20 ans de Recherches sur le
"Software Model Checking”

1989 1994 2006 2009

Université de Liege Bell Labs Microsoft Research

Patrice Godefroid

AIlLg 2009 Page 1 Mars 2009

"Model Checking"

E A <------ B <------ C E —— (i\

-- | deadlock
Each component is modeled by a FSM.
Model Checking (MC) is
- check whether a program satisfies a property by exploring its state space
- systematic state-space exploration = exhaustive testing
- ‘"check whether the system satisfies a femporal-logic formula”

Simple yet effective technique for finding bugs in high-level hardware and
software designs

Once thoroughly checked, models can be compiled and used as the core of
the implementation

AIlg 2009 Page 2 Mars 2009

Problem: State Explosion!

Example:
Initially: vi=v2=_.=vn=0
Process | Process 2 Process n
—= 5l: vl:=1l; —= s52: v2:=I; —= sn: vn.=1;
s17: stop s2: stop sn’: stop

— n! interleavings
2" states

— State Explosion

AIlLg 2009 Page 3 Mars 2009

A Solution: Partial-Order Reduction

- Verification algorithms that avoid state explosion due to
the modeling of concurrency by interleaving

+ Examples:
- 2 concurrent reads are commutative reduction
- But 2 concurrent writes are not no reduction
00000
/ \ t O 430000 1=
O Trahs liohs —
E/O\f (persistent sets) ococo |-
O O L0000
\ Lo -
t O 50000
& - &
(sleep sets) U B B

P hilc:ﬁophcls

AIlg 2009 Page 4 Mars 2009

Impact

- We pioneered the development of partial-order
reduction at the University of Liege (1989-1994)

- We = Prof. Pierre Wolper, Didier Pirottin and me
- With collaborator Gerard Holzmann (Bell Labs)

- Other prominent contributors: Doron Peled (Technion, Israel)
and Antti Valmari (Tampere, Finland)

+ Developed first full-fledged tool with POR i St i
= "ULg Partial-Order Package for SPIN"

Patrice Godefroid

. TOdCly, neﬂrly all exp“CiT"STGTe model checkers raiome viemods

for the Verification

implement POR in one form or another e i e
- Tens of tools
- Hundreds of citations for our papers on the topic

AIlg 2009 Page 5 Mars 2009

Problem: Model Checking of Software

* How to apply model checking to analyze software?
- “Real” programming languages (e.g., C, C++, Java),
- "Real” size (e.g., 100,000's lines of code).

» Two main approaches to software model checking:

state-space exploration

Modeling languages > Model checking

A

abstraction adaptation

state-space exploration M

" Systematic testing

VeriSoft

Programming languages

AILg 2009 Page 6

Mars 2009

A Solution: VeriSoft = Systematic Testing

State Space = "product of (OS) processes” (Dynamic Semantics)

Systematically drive the system along all its state space paths
(= automatically generate, execute and evaluate many scenarios)

Control and observe the execution of concurrent processes by
intercepting system calls (communication, assertion violations, etc.)

From a given initial state, one can always guarantee a complete
coverage of the state space up to some depth

VeriSoft l s0

ﬁ

System Processes
e (2
: \ 4 \ 4 \ 4 i
! 1
[N el [I e > . j
: A oo B oo C : ; O
| ! / deadlock ;
| : v v
D o o o o e e e o 1
-

AIlg 2009 Page 7 Mars 2009

Impact

VeriSoft is the first systematic state-space exploration tool for

concurrent systems composed of processes executing arbitrary code
(e.g., C, C++,.)

- Many technical innovations: no static analysis (programming language
independent),"VS_toss(int)" to simulate nondeterminism at run-time,
"state-less” search (no state encodings saved in memory), uses POR

Examples of successful applications (at Lucent):
- 4ESS Heart-Beat Monitor debugging and unit testing (1998)
- WaveStar 406G R4 integration and system testing (1999-2000)
- 36 Wireless CDMA call processing library testing (2000-2001)
- Critical bugs found in each case ("$1M+ saved")

VeriSoft is available outside Lucent since 1999
- 100's of non-commercial (free) licenses in 25+ countries

AIlg 2009 Page 8 Mars 2009

Software Model Checking Tools

1990

1995

2000

2005

<

Dynamic . Static
; (MC for Ada...)

VeriSoft
(Bell Labs)
o FeaVer (ﬂ;ﬁ‘}s\gﬂ)
JavaPathFinder ey Labs) (l?(anderél
(NASA) ansas U.)
BLAST
CMC . (Berkeley)
(Stanford) |
Bogor ((3(1:3%?
(Kansas U.) |

And many other recent ones...

AILg 2009

Page 9 Mars 2009

Problem: What about Data-driven apps?

How to systematically explore efficiently the state
spaces of sequential programs to find bugs due to
malformed inputs?

+ Application: security testing at Microsoft

- Software security bugs can be very expensive:
- Cost of each Microsoft Security Bulletin: $Millions
- Cost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

* Most security exploits are initiated via files or packets
- Ex: Web browsers parse dozens of file formats

» Security testing: “hunting for million-dollar bugs”

AIlg 2009 Page 10 Mars 2009

A Solution: Whitebox Fuzzing

+ Idea: mix fuzz testing with dynamic test generation
- Symbolic execution to collect constraints on inputs
- Negate those, solve new constraints to get new tests
- Repeat "systematic dynamic test generation” (= DART)

+ Combine with a generational search (not DFS)
- Negate 1-by-1 each constraint in a path constraint
- Generate many children for each parent run
- Challenge all the layers of the application sooner

- Leverage expensive symbolic execution
Gen 1

* Implemented in the tool SAGE parent
- Optimized for large x86 trace analysis, file fuzzing

AIlg 2009 Page 11 Mars 2009

Impact

Since April'O7 15" release: many new security bugs found
(missed by blackbox fuzzers, static analysis)
- Apps: image processors, media players, file decoders,...
- Bugs: Write A/Vs, Read A/Vs, Crashes,...

- Many triaged as "security critical, severity 1, priority 1"
(would trigger Microsoft security bulletin if known outside MS)

- Most bugs found by WEX Security team for Win7
* Dedicated fuzzing lab with 100s machines
» ~1/3 of all fuzzing bugs found by SAGE |

- SAGE = gold medal at Fuzzing Olympics
organized by SWI at BlueHat'08 (Oct'08)

- Credit is due to entire SAGE team!

- Several other groups have now adopted our
approach (10+ tools, 100s citations)

AIlLg 2009 Page 12 Mars 2009

Conclusion: Remerciements

* Université de Liege

* Professeur Pierre Wolper

»+ Tous mes collaborateurs ces 20 derniéres années !

- L'AILg pour cet honneur

AIlg 2009 Page 13 Mars 2009

