
LTL Generalized Model CheckingLTL Generalized Model Checking

RevisitedRevisited

Page 1 January 2009VMCAI’2009

Patrice Godefroid Nir PitermanPatrice Godefroid Nir Piterman

Microsoft Research Imperial CollegeMicrosoft Research Imperial College

Model Checking via Automatic Abstraction

• Implemented in software model checkers like SLAM, BLAST,…

• Traditional iterative abstraction procedure:

1. Abstract:
– generate a finite abstraction A from the concrete program C such that

A simulates C (using predicate abstraction, theorem proving)

2. Check:
– given any universal temporal-logic formula f, compute [A |= f] :

Page 2 January 2009VMCAI’2009

– given any universal temporal-logic formula f, compute [A |= f] :
if [A |= f] = true, then return true (we then know [C |= f] = true)

3. Refine:
– Otherwise ([A |= f] = false), refine A, then go to Step 1
– Ex: with predicate abstraction, add predicates to refine the model A

• Limitations:

– Restricted to universal properties (no existential properties)

– [A |= f] = false does not imply anything about C

– Could the analysis be more precise for an acceptable cost?

• Richer models A that distinguish what is
true/false/unknown of C
– Ex: “partial Kripke structure” [Fitting92, Bruns-G99]

A Solution: 3-Valued Models and Logics

s p=true

p=false

MM

Page 3 January 2009VMCAI’2009

– Ex: “Modal Transition System” (may/must trans.) [Larsen+88]

– These formalisms are all equally expressive [G-Jagadeesan03]

• Reasoning about 3-val. models requires 3-val. temp. logic
– Ex: [(M,s) |= p] = true, [(M,s) |= AXp] = false, [(M,s) |= EXp] = ⊥

• Complexity of 3-valued MC = complexity of MC [Bruns-G00]

p=⊥

New Abstract-Check-Refine Process

• New automatic-abstraction procedure: (3 improvements)
[G-Huth-Jagadeesan01,…]

1. Abstract: generate a 3-valued abstraction A from the concrete
program C that preserves true, false, unknown properties of C
(same cost)
– Formally, A « C with the abstraction preorder « on 3-valued models

Page 4 January 2009VMCAI’2009

2. Check: given any temporal-logic formula f,
• (3-valued model checking) compute [A |= f] : (same cost)

if [A |= f] = true or false, then return true or false (respectively)

• Otherwise (generalized model checking)

-if there is no concretization C of A such that C satisfies f, ret false

-if there is no concretization C of A such that C violates f, ret true

3. Refine: Otherwise, refine A, then go to Step 1

• Definition: [Bruns-G00]
Given a program abstraction A and a temporal logic
formula f, does there exist a concretization C of A such
that C satisfies f?

• GMC is a generalization of both
– Satisfiability (SAT)

Generalized Model Checking (GMC)

Page 5 January 2009VMCAI’2009

– Satisfiability (SAT)

– Model Checking (MC)

• GMC can be more expensive than MC (includes SAT)
– in |f| (but worst-case and f is usually short) [Bruns-G00]

– in |A| (polynomial) but linear for e.g. safety properties [G-J02]

• GMC can also be more precise than MC…

Ex where GMC is more precise than MC

Program P() {Program P() {

int x,y = 1,0;int x,y = 1,0;

x,y = 2*f(x), f(y);x,y = 2*f(x), f(y);

x,y = 1,0;x,y = 1,0;

}}

Predicate abstractionPredicate abstraction

p: “x is odd”p: “x is odd”

q: “y is odd”q: “y is odd”

p=true, q=falsep=true, q=false

p=false, q= p=false, q=

p=true, q=falsep=true, q=false

AA

⊥⊥

Page 6 January 2009VMCAI’2009

Property “(eventually y is odd) and (always, x is odd or y is even)”Property “(eventually y is odd) and (always, x is odd or y is even)”

MC(MC(A,fA,f) =) = ⊥⊥ …but GMC(A,f) = false!…but GMC(A,f) = false!

is represented by the LTL formula f = F(q) is represented by the LTL formula f = F(q) ∧∧ G(p G(p ∨∨ ¬¬q)q)

p=true, q=falsep=true, q=false

What is the complexity of GMC?

• [Bruns-Godefroid00]:

– Branching-Time Logics: GMC has the same complexity as SAT

– Linear-Time Logics: GMC is harder than SAT and MC

Page 7 January 2009VMCAI’2009

• This paper: 2EXPTIME-complete !
Wrong!

New Result: LTL GMC is 2EXPTIME-compl.

• New upper bound: given a PKS M and a LTL formula f,
– Translate f into a NBW A (exponential blow-up)

– Translate A into a DPW A’ (exponential blow-up) (*)

– Combine M with A’ to get a APW A’’ over 1-letter alphabet

– Check that L(A’’) is non-empty (polynomial time)

– Theorem: L(A’’) is non-empty iff GMC(M,f) = true

Page 8 January 2009VMCAI’2009

– Theorem: L(A’’) is non-empty iff GMC(M,f) = true

– Note: in [BG00], step (*) is missing and the direct ABW A’’
construction is wrong as L(A’’) is underapproximate

• New lower-bound:
– Theorem: GMC for LTL is 2EXPTIME-hard

– Proof: reduction from 2EXPTIME-hard LTL realizability
problem [Pnueli-Rosner89]

New: Linear Completeness Preorder

• The previous results are for the traditional abstraction
preorder « on 3-valued models: a « c implies

– a =< c: For all p, L(a,p) =< L(c,p)
where ⊥ =< true, ⊥ =< false, true =< true, false =< false, ⊥ =< ⊥

– For every a->a’, there exists c->c’ such that a’ « c’

– For every c->c’, there exists a->a’ such that a’ « c’

Page 9 January 2009VMCAI’2009

– For every c->c’, there exists a->a’ such that a’ « c’

• New linear completeness preorder: a «L c implies

– For every w in L(a), there exists w’ in L(c) such that w =< w’

– For every w’ in L(c), there exists w in L(a) such that w =< w’

• Theorem: a «L c iff (for all f in LTL: [a |= f] =< [c |=f])

– 3-valued LTL logically characterizes «L

GMC for LTL with «L

• For f in LTL, GMC(M, f, «L) is defined as
– Does there exists M’ such that M «L M’ and [M’ |= f] = true ?

• Theorem: GMC(M, f, «L) is EXPSPACE-complete
– Upper bound: translate f into a NBW A (exponential blow-up),

– build a 3-valued NBW A’ such that
w in L(A’) iff there is w =< w’ and [w’ |= f] = true,

Page 10 January 2009VMCAI’2009

w in L(A’) iff there is w =< w’ and [w’ |= f] = true,

– check L(M) ⊆ L(A’) (space logarithmic in |M| and polynomial in
|A’| [SistlaVardiWolper87], hence space exponential in |f|)

– Lower bound: reduction from EXPSPACE-hard tiling problem
[vanEmdeBoas97]

• Thus, GMC(M, f, «L) is “only” EXPSPACE-complete (vs.
2EXPTIME-complete) and requires only space log in |M|!

Comparing « and «L

• Theorem: for any LTL formula f,

– M « M’ implies M «L M’,

– hence GMC(M,f) = true implies GMC(M, f, «L) = true

• The opposite is not true:

– LTL f = (p (p ∧∧ XpXp)) ∨∨ (¬p (¬p ∧∧ ¬¬XpXp)) s p=⊥

Page 11 January 2009VMCAI’2009

– LTL f = (p (p ∧∧ XpXp)) ∨∨ (¬p (¬p ∧∧ ¬¬XpXp))

–– [s |= f] = [s |= f] = ⊥⊥

–– GMC(s, f, GMC(s, f, «L) = true

– but GMC(s, f) = false !

• GMC(M, f, «L) is weaker (and cheaper) than GMC(M, f)

s

p=true

p=false

p=⊥

MM

Model Complexity of GMC

• GMC(M, f, «L) requires only logarithmic space in |M|

• but GMC(M, f) is polynomial (PTIME-complete) in |M|

– The degree of the polynomial depends on the DPW Af for f

• Theorem:

Page 12 January 2009VMCAI’2009

– LTL GMC(M,f) is linear in |M| for weak (incl. safety) properties
• Proof: the DPW for f is then a DWW, and the product with M is a
1-letter-alphabet AWW, whose emptiness can be checked in lin time

– LTL GMC(M,f) is quadratic in |M| for response, persistence and
generalized reactivity[1] properties
• Proof: the DPW for is then a DBW, DCW or DPW with 3-priorities,
and the product with M is a 1-letter-alphabet ABW, ACW or APW
with 3-priorities, whose emptiness can be checked in quadratic time

Conclusions: LTL GMC Revisited

• LTL GMC(M,f) is 2EXPTIME-complete
– instead of EXPTIME-complete [BG00]

• New linear completeness preorder «L

• GMC(M, f, «L) is only EXPSPACE-complete

Page 13 January 2009VMCAI’2009

• and requires only logarithmic space in |M|

• While GMC(M,f) is polynomial (PTIME-complete) in |M|

• but only linear or quadratic in |M| in many cases
– linear for safety and weak properties

– quadratic for response, persistence, generalized reactivity[1]

