
Page 1 September 2014EMC’2014

Dynamic
Software Model Checking

Patrice Godefroid

Microsoft Research

Page 2 September 2014EMC’2014

Ed Clarke: A man, An idea…

• LASER’2011 summer school (Elba island, Italy)

Page 3 September 2014EMC’2014

Ed Clarke: A man, An idea…

• LASER’2011 summer school (Elba island, Italy)

• Q from student: “career advice for young researcher?”

• Ed: “Pick an idea that excites you,
then devote your life to it.”

Page 4 September 2014EMC’2014

Insight: Model Checking is Super Testing

• Simple yet effective technique for finding bugs

• In the software-engineering universe:

cost

(money)

coverage

(bugs)

testing

model checking

verification

Page 5 September 2014EMC’2014

Dynamic Software Model Checking

• How to apply model checking to analyze software?

– “Real” programming languages (e.g., C, C++, Java),

– “Real” size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation

(SLAM, Bandera,
FeaVer, BLAST,…)

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,…

Data inputs: DART, EXE, SAGE,…
Dynamic

Page 6 September 2014EMC’2014

Example: SAGE @ Microsoft

• Problem: How to systematically explore efficiently the
state spaces of sequential programs to find bugs due to
malformed inputs?

• Motivation: security testing at Microsoft

• Software security bugs can be very expensive:

– Cost of each Microsoft Security Bulletin: $Millions

– Cost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

• Many security exploits are initiated via files or packets

– Ex: MS Windows includes parsers for hundreds of file formats

• Security testing: “hunting for million-dollar bugs”

Page 7 September 2014EMC’2014

A Solution: Whitebox Fuzzing [NDSS’08]

• Idea: mix fuzz testing with dynamic test generation
– Dynamic symbolic execution to collect constraints on inputs

– Negate those, solve new constraints to get new tests

– Repeat “systematic dynamic test generation” (= DART)

(Why dynamic ? Because most precise ! [PLDI’05, PLDI’11])

• Combine with a generational search (not DFS)
– Negate 1-by-1 each constraint in a path constraint

– Generate many children for each parent run

– Challenge all the layers of the application sooner

– Leverage expensive symbolic execution

• Implemented in the tool SAGE
– Optimized for large x86 trace analysis, file fuzzing

Gen 1
parent

Page 8 September 2014EMC’2014

The Search Space

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 4) crash();

}

If symbolic execution is perfect
and search space is small,
this is verification !

Page 9 September 2014EMC’2014

Since 2007: many new security bugs found
(missed by blackbox fuzzers, static analysis)

– Apps: image decoders, media players, document processors,…

– Bugs: Write A/Vs, Read A/Vs, Crashes,…

– Many triaged as “security critical, severity 1, priority 1”
(would trigger Microsoft security bulletin if known outside MS)

– Example: WEX Security team for Win7
• Dedicated fuzzing lab with 100s machines

• 100s apps (deployed on 1 billion+ computers)

• ~1/3 of all fuzzing bugs found by SAGE !

SAGE Results

Page 10 September 2014EMC’2014

Impact of SAGE (in Numbers)

• 500+ machine-years
– Runs in the largest dedicated fuzzing lab in the world

– Largest computational usage ever for any SMT solver

• 100s of apps, 100s of bugs (missed by everything else)
– Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs

– Millions of dollars saved (for Microsoft and the world)

• “Practical Verification”:
– Eradicate all buffer overflows in all Windows parsers

• <5 security bulletins in all SAGE-cleaned Win7 parsers, 0 since 2011
• If nobody can find bugs in P, P is observationally equiv to “verified”!
• Reduce costs & risks for Microsoft, increase those for Black Hats

2000 2005 2010 2015

Blackbox Fuzzing Whitebox Fuzzing “Practical Verification”

Page 11 September 2014EMC’2014

Conclusion: Ed Clarke

• A man

• An idea

• A community

• Changing the world
(Elba, 2011)

Thank you !
There is one thing stronger than all the armies in the world;

and that is an idea whose time has come. -- Victor Hugo

