
Page 1 Mars 2009AILg 2009

20 20 ansans de de RecherchesRecherches sursur lele
““Software Model CheckingSoftware Model Checking””

Patrice GodefroidPatrice Godefroid

1989 1994 2006 2009

Université de Liège Bell Labs Microsoft Research

Page 2 Mars 2009AILg 2009

““Model CheckingModel Checking””

• Model Checking (MC) is

– check whether a program satisfies a property by exploring its state space

– systematic state-space exploration = exhaustive testing

– “check whether the system satisfies a temporal-logic formula”

• Simple yet effective technique for finding bugs in high-level hardware and
software designs

• Once thoroughly checked, models can be compiled and used as the core of
the implementation

BA C

deadlock

Each component is modeled by a FSM.

Page 3 Mars 2009AILg 2009

Problem: State Explosion!Problem: State Explosion!

Page 4 Mars 2009AILg 2009

A Solution: PartialA Solution: Partial--Order ReductionOrder Reduction

• Verification algorithms that avoid state explosion due to
the modeling of concurrency by interleaving

• Examples:

– 2 concurrent reads are commutative à reduction

– But 2 concurrent writes are not à no reduction

(persistent sets)

t

t

t’

t’

t

t’

t t’

t’

(sleep sets)

Page 5 Mars 2009AILg 2009

ImpactImpact

• We pioneered the development of partial-order
reduction at the University of Liege (1989-1994)
– We = Prof. Pierre Wolper, Didier Pirottin and me

– With collaborator Gerard Holzmann (Bell Labs)

– Other prominent contributors: Doron Peled (Technion, Israel)
and Antti Valmari (Tampere, Finland)

• Developed first full-fledged tool with POR
= “ULg Partial-Order Package for SPIN”

• Today, nearly all explicit-state model checkers
implement POR in one form or another
– Tens of tools

– Hundreds of citations for our papers on the topic

Page 6 Mars 2009AILg 2009

Problem: Model Checking of SoftwareProblem: Model Checking of Software

• How to apply model checking to analyze software?

– “Real” programming languages (e.g., C, C++, Java),

– “Real” size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing

VeriSoft

state-space exploration

state-space exploration

abstraction adaptation

Page 7 Mars 2009AILg 2009

A Solution: A Solution: VeriSoftVeriSoft = Systematic Testing= Systematic Testing

• State Space = “product of (OS) processes” (Dynamic Semantics)

• Systematically drive the system along all its state space paths
(= automatically generate, execute and evaluate many scenarios)

• Control and observe the execution of concurrent processes by
intercepting system calls (communication, assertion violations, etc.)

• From a given initial state, one can always guarantee a complete
coverage of the state space up to some depth

VeriSoft

BA C

System Processes

deadlock

s0

Page 8 Mars 2009AILg 2009

ImpactImpact

• VeriSoft is the first systematic state-space exploration tool for
concurrent systems composed of processes executing arbitrary code
(e.g., C, C++,…)

– Many technical innovations: no static analysis (programming language
independent),“VS_toss(int)” to simulate nondeterminism at run-time,
“state-less” search (no state encodings saved in memory), uses POR

• Examples of successful applications (at Lucent):

– 4ESS Heart-Beat Monitor debugging and unit testing (1998)

– WaveStar 40G R4 integration and system testing (1999-2000)

– 3G Wireless CDMA call processing library testing (2000-2001)

– Critical bugs found in each case (“$1M+ saved”)

• VeriSoft is available outside Lucent since 1999

– 100’s of non-commercial (free) licenses in 25+ countries

Page 9 Mars 2009AILg 2009

Software Model Checking ToolsSoftware Model Checking Tools

19901990

19951995

20002000

20052005

VeriSoftVeriSoft

(MC for (MC for AdaAda……))

FeaVerFeaVer
SLAMSLAM

BLASTBLAST

JavaPathFinderJavaPathFinder

CMCCMC

BanderaBandera

BogorBogor

(Bell Labs)(Bell Labs)
(Microsoft)(Microsoft)

(Berkeley)(Berkeley)

(NASA)(NASA) (Kansas U.)(Kansas U.)

(Stanford)(Stanford)

(Kansas U.)(Kansas U.)

(Bell Labs)(Bell Labs)

DynamicDynamic StaticStatic

And many other recent onesAnd many other recent ones……

CBMCCBMC
(CMU)(CMU)

Page 10 Mars 2009AILg 2009

Problem: What about DataProblem: What about Data--driven apps?driven apps?

• How to systematically explore efficiently the state
spaces of sequential programs to find bugs due to
malformed inputs?

• Application: security testing at Microsoft

• Software security bugs can be very expensive:

– Cost of each Microsoft Security Bulletin: $Millions

– Cost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

• Most security exploits are initiated via files or packets

– Ex: Web browsers parse dozens of file formats

• Security testing: “hunting for million-dollar bugs”

Page 11 Mars 2009AILg 2009

A Solution: A Solution: WhiteboxWhitebox FuzzingFuzzing

• Idea: mix fuzz testing with dynamic test generation

– Symbolic execution to collect constraints on inputs

– Negate those, solve new constraints to get new tests

– Repeat à “systematic dynamic test generation” (= DART)

• Combine with a generational search (not DFS)
– Negate 1-by-1 each constraint in a path constraint

– Generate many children for each parent run

– Challenge all the layers of the application sooner

– Leverage expensive symbolic execution

• Implemented in the tool SAGE

– Optimized for large x86 trace analysis, file fuzzing

Gen 1
parent

Page 12 Mars 2009AILg 2009

Since April’07 1st release: many new security bugs found
(missed by blackbox fuzzers, static analysis)
– Apps: image processors, media players, file decoders,…

– Bugs: Write A/Vs, Read A/Vs, Crashes,…

– Many triaged as “security critical, severity 1, priority 1”
(would trigger Microsoft security bulletin if known outside MS)

– Most bugs found by WEX Security team for Win7
• Dedicated fuzzing lab with 100s machines à
• ~1/3 of all fuzzing bugs found by SAGE !

– SAGE = gold medal at Fuzzing Olympics
organized by SWI at BlueHat’08 (Oct’08)

– Credit is due to entire SAGE team!

– Several other groups have now adopted our
approach (10+ tools, 100s citations)

ImpactImpact

Page 13 Mars 2009AILg 2009

Conclusion: Conclusion: RemerciementsRemerciements

• Université de Liège

• Professeur Pierre Wolper

• Tous mes collaborateurs ces 20 dernières années !

• L’AILg pour cet honneur

