
Automatic Synthesis of Specifications from 
the Dynamic Observation of
Reactive Programs

Bernard Boigelot and Patrice Godefroid

April 1997

Copyright  1997 Springer-Verlag Berlin Heidelberg. This work is subject to copyright. All rights are 
reserved, whether the whole or part of the material is concerned, specifically the rights of translation, 
reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, 
and storage in data banks. Duplication of this publication or parts thereof is permitted only under the 
provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for 
use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German 
Copyright Law.



Automatic Synthesis of Speci�cations from the

Dynamic Observation of Reactive Programs

Bernard Boigelot

1?

and Patrice Godefroid

2

1

Universit�e de Li�ege

Institut Monte�ore, B28

B-4000 Li�ege Sart-Tilman, Belgium

boigelot@montefiore.ulg.ac.be

2

Bell Laboratories

Lucent Technologies

1000 E. Warrenville Road

Naperville, IL 60566, U.S.A.

god@bell-labs.com

Abstract. VeriSoft [God97] is a tool for systematically exploring the

state spaces of systems composed of several concurrent processes exe-

cuting arbitrary C (or C++) code. VeriSoft can automatically detect

coordination problems between the concurrent processes of a system. In

this paper, we present a method to synthesize a �nite-state machine that

simulates all the sequences of visible operations of a given process that

were observed during a state-space exploration performed by VeriSoft.

The examination of this machine makes it possible to discover the dy-

namic behavior of the process in its environment and to understand how

it contributes to the global behavior of the system.

1 Introduction

State-space exploration techniques are increasingly being used for analyzing the

correctness of concurrent reactive systems. These techniques consist of explor-

ing a directed graph, called the state space, representing the combined behav-

ior of all concurrent components in a system. Existing state-space exploration

tools can compute automatically a state space from a description of the concur-

rent system speci�ed in a modeling language. Examples of such tools are CAE-

SAR [FGM

+

92], COSPAN [HK90], CWB [CPS93], MURPHI [DDHY92], SMV

[McM93], SPIN [Hol91], and VFSMvalid [FHS95], among others. These tools

di�er by the modeling languages they use for representing systems and proper-

ties, and by the conformation criteria according to which these representations

are compared. But all of them are based on state-space exploration algorithms,

in one form or another, for performing the veri�cation itself. Some very complex

?

\Aspirant" (Research Assistant) for the National Fund for Scienti�c Research (Bel-

gium). The work of this author was done while visiting Bell Laboratories.



concurrent systems have been analyzed using state-space exploration techniques.

In many cases, these techniques were able to reveal quite subtle design errors

(e.g., [Rud92, CGH

+

93, BG96]).

Recently, it has been shown in [God97] how veri�cation by state-space explo-

ration can be extended to deal directly with \actual" descriptions of concurrent

systems, e.g., implementations of communication protocols written in program-

ming languages such as C or C++. This result was obtained by using a new

search algorithm suitable for e�ciently exploring the state spaces of such sys-

tems. This algorithm is used in VeriSoft, a tool for systematically exploring the

state spaces of systems composed of several concurrent processes executing arbi-

trary C (or C++) code. VeriSoft can automatically detect coordination problems

between the concurrent processes of a system. Speci�cally, VeriSoft searches

the state space of the system for deadlocks, livelocks, divergences, and viola-

tions of user-speci�ed assertions. An interactive graphical simulator/debugger

is also available for following the execution of all the processes of the system.

(See [God97] for details.)

In this paper, we argue that state-space exploration can give a deeper in-

sight into the behavior of concurrent reactive systems than just checking speci�c

formal properties. The state space of a system contains much information that

can be used to better understand how the code is being exercised and how the

di�erent processes behave and interact with each other. However, extracting this

information and presenting it to the user in a meaningful and convenient way is

by no means a trivial task since state spaces of concurrent systems often contain

millions of states and transitions.

To take up this challenge, we show in this paper how to automatically syn-

thesize a speci�cation, i.e., an abstract representation, for a reactive program

from the observation of its executions. Precisely, we present a method to synthe-

size a �nite-state machine that simulates all the sequences of visible operations

of a process that were observed during a state-space exploration performed by

VeriSoft. The examination of such a machine makes it possible to discover the

dynamic behavior of the process in its environment and to understand how it

contributes to the global behavior of the system.

In the next section, we de�ne the state space of a concurrent system com-

posed of processes executing arbitrary code written in a full-
edged programming

language. In Section 3, we present an algorithm for synthesizing an abstract ma-

chine representing the observed behavior of a given process of the concurrent

system being analyzed. The synthesis procedure includes a parameter that can

be adjusted to obtain machines that represent the desired behavior with varying

degrees of accuracy. We also describe an \on-the-
y" version of the algorithm for

producing intermediate results while the state space of the system is still being

explored. The synthesis algorithm has been implemented, and results of experi-

ments are reported in Section 4. Several applications of this work are discussed

in Section 5. The paper ends with a comparison of our approach with related

work.



2 Systematic State-Space Exploration using VeriSoft

We consider a concurrent system composed of a �nite set P of processes and a

�nite set of communication objects. Each process P

i

2 P executes a sequence

of operations, that is described in a sequential program written in a full-
edged

programming language such as C or C++. Such programs are deterministic:

every execution of the program on the same input data performs the same se-

quence of operations. We assume that processes communicate with each other

by performing operations on communication objects. Examples of communica-

tion objects are shared variables, semaphores, and FIFO bu�ers. At any time,

at most one operation can be performed on a given communication object (op-

erations on a same communication object are mutually exclusive). Operations

on communication objects are called visible operations, while other operations

are called invisible. The execution of an operation is said to be blocking if it

cannot be completed. We assume that only executions of visible operations may

be blocking.

The concurrent system is said to be in a global state when the next operation

to be executed by every process in the system is a visible operation. We assume

that every process in the system always eventually attempts to execute a visible

operation. This implies that initially, after the creation of all the processes of the

system, the system may reach a �rst and unique global state s

0

, called the initial

global state of the system. We de�ne a transition as a visible operation followed

by a �nite sequence of invisible operations performed by a single process. A

transition whose visible operation is blocking in a global state s is said to be

disabled in s. Otherwise, the transition is said to be enabled in s. A transition t

that is enabled in a global state s can be executed from s. Once the execution of

t from s is completed, the system reaches a global state s

0

, called the successor of

s by t. The state space of the concurrent system is composed of the global states

that are reachable from the initial global state s

0

, and of the transitions that are

possible between these. All operations on objects are deterministic, except one

special operation \VS toss". This operation takes as argument a positive integer

n, and returns an integer in [0; n]. The operation is visible and nondeterministic:

the execution of a transition starting with VS toss(n) may yield up to n + 1

di�erent successor states, corresponding to di�erent values returned by VS toss.

VeriSoft [God97] is a tool for systematically exploring the state space of a

concurrent system as de�ned above. In a nutshell, every process of the concurrent

system to be analyzed is mapped to a UNIX process. The execution of the system

processes is controlled by an external process, called the scheduler. This process

observes the visible operations performed by processes inside the system, and can

suspend their execution. By resuming the execution of (the next visible operation

of) one selected system process in a global state, the scheduler can explore one

transition between two global states in the state space of the concurrent system.

By reinitializing the system, the scheduler can explore alternative paths in the

state space. The scheduler also contains an implementation of a new search

algorithm that make it possible to systematically and e�ciently explore the state

spaces of such systems without storing any intermediate states in memory. For



�nite acyclic state spaces, this search algorithm is guaranteed to terminate and

can be used for detecting deadlocks and assertion violations without incurring

the risk of any incompleteness in the veri�cation results. We refer the reader

to [God97] for a detailed presentation of VeriSoft.

In what follows, the only fact we will need about VeriSoft is that it can gen-

erate a labeled tree T representing the state space of a concurrent system. Each

node n of T corresponds to a global state of the system. Each edge (n; (a; P

i

); n

0

)

of T corresponds to a transition in the state space from global state n to global

state n

0

, and is labeled by its visible operation a and by the identi�er P

i

of the

process executing the transition. The root node of T corresponds to the initial

global state s

0

of the system. Every path in T corresponds to a sequence of

visible operations that has been observed during the state-space exploration. If

the state-space search terminates, this implies that the state space of the system

is �nite and acyclic, and the �nal tree T generated by VeriSoft contains all the

sequences of visible operations that each individual process can perform in the

concurrent system. Of course, if the state-space exploration is stopped before its

completion, the �nal tree T obtained represents only the part of the state space

that has been explored.

The following de�nitions and notations will be used in the following sections.

A �nite-state machine, or machine for short, is a tuple M = (S;A;�; s

0

), where

S is a �nite set of states, A is an alphabet, � � S�A�S is a transition relation,

and s

0

2 S is the initial state. A �nite word w = a

0

a

1

: : : a

n�1

is accepted by a

machineM if there is a sequence of states � = s

0

: : : s

n

such that s

0

is the initial

state of M and (s

i

; a

i

; s

i+1

) 2 � for all 0 � i � n � 1. A (labeled) tree can be

viewed as a machine where (1) there is exactly one node, called the root, which

no transitions enters, (2) every node except the root has exactly one entering

transition, and (3) there is a path from the root to each state.

We also recall the following de�nitions (e.g., [Mil89]).

De�nition 1. A machine M

1

= (S

1

; A

1

; �

1

; s

1

0

) simulates a machine M

2

=

(S

2

; A

2

; �

2

; s

2

0

) if there exists a binary relation R � S

1

� S

2

that satis�es the

two following conditions:

{ (s

1

0

; s

2

0

) 2 R;

{ whenever (s

1

; s

2

) 2 R and (s

2

; a; s

0

2

) 2 �

2

, there exists a s

0

1

such that

(s

1

; a; s

0

1

) 2 �

1

and (s

0

1

; s

0

2

) 2 R.

De�nition 2. Two machines M

1

= (S

1

; A

1

; �

1

; s

1

0

) and M

2

= (S

2

; A

2

; �

2

; s

2

0

)

are strongly bisimilar if there exists a binary relation R � S

1

� S

2

that satis�es

the three following conditions:

{ (s

1

0

; s

2

0

) 2 R;

{ whenever (s

1

; s

2

) 2 R and (s

1

; a; s

0

1

) 2 �

1

, there exists a s

0

2

such that

(s

2

; a; s

0

2

) 2 �

2

and (s

0

1

; s

0

2

) 2 R;

{ whenever (s

1

; s

2

) 2 R and (s

2

; a; s

0

2

) 2 �

2

, there exists a s

0

1

such that

(s

1

; a; s

0

1

) 2 �

1

and (s

0

1

; s

0

2

) 2 R.



3 Synthesis Algorithm

Given a tree T representing (possibly a part of) the state space of a concurrent

system, the problem addressed here is to synthesize a �nite-state machine M

that simulates all the sequences of visible operations of process P

i

2 P that were

observed during the exploration of T .

Since T typically contains transitions performed by all the processes of the

system, we �rst compute the projection of T on the set of operations executed

by P

i

. This is done by hiding in T all the edges e = (n; (a; P

j

); n

0

) corresponding

to operations performed by processes other than P

i

: for every such edge e, the

origin of all the edges outgoing from the destination node n

0

of e is replaced

by n, and the edge e is then discarded. The implementation of the projection

algorithm also ensures that the resulting tree is deterministic, i.e., that all edges

from a node have di�erent labels. Moreover, the successor edges of each node

are sorted. Let T ji denote the tree returned by the projection algorithm. We call

T ji a projected tree.

For synthesizing an abstract machine for process P

i

from T ji, we use a variant

of an algorithm described in [BF72] that generates a �nite-state machine for

computing a given function f . Speci�cally, this algorithm takes as input a �nite

set S of words on an alphabet A and a function f : A

�

7! Y that maps words in

A

�

to values in set Y . The algorithm then generates a �nite-state machine M

whose states are labeled by values in Y and such that the execution of M on

any word w 2 S leads to a state labeled by f(w).

In this section, we extend the procedure of [BF72] from words to trees, and

adapt it to make it suitable for solving the problem addressed here. The basic

idea of the modi�ed algorithm is to de�ne an equivalence relation between the

nodes of the projected tree T ji, and to associate one state of the output �nite-

state machine to each equivalence class. Then, for every pair of nodes connected

by an edge in the projected tree, a transition with the same label is added in the

synthesized machine to connect the two states corresponding to the equivalence

classes of these nodes. The synthesis procedure includes a parameter that can

be adjusted to obtain machines that represent the desired behavior with varying

degrees of accuracy.

Precisely, we proceed as follows. Let k be a positive integer. For each node n

of the projected tree T ji, let subtree(n; k) denote the subtree of T ji that has n

as its root and that contains all the successor edges and nodes of n up to depth

k. This implies that all the paths in subtree(n; k) contain at most k edges.

De�nition 3. Two nodes n and n

0

of the projected tree T ji are said to be k-

equivalent if subtree(n; k) and subtree(n

0

; k) are strongly bisimilar.

Since T ji is deterministic, all subtrees of T ji are also deterministic. Therefore,

since the successor edges of each node in T ji are sorted by the projection algo-

rithm, checking whether subtree(n; k) and subtree(n

0

; k) are strongly bisimilar

can be done in time linearly proportional to the size of the smallest of both

subtrees. Let [n]

k

denote the set of nodes of T ji that are k-equivalent to n.

We now de�ne formally the synthesized machine M

k

.



De�nition 4. Given a projected tree T ji = (S;A;�; s

0

) and an integer k > 0,

the nondeterministic abstract machine M

k

= (S

k

; A

k

; �

k

; s

k

0

) is de�ned by

{ S

k

= f[n]

k

jn 2 Sg,

{ A

k

= A,

{ �

k

� S

k

�A

k

� S

k

is such that

([n]

k

; a; [n

0

]

k

) 2 �

k

i� 9(n; (a; P

i

); n

0

) 2 �;

{ s

k

0

= [s

0

]

k

.

This construction groups together the nodes of the projected tree T ji that are

k-equivalent. If subtrees corresponding to nodes of M

k

that have already been

generated are stored in a hash table, and if we assume that it takes O(1) time

to access any of these trees, the overall worst-case time complexity of the above

procedure is O(NB

k

) where N is the number of nodes in T ji and B is the

maximum number of successor edges of a node in T ji.

We have the following.

Theorem5. Let T ji = (S;A;�; s

0

) be a projected tree, let k be a positive in-

teger, and let M

k

= (S

k

; A

k

; �

k

; s

k

0

) be the corresponding abstract machine as

de�ned in De�nition 4. Then, M

k

simulates T ji.

Proof. Consider the relation R � S

k

� S de�ned by R = f([s]

k

; s)js 2 Sg. Let

us show that R is a relation satisfying the two conditions of De�nition 1.

Since [s

0

]

k

= s

k

0

, the �rst condition of De�nition 1 is satis�ed. Moreover, we

know by De�nition 4 that 8s 2 S : 8(s; (a; P

i

); s

0

) 2 � : ([s]

k

; a; [s

0

]

k

) 2 �

k

. This

implies that, for all ([s]

k

; s) 2 R and (s; (a; P

i

); s

0

) 2 �, we have ([s]

k

; a; [s

0

]

k

) 2

�

k

and ([s

0

]

k

; s

0

) 2 R. Consequently, the second condition of De�nition 1 is also

satis�ed, and M

k

simulates T ji.

The following corollary is immediate.

Corollary 6. Let L(T ji) denote the language accepted by the projected tree T ji,

and let L(M

k

) be the language accepted by the abstract machine M

k

as de�ned

in De�nition 4. Then,

L(T ji) � L(M

k

):

The previous theorem formalizes the notion of \approximation" provided

by M

k

with respect to T ji. The level of approximation is determined by the

parameter k. If k is small, the procedure may group together many di�erent

nodes of T ji, and hence may generate a very compact machine. Conversely, if

k is greater or equal to depth(T ji), the length of the longest path in T ji, no

approximation is made: the resulting machine M

k

and T ji are strongly bisimilar

and accept the same language.

The previous observation implies that, for every T ji, there exists a k such

that L(T ji) = L(M

k

). More interestingly, it also implies that, for every T ji, there

exists a k such that

L(T ji) = fw 2 L(M

k

) : jwj � depth(T ji)g: (1)



This property holds when, not only all the sequences of T ji are represented in

M

k

, but also all the sequences of length smaller or equal to depth(T ji) accepted

byM

k

correspond to sequences of operations contained in T ji: the approximation

performed by the synthesis algorithm is then exact for sequences of operations

whose length is limited to depth(T ji). Given a projected tree T ji, it is possible

to compute the smallest value of k that satis�es Condition (1) above. This value

can be much smaller than the smallest value of k satisfying L(T ji) = L(M

k

), as

we will see in Section 4.

a

a

a

d e

a

a

b c

b c

d e

(k=1)

Fig. 1. Example of projected tree (left) and synthesized machine with k = 1 (right)

Example 1. Consider the projected tree on the left of Figure 1. The machine on

the right of the �gure is the abstract machine generated by the above procedure

with k = 1. Nodes of the abstract machine correspond to nodes of the projected

tree that have the same k-subtree. For instance, the initial state of the machine

is the equivalence class of states that have only one transition labeled by a as

successor. Because the abstract machine contains a cycle from the initial state

in the abstract machine, the language of the projected tree is not equal to the

language of the machine. The reader can check that the minimum value of k such

that L(T ji) = L(M

k

) for this example is 3. The minimum value of k satisfying

Condition (1) is 3 as well.

It is worth noticing that it is possible to generate parts of the machine M

k

while the state space of the system is still being explored. This is useful for pro-

viding feedback to the user before completion of the search. Precisely, this can



be done as follows. Let a node n of the projected tree T ji be called complete once

subtree(n; k) is completely known, i.e., when all the paths from n in T ji contain

at least k transitions or are known to be complete (because all the corresponding

executions of the system are �nite and have been completely explored). When-

ever a complete node n is available in the projected tree, it can be passed to

the synthesis algorithm, which can then test whether subtree(n; k) has already

been visited; if this is not the case, a new state [n]

k

and new transitions can

immediately be generated in M

k

. By extension, such a state [n]

k

in M

k

will also

be called complete.

However, there are examples of concurrent systems for which this on-the-


y version of the synthesis algorithm is not helpful because no complete nodes

are generated before the search ends. For instance, consider two processes P

1

and P

2

that can repeatedly perform a wait operation, enter a critical section,

and then perform a signal operation. Assuming the value of the semaphore is

initially 1, there is an execution of the system where P

2

loops forever while P

1

does not move, although P

1

is able to proceed eventually often. Because of the

existence of this scenario, the root node of the projected tree T j1 will never be

complete: there exists an execution of the system where the execution of the �rst

operation of P

1

is continually postponed, preventing the k-subtree of the root

node to be completely de�ned. This pathological case shows that the on-the-
y

variant we have just described is mainly useful for concurrent systems without

loosely-coupled processes.

4 Example

The synthesis algorithm described in the previous section has been implemented

to be used in conjunction with VeriSoft. It has been tested on several implemen-

tations of concurrent systems. In this section, we present in detail the results

obtained for one of them, a 2500-line concurrent C program controlling robots

operating in an unpredictable environment. More precisely, this program rep-

resents a concurrent system composed of six processes that communicate via

shared memory and semaphores. Two of the processes control robots that col-

lect objects randomly dropped on a table by a third robot, represented by a

third process. The three other processes are used to simulate the rest of the

environment of the robots.

After exploring the state space of this system for a few minutes, VeriSoft

reported a scenario composed of 29 transitions (as de�ned in Section 2) that

led to a divergence. A divergence occurs when a process does not attempt to

execute any visible operation for more than a given (user-speci�ed) amount of

time. After replaying this scenario at the C level using the VeriSoft simulator, it

was easy to see that the problem was caused by an error in a \while" loop in the

C code for one of the processes, and to understand under which circumstances

the execution of that process was trapped inside the loop. This error was then

corrected, and VeriSoft was used again to test whether the modi�cation solved

the problem without introducing new errors.



When the depth of the search is limited to 100 transitions, the tree repre-

senting the state space explored by VeriSoft contains about 380000 transitions,

and can be completely explored in about 4 hours on a SparcStation 20. The tree

can be saved in a �le of about 12 Megabytes. This tree was used as input for

our synthesis algorithm in the following experiments. All the abstract machines

reported in what follows were generated in a few minutes of computation.

The �nite-state machines synthesized by the algorithm of Section 3 with

k = 1 for the processes 1, 2, 4 and 6 are shown in Figure 2. These processes

synchronize with each other by executing the visible operations semsignal and

semwait on semaphores that are identi�ed by the �rst argument of the oper-

ation. The second argument speci�es the value to be added (resp. subtracted)

to the value of the corresponding semaphore after the execution of semsignal

(resp. semwait). For all these processes, the minimum value of k satisfying Con-

dition (1) is 1. Incomplete states are not shown. Increasing the value of k has

little or no e�ect on the produced machines for these processes, as long as k is

su�ciently smaller than the depth of the projected tree. When k reaches this

threshold, the cycles in the graphs are unfolded and become sequences. The ma-

chines obtained for processes 1 and 6, which control the two robots collecting

objects on the table, are identical. The machine synthesized for process 3 does

not contain any transitions.

semsignal(2,1)

semsignal(6,1)

semwait(3,1)

semwait(5,1)

semwait(7,1) semsignal(4,1)

semsignal(5,2)

semwait(4,2)

semwait(6,2)

semsignal(7,2)

processes 1 and 6

process 2

process 4

Fig. 2. Abstract machines for processes 1, 2, 4 and 6

The abstract machines generated for process 5 with k = 1 and k = 2 are

shown in Figure 3. Process 5 is the process that periodically drops new objects

on the table. It uses the visible operation VS toss to randomly select locations

on the table for placing new objects. When the selected location is already

occupied by another object, the process attempts to �nd another location that



VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(3) = 0

VS_toss(3) = 1

VS_toss(3) = 2

VS_toss(3) = 3

semwait(2,2)

VS_toss(1) = 1

VS_toss(1) = 0

semsignal(3,2) VS_toss(1) = 1

VS_toss(3) = 0

VS_toss(3) = 1

VS_toss(3) = 2

VS_toss(3) = 3

VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(1) = 0 VS_toss(1) = 1

VS_toss(1) = 0
VS_toss(1) = 1

VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(1) = 0

semsignal(3,2)

semwait(2,2)

semwait(2,2)

Fig. 3. Abstract machines for process 5 with k = 1 (left) and k = 2 (right)

is available (this procedure also involves calls to VS toss). The minimum value

of k satisfying Condition (1) is 2. Indeed, chosing k = 1 causes the synthesis

algorithm to consider the two successive occurrences of a same operation as

executions of the same cycle ofM

1

(cf. second state ofM

1

). This cycle generates

sequences of operations that are not represented in T ji. Chosing k = 2 yields the

optimal machine that generates only sequences of T ji (see Section 3). Greater

values of k makes the synthesis algorithm generate less compact machines.

5 Applications

Much information about the behavior of a system can be obtained from the

examination of the abstract machines generated by the synthesis algorithm.

Information about the test coverage of the search performed by VeriSoft can

be obtained from the abstract machines since they contain the visible operations

have been exercised during the search. For instance, the �nite-state machine

synthesized for process 3 in the example of the previous section does not contain

any transitions. This means that this process was never able to execute a visible

operation during the scenarios represented in the explored part of the state space.

Since the synthesized machines represent partial descriptions of the individ-

ual processes of the system, they make it possible to discover properties of the

behavior of these processes without formally specifying any property. Examin-

ing these machines can help in identifying suspicious and erroneous behaviors.

This is also useful for selecting scenarios for testing purposes. For instance, un-

expected behaviors in an abstract machine can help in designing test cases to



exhibit these behaviors. These scenarios can then be executed and examined in

detail at the implementation level with an interactive simulator.

The synthesized abstract machines can also provide valuable information

about the overall communication and synchronization structure of the concur-

rent system. For the example of the previous section, one can see from the

synthesized machines that the coupling between the di�erent processes is very

tight: processes 1 and 6 enforce a strict synchronization ordering between pro-

cesses 2, 4 and 5. The amount of parallelism in the system is very limited. This

also reveals a potential weakness in the design of the synchronization structure

of this system: a failure (death) of one process should quickly block all the other

processes of the system.

The synthesis algorithm provides information on the regularity of the state

space of the system. Indeed, the synthesis algorithm detects recurrent patterns of

operations in the observed (�nite) behaviors, and groups them in the generated

abstract machines. Extrapolating repetitive behaviors can help predicting the

(very long or even in�nite) behaviors exhibited in the unexplored parts of the

state space.

Finally note that our synthesis algorithm can be a very e�ective way to

present a huge amount of data (e.g., 12 Megabytes of data) on a complex con-

current program (2500 lines of C code spread over 12 �les) in a very compact

form (a few tens of states and transitions) that can easily be examined by the

user. When the generated abstract machines are too large to be examined, the

user has the possibility to compute more abstract machines by modifying the la-

bels corresponding to visible operations. For instance, labels of operations that

contain values of parameters (e.g., a message being sent or received) can be

simpli�ed by masking out the values of some of these parameters from the la-

bel name. This reduces the number of possible labels for the transitions of the

abstract machine, and hence the size of the machine.

6 Conclusions and Comparison with Related Work

We have presented a technique for automatically synthesizing a �nite-state ma-

chine that simulates all the sequences of visible operations of a given process

(executing arbitrary C or C++ code) that were observed during a state-space

exploration performed by VeriSoft. The level of abstraction is determined by

the set of labels of the transitions of the abstract machine, while the level of

approximation can be adjusted by modifying the value of the parameter k of the

synthesis procedure. This technique makes it possible to discover the behavior

of processes for which the code is unknown or unavailable, or to visually detect

anomalies in the dynamic behavior of processes in their environment.

Our synthesis algorithm can generate very compact and faithful �nite-state

machines from a huge amount of data. For the example considered in Section 4,

it synthesized a handful of small �nite-state machines satisfying Condition (1)

from a state-space tree of about 380000 transitions. It is worth emphasizing

that our technique is e�ective because it is used in conjunction with a tool for



systematically exploring the state space of a concurrent system. If the synthesis

algorithm was used in conjunction with traditional testing and debugging tools

for distributed and parallel programs (e.g., see [CMN91, NM92, SS94]), the syn-

thesized machines would likely be much less compact. Indeed, since these tools

explore random paths in the state space, a same local state of a process might

then be associated with di�erent k-subtrees each time it is visited, and hence be

represented by several states (equivalence classes) in the synthesized machine.

This work also proposes an original approach to reverse engineering [CC90].

Indeed, traditional reverse engineering methods and tools are based on static

analysis techniques for extracting information about the structure of complex

programs (e.g., see [WNC95]). In contrast, our approach does not rely on any

speci�c assumption about the static structure of the programs used to represent

the behavior of the processes, which can actually be written in any language.

Moreover, it is also applicable to processes for which no code is available. Finally,

it makes possible a much closer examination of the behavior of a process since

it is based on the dynamic observation of its executions.

Other approaches to the �nite-state machine synthesis problem have been

proposed. Statistical methods using neural networks [DM94] are based on prob-

abilities calculated from observations of the input language. These methods are

very robust with respect to \input noise", i.e., when the observation of the input

language may not be entirely reliable, but are much less e�cient and di�cult to

use. Statistical methods can also be combined with algorithmic techniques into

a \hybrid" method [MQ88] based on Markov models. This method has no ad-

vantages with respect to the synthesis algorithm we used since there is no input

noise in the problem addressed here. Moreover, this hybrid method is not always

able to produce a machine accepting exactly the input language when it exists.

A detailed comparison of these di�erent methods can be found in [CW95], where

synthesis algorithms are used to generate a structured representation of the de-

velopment process of a software-production organization from events recorded

during the various tasks performed in the organization.

Acknowledgments

We wish to thank Glenn Bruns for helpful comments on this paper.

References

[BF72] A.W. Biermann and J.A. Feldman. On the synthesis of �nite state ma-

chines from samples of their behavior. IEEE Transactions on Computers,

21(6):592{597, June 1972.

[BG96] B. Boigelot and P. Godefroid. Model checking in practice: An analysis of

the ACCESS.bus protocol using SPIN. In Proceedings of Formal Methods

Europe'96, volume 1051 of Lecture Notes in Computer Science, pages 465{

478, Oxford, March 1996. Springer-Verlag.

[CC90] E. H. Chikofsky and J. H. Cross. Reverse engineering and design recovery:

A taxonomy. IEEE Software, 7(1):13{17, January 1990.



[CGH

+

93] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMil-

lan, and L. A. Ness. Veri�cation of the Futurebus+ cache coherence proto-

col. In Proceedings of the Eleventh International Symposium on Computer

Hardware Description Languages and Their Apllications. North-Holland,

1993.

[CMN91] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging

parallel programs with 
owback analysis. ACM Transactions on Program-

ming Languages and Systems, pages 491{530, October 1991.

[CPS93] R. Cleaveland, J. Parrow, and B. Ste�en. The concurrency workbench: A

semantics based tool for the veri�cation of concurrent systems. ACM Trans-

actions on Programming Languages and Systems, 1(15):36{72, 1993.

[CW95] J. E. Cook and A. L. Wolf. Automatic Process Discovery through Event-

Data Analysis. In Proceedings of the 17th Conference on Software Engi-

neering, Seatle, April 1995.

[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol veri�cation as

a hardware design aid. In 1992 IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pages 522{525, Cambridge,

MA, October 1992. IEEE Computer Society.

[DM94] S. Das and M. C. Mozer. A Uni�ed Gradient-Descent/Clustering Architec-

ture for Finite-State Machine Induction. Advances in Neural Information

Processing Systems, 6:19{26, 1994.

[FGM

+

92] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and

J. Sifakis. A toolbox for the veri�cation of LOTOS programs. In Proc. of

the 14th International Conference on Software Engineering ICSE'14, Mel-

bourne, Australia, May 1992. ACM.

[FHS95] A. R. Flora-Holmquist and M. Staskauskas. Formal validation of virtual �-

nite state machines. In Proc. Workshop on Industrial-Strength Formal Spec-

i�cation Techniques (WIFT'95), pages 122{129, Boca Raton, April 1995.

[God97] P. Godefroid. Model Checking for Programming Languages using VeriSoft.

In Proceedings of the 24th ACM Symposium on Principles of Programming

Languages, pages 174{186, Paris, January 1997.

[HK90] Z. Har'El and R. P. Kurshan. Software for analytical development of com-

munication protocols. AT&T Technical Journal, 1990.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice

Hall, 1991.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[MQ88] L. Miclet and J. Quinqueton. Learning from Examples in Sequences and

Grammatical Inference. In Syntactic and Structural Pattern Recognition,

volume 45 of NATO ASI Series F { Computer and Systems Science, pages

153{171. Springer-Verlag, 1988.

[NM92] R. H. B. Netzer and B. P. Miller. Optimal Tracing and Replay for Debug-

ging Message-Passing Parallel Programs. In Proceedings of Supercomput-

ing'92, pages 502{511, Minneapolis, 1992.

[Rud92] H. Rudin. Protocol development success stories: Part I. In Proc. 12th IFIP

WG 6.1 International Symposium on Protocol Speci�cation, Testing, and

Veri�cation, Lake Buena Vista, Florida, June 1992. North-Holland.

[SS94] R. S. Side and G. C. Shoja. A debugger for distributed programs. Software

Practice and Experience, 24(5):507{525, May 1994.



[WNC95] L. Wills, Ph. Newcomb, and E. Chikofsky, editors. Proceedings of the Second

Working Conference on Reverse Engineering, Toronto, July 1995. IEEE.


