LTL Generalized Model Checking

Revisited

Patrice Godefroid Nir Piterman

Microsoft Research Imperial College

oooooooooooooooooooooooooo

Model Checking via Automatic Abstraction

Implemented in software model checkers like SLAM, BLAST,...

Traditional iterative abstraction procedure:

1. Abstract:

- generate a finite abstraction A from the concrete program € such that
A simulates C (using predicate abstraction, theorem proving)

2. Check:
- given any universal temporal-logic formula f, compute [A |= f]:
if [A |= f] = true, then return true (we then know [C |= f] = true)

3. Refine:
- Otherwise ([A |= f] = false), refine A, then go to Step 1
- Ex: with predicate abstraction, add predicates to refine the model A

Limitations:

- Restricted to universal properties (no existential properties)
- [A |= f] = false does not imply anything about C

- Could the analysis be more precise for an acceptable cost?

VMCAT'2009 Page 2 January 2009

A Solution: 3-Valued Models and Logics

* Richer models A that distinguish what is
true/false/unknown of C

- Ex: "partial Kripke structure” [Fitting92, Bruns-G99]

S o p=true

M
/ \ p=false
< ®)
o2
- Ex: "Modal Transition System” (may/must trans.) [Larsen+88]
- These formalisms are all equally expressive [6-Jagadeesan03]

» Reasoning about 3-val. models requires 3-val. temp. logic
- Ex: [(M,s) |= p] = true, [(M,s) |= AXp] = false, [(M,s) |= EXp]= L

+ Complexity of 3-valued MC = complexity of MC [Bruns-600]

VMCAT'2009 Page 3 Januar y 2009

New Abstract-Check-Refine Process

- New automatic-abstraction procedure: (3 improvements)
[6-Huth-Jagadeesan01,...]

1. Abstract: generate a 3-valued abstraction A from the concrete
program C that preserves true, false, unknown properties of C
(same cost)

- Formally, A « C with the abstraction preorder « on 3-valued models

2. Check: given any temporal-logic formula f,
(3-valued model checking) compute [A |= f]: (same cost)
if [A |= f] = true or false, then return true or false (respectively)
Otherwise (generalized model checking)
-if there is no concretization C of A such that C satisfies f, ret false
-if there is no concretization C of A such that C violates f, ret true

3. Refine: Otherwise, refine A, then go to Step 1

VMCAT'2009 Page 4 January 2009

Generalized Model Checking (GMC)

Definition: [Bruns-G00]
Given a program abstraction A and a temporal logic
formula f, does there exist a concretization C of A such

that C satisfies f?
SAT

MC
* GMC is a generalization of both 1 L Stk
- Satisfiability (SAT) M /C\
- Model Checking (MC) P:m,@ pfalse

* GMC can be more expensive than MC (includes SAT)
- in |f| (but worst-case and f is usually short) [Bruns-GOO]
- in |A| (polynomial) but linear for e.qg. safety properties [6-J02]

* GMC can also be more precise than MC...

VMCAT'2009 Page 5

Ex where GMC is more precise than MC

A

Program P() { O p=true, g=false

Predicate abstraction

Int X,y = 1,0, el * ’9
— D% . p: “x1s odd |
i:g ; %,Of;(X), f(Y)a q: “y iS Odd” 5 p:fa]se, L
}

6 p=true, q=false

Property “(eventually y 1s odd) and (always, x 1s odd or y 1s even)”

1s represented by the LTL formula f=F(q) A G(p v 7q)

MCA)) =1 ...but GMC(A,f) = false!

VMCAT'2009 Page 6 January 2009

What is the complexity of GMC?

+ [Bruns-Godefroid00]:

- Branching-Time Logics: GMC has the same complexity as SAT
- Linear-Time Logics: GMC is harder than SAT and MC

Logic MC SAT GMC
PL Linecar NP-Complete NP-Complete
PML Linear PSPACE-Complete | PSPACE-Complete
CTL Linear EXPTIME-Complete | EXPTIME-Complete
p-calculus NPMeo-NP EXPTIME-Complete | EXPTIME-Complete
LTL PSPACE-Complete | PSPACE-Complete | deeReteetatiagbete
|

Wrong!
This paper: 2EXPTIME-complete | —

VMCAT'2009

Page 7

January 2009

New Result: LTL GMC is 2EXPTIME-compl.

New upper bound: given a PKS M and a LTL formula f,
- Translate f into a NBW A (exponential blow-up)

- Translate A into a DPW A" (exponential blow-up) (*)

- Combine M with A’ o get a APW A" over 1-letter alphabet

- Check that L(A") is hon-empty (polynomial time)

- Theorem: L(A") is non-empty iff GMC(M, f) = true

- Note: in [BGOO], step (*) is missing and the direct ABW A"
construction is wrong as L(A") is underapproximate

New lower-bound:
- Theorem: GMC for LTL is 2EXPTIME-hard

- Proof: reduction from 2EXPTIME-hard LTL realizability
problem [Pnueli-Rosner89]

VMCAT'2009 Page 8 January 2009

New: Linear Completeness Preorder

The previous results are for the traditional abstraction
preorder « on 3-valued models: a « c implies

- a=<c: Foradllp,L(ap)=<L(cp)

where 1 =< true, L =< false, true =< true, false =< false, 1 =< L
- For every a->a’, there exists c->c' such that a’ « ¢’
- For every c->c’, there exists a->a’ such that a' « ¢’

New linear completeness preorder: a « c implies
- For every w in L(a), there exists w' in L(c) such that w =< w'
- For every w' in L(c), there exists w in L(a) such that w =< w'

Theorem: a « ¢ iff (forall finLTL: [a |= f]=<[c [=f])

- 3-valued LTL logically characterizes «

VMCAT'2009 Page 9 January 2009

GMC for LTL with «,
For finLTL, GMC(M, f, «|) is defined as

Does there exists M' such that M «, M" and [M' |=] = true ?

+ Theorem: GMC(M, f, «) is EXPSPACE-complete

Upper bound: translate f into a NBW A (exponential blow-up),

build a 3-valued NBW A’ such that
win L(A") iff there isw =< w' and [w' |= f] = true,

check L(M) € L(A") (space logarithmic in |M| and polynomial in
|A'| [SistlaVardiWolper87], hence space exponential in |f])

Lower bound: reduction from EXPSPACE-hard tiling problem

[vanEmdeBoas97]

Thus, GMC(M, f, «) is "only" EXPSPACE-complete (vs.
2EXPTIME-complete) and requires only space log in [M|!

VMCAT'2009 Page 10 Januar y 2009

Comparing « and «

+ Theorem: for any LTL formula f,
- M« M implies M« M,
- hence GMC(M,f)=true implies GMC(M, f, «) = true

-+ The opposite is not true:
- LTLf=(p A Xp) v (-p A -Xp) s . p=L

M ®)
" s 5 fl=d1 / \ p=tal
= GMC(S, f, «L) = frue C 5 *

- but GMC(s, f) = false |

p=true

« GMC(M, f, «|) is weaker (and cheaper) than GMC(M, f)

VMCAT'2009 Page 11 Januar y 2009

Model Complexity of GMC

« GMC(M, f, «) requires only logarithmic space in |M|

+ but GMC(M, f) is polynomial (PTIME-complete) in [M|
- The degree of the polynomial depends on the DPW A; for f

- Theorem:

- LTL GMC(M f) is linear in |M| for weak (incl. safety) properties

* Proof: the DPW for f is then a DWW, and the product with M is a
1-letter-alphabet AWW, whose emptiness can be checked in lin time

- LTL GMC(M,f) is quadratic in |M| for response, persistence and
generalized reactivity[1] properties
* Proof: the DPW for is then a DBW, DCW or DPW with 3-priorities,

and the product with M is a 1-letter-alphabet ABW, ACW or APW
with 3-priorities, whose emptiness can be checked in quadratic time

VMCAT'2009 Page 12 January 2009

Conclusions: LTL GMC Revisited

+ LTL GMC(M) is 2EXPTIME-complete
- instead of EXPTIME-complete [BGOO]

* New linear completeness preorder «;

* GMC(M, f, «) is only EXPSPACE-complete

- and requires only logarithmic space in |M|

+ While GMC(M f) is polynomial (PTIME-complete) in |M|

» but only linear or quadratic in |[M| in many cases
- linear for safety and weak properties
- quadratic for response, persistence, generalized reactivity[1]

VMCAT'2009 Page 13 Januar y 2009

