models A that distinguish what is true/false/unknown of C
  - Ex: "partial Kripke structure" [Fitting92, Bruns-G99]



- Ex: "Modal Transition System" (may/must trans.) [Larsen+88]
- These formalisms are all equally expressive [G-Jagadeesan03]
- Reasoning about 3-val. models requires 3-val. temp. logic
  - Ex: [(M,s) |= p] = true, [(M,s) |= AXp] = false, [(M,s) |= EXp] =  $\bot$
- Complexity of 3-valued MC = complexity of MC [Bruns-G00]

#### New Abstract-Check-Refine Process

- New automatic-abstraction procedure: (3 improvements)
  [G-Huth-Jagadeesan01,...]
  - Abstract: generate a <u>3-valued</u> abstraction A from the concrete program C that preserves *true*, *false*, *unknown* properties of C (same cost)
    - Formally, A « C with the abstraction preorder « on 3-valued models
  - 2. Check: given any temporal-logic formula f,
    - (3-valued model checking) compute [A |= f]: (same cost)
      if [A |= f] = true or false, then return true or false (respectively)
    - Otherwise (generalized model checking)
      -if there is no concretization C of A such that C satisfies f, ret false
      -if there is no concretization C of A such that C violates f, ret true
  - 3. Refine: Otherwise, refine A, then go to Step 1

## Generalized Model Checking (GMC)

- Definition: [Bruns-GOO] Given a program abstraction A and a temporal logic formula f, does there exist a concretization C of A such that C satisfies f?
   SAT
- GMC is a generalization of both  $_{s1}$ 
  - Satisfiability (SAT)
  - Model Checking (MC)



- in |f| (but worst-case and f is usually short) [Bruns-G00]
- in |A| (polynomial) but linear for e.g. safety properties [G-J02]
- GMC can also be more precise than MC...

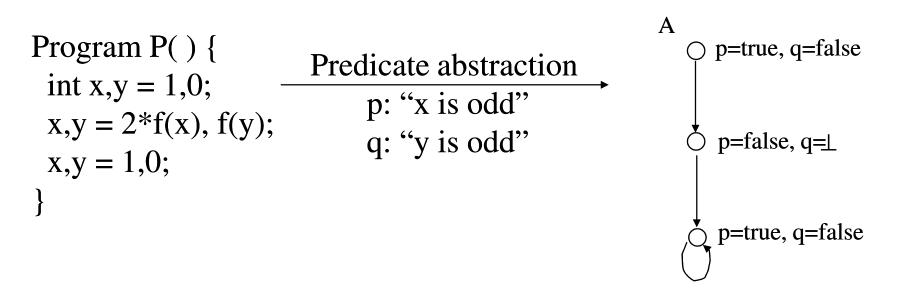
p=false

p=false

s2

p=true

#### Ex where GMC is more precise than MC



Property "(eventually y is odd) and (always, x is odd or y is even)" is represented by the LTL formula  $f = F(q) \wedge G(p \vee \neg q)$ 

 $MC(A,f) = \bot$  ...but GMC(A,f) = false!

## What is the complexity of GMC?

- [Bruns-Godefroid00]:
  - Branching-Time Logics: GMC has the same complexity as SAT
  - Linear-Time Logics: GMC is harder than SAT and MC

| Logic           | $\mathbf{MC}$   | $\mathbf{SAT}$   | $\mathbf{GMC}$   |
|-----------------|-----------------|------------------|------------------|
|                 |                 |                  |                  |
| PL              | Linear          | NP-Complete      | NP-Complete      |
| PML             | Linear          | PSPACE-Complete  | PSPACE-Complete  |
| CTL             | Linear          | EXPTIME-Complete | EXPTIME-Complete |
| $\mu$ -calculus | NP∩co-NP        | EXPTIME-Complete | EXPTIME-Complete |
| LTL             | PSPACE-Complete | PSPACE-Complete  | EXPTIME Complete |
|                 |                 |                  |                  |
|                 |                 |                  | Wrong!           |

This paper: 2EXPTIME-complete !

#### New Result: LTL GMC is 2EXPTIME-compl.

- <u>New upper bound</u>: given a PKS M and a LTL formula f,
  - Translate f into a NBW A (exponential blow-up)
  - Translate A into a DPW A' (exponential blow-up) (\*)
  - Combine M with A' to get a APW A" over 1-letter alphabet
  - Check that L(A") is non-empty (polynomial time)
  - **Theorem**: L(A") is non-empty iff GMC(M,f) = true
  - Note: in [BG00], step (\*) is missing and the direct ABW A" construction is wrong as L(A") is underapproximate
- <u>New lower-bound</u>:
  - Theorem: GMC for LTL is 2EXPTIME-hard
  - Proof: reduction from 2EXPTIME-hard LTL realizability problem [Pnueli-Rosner89]

#### New: Linear Completeness Preorder

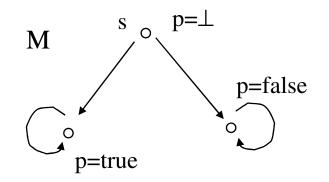
- The previous results are for the traditional abstraction preorder « on 3-valued models: a « c implies
  - a =< c: For all p, L(a,p) =< L(c,p) where  $\perp$  =< true,  $\perp$  =< false, true =< true, false =< false,  $\perp$  =<  $\perp$
  - For every a->a', there exists c->c' such that a' « c'
  - For every c->c', there exists a->a' such that a' « c'
- New linear completeness preorder: a «L c implies
  - For every w in L(a), there exists w' in L(c) such that w =< w'
  - For every w' in L(c), there exists w in L(a) such that w =< w'
- Theorem:  $a \ll_L c$  iff (for all f in LTL:  $[a | = f] = \langle [c | = f] \rangle$ 
  - 3-valued LTL logically characterizes «L

## GMC for LTL with $\ll_L$

- For f in LTL,  $GMC(M, f, \ll_L)$  is defined as
  - Does there exists M' such that  $M \ll_L M'$  and [M' |= f] = true ?
- **Theorem:** GMC(M, f, «<sub>L</sub>) is EXPSPACE-complete
  - <u>Upper bound</u>: translate f into a NBW A (exponential blow-up),
  - build a 3-valued NBW A' such that
    w in L(A') iff there is w =< w' and [w' |= f] = true,</li>
  - check  $L(M) \subseteq L(A')$  (space logarithmic in |M| and polynomial in |A'| [SistlaVardiWolper87], hence space exponential in |f|)
  - <u>Lower bound</u>: reduction from EXPSPACE-hard tiling problem [vanEmdeBoas97]
- Thus, GMC(M, f, «L) is "only" EXPSPACE-complete (vs. 2EXPTIME-complete) and requires only space log in |M|!

## Comparing $\ll$ and $\ll_L$

- Theorem: for any LTL formula f,
  - $M \ll M'$  implies  $M \ll_L M'$ ,
  - hence GMC(M,f) = true implies  $GMC(M, f, \ll_L)$  = true
- The opposite is not true:
  - LTL f = (p  $\land$  Xp)  $\lor$  (¬p  $\land$  ¬Xp)
  - [s |= f] = ⊥
  - $GMC(s, f, \ll_L) = true$
  - but GMC(s, f) = false !



•  $GMC(M, f, \ll_L)$  is weaker (and cheaper) than GMC(M, f)

## Model Complexity of GMC

- $GMC(M, f, \ll_L)$  requires only logarithmic space in |M|
- but GMC(M, f) is polynomial (PTIME-complete) in |M|
  - The degree of the polynomial depends on the DPW  $A_f$  for f
- Theorem:
  - LTL GMC(M,f) is linear in |M| for weak (incl. safety) properties
    - Proof: the DPW for f is then a DWW, and the product with M is a 1-letter-alphabet AWW, whose emptiness can be checked in lin time
  - LTL GMC(M,f) is quadratic in |M| for response, persistence and generalized reactivity[1] properties
    - Proof: the DPW for is then a DBW, DCW or DPW with 3-priorities, and the product with M is a 1-letter-alphabet ABW, ACW or APW with 3-priorities, whose emptiness can be checked in quadratic time

#### Conclusions: LTL GMC Revisited

- LTL GMC(M,f) is 2EXPTIME-complete
  - instead of EXPTIME-complete [BG00]
- New linear completeness preorder «L
- GMC(M, f, «L) is only EXPSPACE-complete
- and requires only logarithmic space in |M|
- While GMC(M,f) is polynomial (PTIME-complete) in |M|
- but only linear or quadratic in |M| in many cases
  - linear for safety and weak properties
  - quadratic for response, persistence, generalized reactivity[1]