
Analysis of Boolean Programs

Patrice Godefroid1 Mihalis Yannakakis2

1 Microsoft Research, pg@microsoft.com
2 Columbia University, mihalis@cs.columbia.edu

Abstract. Boolean programs are a popular abstract domain for static-analysis-
based software model checking. Yet little is known about the complexity of model
checking for this model of computation. This paper aims to fill this void by pro-
viding a comprehensive study of the worst-case complexity of several basic anal-
yses of Boolean programs, including reachability analysis, cycle detection, LTL,
CTL, and CTL* model checking. We present algorithms for these problems and
show that our algorithms are all optimal by providing matching lower bounds. We
also identify particular classes of Boolean programs which are easier to analyse,
and compare our results to prior work on pushdown model checking.

1 Introduction

Boolean programs are programs in which all variables have Boolean type and which can
contain recursive procedures. They are a popular abstract domain for static-analysis-
based software model checking, pioneered by the SLAM project [5]. SLAM verifies
control-flow dominated properties of Windows device drivers by abstracting a C pro-
gram with a Boolean program generated using predicate abstraction (e.g., [21]). The
Boolean program contains the same procedures and control flow as the original pro-
gram, but uses Boolean variables to keep track of the values of predicates over vari-
ables of the original program, abstracting its “data part”. The level of abstraction can
be adjusted iteratively and automatically by changing the finite set of predicates be-
ing tracked, using a process sometimes called “Counter-Example Guided Abstraction
Refinement” (CEGAR). Since SLAM, other tools have adopted Boolean programs as
an abstract domain for software model checking, such as BLAST [23], YASM [22],
TERMINATOR [15] and YOGI [19].

The main advantage of Boolean programs compared to finite-state transition sys-
tems is that their stack allows a precise representation of procedure calls, including
recursion, while providing a model of computation for which many interesting prop-
erties are still decidable. Indeed, Boolean programs have the same expressiveness as
pushdown systems [4], for which many properties of interest, such as reachability and
temporal-logic model checking, are decidable [8], even though their set of reachable
states can be infinite.

Several algorithms for reachability analysis of Boolean programs have been pro-
posed in the literature. For instance, [4] discusses a symbolic model checker for safety
properties (reachability analysis) using BDDs as procedure summaries. [17] extends the
previous results to Linear Temporal Logic (LTL) model checking, which can also check
liveness properties with fairness constraints. [25] discusses how to reduce reachability



analysis of Boolean programs to SAT solving. More recently, [7] investigates how to
use SAT encodings, instead of BDDs, to represent procedures summaries and to use a
QBF solver for reachability analysis.

Yet, despite this prior work, little is known about the complexity of model check-
ing for Boolean programs. Indeed, all the algorithms for analyzing Boolean programs
discussed in prior work run in time exponential in the size of the Boolean program, or
worse – sometimes runtime complexity is discussed explicitly, sometimes such a dis-
cussion is omitted altogether. Moreover, no lower bounds are discussed in prior work
on analyzing Boolean programs, to the best of our knowledge.

In contrast, the complexity of model checking for pushdown automata, context-free
processes and recursive state machines has been studied extensively in the literature
(e.g., [9, 8, 1, 28]). However, Boolean programs can be exponentially more succinct than
ordinary pushdown systems or recursive state machines. Therefore, the program com-
plexity of model checking for Boolean programs does not follow directly from prior
work on model checking for pushdown systems.

This paper aims to fill this void by providing a comprehensive study of the worst-
case complexity of several basic analyses of Boolean programs, including reachability
analysis, cycle detection, LTL, CTL and CTL* model checking. Furthermore, we study
several natural subclasses of Boolean programs and characterize precisely the effects on
the complexity of basic restrictions on the structure of the procedures or the type of the
recursion: (i) deterministic vs. nondeterministic programs, (ii) hierarchical programs
where there is no cycle of mutual recursion between the procedures, (iii) programs
where the procedures have a bounded number of input and output arguments. In all the
cases, we present algorithms (upper bounds) as well as matching lower bounds for all
the problems we consider. In other words, all the algorithms presented in this paper are
optimal in the complexity-theoretic sense.

Boolean programs correspond to recursive state machines extended with variables
(ERSM for short), and can be mapped to ordinary recursive state machines (RSM) that
are equivalent but exponentially larger, i.e., the use of variables, besides the syntactical
convenience, allows an exponentially more succinct representation than ordinary RSM.
Many times this exponential succinctness in representation results in a corresponding
exponential increase in the complexity of problems. Indeed there are metatheorems in
other domains (e.g., graphs represented succinctly via circuits [27]) showing that under
general conditions the succinctness causes an exponential increase in complexity (for
example, NP-complete problems become NEXPTIME-complete, P-complete problems
become EXPTIME-complete, etc.). However, this is not the case here: the picture is
much more varied and rich. As our results show, the succinctness afforded by the use
of variables in the extended version of a model (recursive state machines, hierarchi-
cal state machines and their subclasses) causes in some cases an exponential jump in
complexity (as one may expect), while in other cases the jump is less than exponential,
and in yet other cases there is no jump at all. For example, we show that reachability
analysis and LTL model checking for Boolean programs (i.e., ERSM) are EXPTIME-
complete, while we know that for RSM these problems are P-complete. However, in the
hierarchical case, reachability and LTL model checking for Extended Hierarchical State
Machines (EHSM) are PSPACE-complete, and not EXPTIME-complete, as one might



expect from the fact that for HSM (Hierarchical State Machines, without variables)
these problems are still P-complete, like for RSM. Furthermore, CTL model checking
for EHSM and HSM have the same complexity, it is PSPACE-complete, i.e., in this case
there is no jump at all.

Similarly, there is also interesting variability in the effects that restrictions on the
programs, like determinism, have on the complexity of the problems. For example,
reachability analysis for deterministic Boolean programs (ERSM) is EXPTIME-complete,
the same as for nondeterministic programs. However, for CTL model checking, deter-
minism reduces the complexity by one exponential: for nondeterministic Boolean pro-
grams it is 2EXPTIME-complete, while for deterministic Boolean programs it is still
EXPTIME-complete (like reachability).

As a consequence of this richness and variability in the effects of the succinctness
afforded by variables and of the restrictions, one has to deal individually with the dif-
ferent problems, models and restrictions, and use appropriate techniques in each case
to obtain the correct matching upper and lower bounds.

This paper is organized as follows. In Section 2, we formally define Boolean pro-
grams and compare them to other models of computation. In Section 3, we study the
complexity of reachability analysis for Boolean programs. We also identify particular
program classes for which the complexity is lower, illustrating how various features of
Boolean programs contribute to the overall problem complexity. We then discuss cycle
detection and LTL model checking in Section 4. In Section 5, we turn to the complex-
ity of model checking for branching-time properties expressed in the temporal logics
CTL and CTL*. Section 6 summarizes and discusses insights gained by this work. We
conclude in Section 7. Proofs of theorems are given in the full paper.

2 Boolean Programs

Boolean programs are imperative programs with the usual constructs of languages like
C, that have Boolean variables, and which can use nondeterminism and recursion. [5]
describes in detail their syntax and defines their semantics using their control flow
graphs. Boolean programs are essentially recursive state machines extended with a fi-
nite set of Boolean variables. Therefore, we will use the terms “Boolean program” and
“Extended Recursive State Machine” (ERSM) interchangeably in this paper.

2.1 Syntax

Formally, a (Boolean) Extended Recursive State Machine (ERSM)A over a finite alpha-
bet Σ is defined by a tuple 〈A1, . . . , Ak, V 〉, where V is a finite set of global Boolean
variables and each procedure Ai consists of the following pieces:

– A finite set Vi of Boolean variables that are local to the procedureAi, a tuple V ini ⊆
Vi of input variables and a tuple V outi ⊆ Vi of output variables.

– A finite set Ni of nodes and a (disjoint) finite set Bi of boxes, or call sites.
– A labeling Yi : Bi → {1, . . . , k} that assigns to every box an index of one of the

procedures (component machines), A1, . . . , Ak, and a pair of mappings βini , β
out
i



which assign to each box b ∈ Bi two tuples βini (b), βouti (b) of variables in Vi that
are respectively the input and output arguments of the recursive call represented by
the box b, where |βini (b)| = |V inYi(b)

| and |βouti (b)| = |V outYi(b)
|.

– A set of entry nodes Eni ⊆ Ni, and a set of exit nodes Exi ⊆ Ni.
– A transition relation δi, where transitions are of the form (u,G, σ, C, v) where (1)

the source u is either a node of Ni \ Exi, or a pair (b, x), where b is a box in Bi
and x is an exit node in Exj for j = Yi(b); (2) the guard G is a Boolean predicate
on the variables in Vi ∪ V ; (3) the label σ is in Σ; (4) the command C assigns new
Boolean values to the variables in Vi ∪ V as a function of the old values; and (5)
the destination v is either a node in Ni or a pair (b, e), where b is a box in Bi and e
is an entry node in Enj for j = Yi(b).

We will use the term ports to refer to pairs (b, e), (b, x) consisting of a box b of a
procedure Ai and corresponding entry nodes e and exit nodes x of the procedure Aj
called by b. We will use the term vertices of Ai to refer to its nodes and the ports of its
boxes that participate in some transition. We will often refer to a vertex (b, e) as a call
vertex and (b, x) as a return vertex.

We define the size |A| of an ERSM A to be the sum of the total numbers of nodes,
boxes, transitions and variables of A.

Remarks: 1. In the above definition we have allowed procedures to have multiple
entries (initial nodes) and exits (final nodes). In the presence of variables, this is strictly
speaking not necessary, i.e., ERSMs where every procedure has a single entry and exit
are equally expressive, because we can use extra input and output variables to spec-
ify different entries and exits. In fact, in a straightforward translation of the code of
a Boolean program to an ERSM, the procedures will have a single entry and exit. A
statement like y := Aj(x) in a procedure Ai corresponds to a box b with Yi(b) = j,
βini (b) = x, and βouti (b) = y. We have allowed multiple entries and exits here for con-
sistency with the definition of standard RSMs that do not have variables [1], where the
multiplicity of entries and exits is essential.
2. It is convenient syntactically for procedures to receive inputs and return outputs, al-
though in the presence of global variables it is not really essential to have explicitly
input and output variables: a value passed as argument to a procedure can be modeled
using a global variable which is assigned the argument value just before the procedure
call and then copied immediately after the start of the called procedure into a local vari-
able of that procedure. Similarly, a return value of a procedure can be modeled with a
global variable which is assigned the return value just before the return and then copied
immediately after the return into the local state of the calling procedure.
3. The syntax of the guards and commands of the transitions in the definition is left
flexible. For the complexity upper bounds, we assume that the guards and commands
are arbitrary predicates and functions respectively that can be evaluated in polynomial
time. For the lower bound constructions, the guards are simple equality conditions, and
the commands are simple assignments.
4. In the above definition, all variables are Boolean. More generally, we could define
ERSMs whose variables have other domains. If all the variables have finite domains,
we can clearly encode them with Boolean variables, and the results of the paper apply.

In what follows, we will represent ERSMs using pseudo-code.



2.2 Semantics

To define the executions of ERSMs, we first define the global states and transitions asso-
ciated with an ERSM. LetX denote a mapping that associates a value to each variable in
a setX of variables. We assume all Boolean variables have a unique default initial value.
A (global) state of an ERSM A = 〈A1, . . . Ak, V 〉 is a tuple 〈(b1, V1), . . . , (br, Vr),
(u, Vr+1, V )〉 where b1, . . . , br are boxes, V1, . . . , Vr, Vr+1 are value assignments to
local variables, u is a node, and V assigns a value to every global variable. Equiva-
lently, a state can be viewed as a string, and the set Q of global states of A is (B ×
V ′)∗(N × V ′ × V ), where B = ∪iBi, V ′ = ∪iVi and N = ∪iNi. Consider a state
〈(b1, V1), . . . , (br, Vr), (u, Vr+1, V )〉 such that bi ∈ Bji for 1 ≤ i ≤ r and u ∈ Nj .
Such a state is well-formed if Yji(bi) = ji+1 and Vi = Vji for 1 ≤ i < r, and if
Yjr (br) = j and Vr+1 = Vj . A well-formed state of this form corresponds to the
case when the control is inside the component Aj , which was entered via box br of
component Ajr (the box br−1 gives the context in which Ajr was entered, and so on).
Henceforth, we assume states to be well-formed. Given a state 〈(b1, V1), . . . , (br, Vr),
(u, Vr+1, V )〉, we will sometimes refer to 〈(b1, V1), . . . , (br, Vr)〉 as the call stack, or
stack, in that state.

We assume a call-by-value model for the procedure calls. We define a (global) tran-
sition relation δ among the global states ofA as follows. Let s = 〈(b1, V1), . . . , (br, Vr),
(u, Vr+1, V )〉 be a state with u ∈ Nj and br ∈ Bm. Then, (s, σ, s′) ∈ δ iff one of the
following holds:

1. (u,G, σ, C, u′) ∈ δj for a node u′ ofAj ,G(Vr+1, V ) evaluates to true,C(Vr+1, V ) =
(Vr+1

′
, V

′
), and s′ = 〈(b1, V1), . . . , (br, Vr), (u′, Vr+1

′
, V

′
)〉. This case is when

the control stays within the component Aj .
2. (u,G, σ, C, (b′, e)) ∈ δj for a box b′ ofAj ,G(Vr+1, V ) evaluates to true,C(Vr+1, V ) =

(Vr+1
′
, V

′
), and s′ = 〈(b1, V1), . . . , (br, Vr), (b′, Vr+1

′
), (e, Vr+2

′
, V

′
)〉, where

Vr+2
′

denotes an initial value assignment for the local variables in VYj(b′) of the
procedure corresponding to box b′, in which the input variables V inYj(b′)

have value

equal to the value of the variables βinj (b′) in Vr+1
′
. This case is when a new com-

ponent is entered via a box of Aj .
3. u is an exit-node of Aj , ((br, u), G, σ, C, u′) ∈ δm for a node u′ of Am, V̂r is the

assignment to the local variables of Am in which the variables of βoutm (br) have
value equal to that of the output variables V outj of Aj in Vr+1 and the rest of the
variables have the same value as in Vr, G(V̂r, V ) evaluates to true, C(V̂r, V ) =
(Vr

′
, V

′
), and s′ = 〈(b1, V1), . . . , (br−1,Vr−1), (u′, Vr

′
, V

′
)〉. This case is when

the control exits Aj and returns back to Am.
4. u is an exit-node of Aj , ((br, u), G, σ, C, (b′, e)) ∈ δm for a box b′ of Am, V̂r

is the assignment to the local variables of Am in which the variables of βoutm (br)
have value equal to that of the output variables V outj of Aj in Vr+1 and the rest of
the variables have the same value as in Vr, G(V̂r, V ) evaluates to true, C(V̂r, V ) =
(Vr

′
, V

′
), and s′ = 〈(b1, V1), . . . , (br−1,Vr−1), (b′, Vr

′
), (e, Vr+1

′
, V

′
)〉, where Vr+1

′

denotes an initial value assignment for the local variables in VYm(b′) of the proce-
dure corresponding to box b′, in which the input variables V inYm(b′) have value equal



to the value of the variables βinm (b′) in Vr
′
. This case is when the control exits Aj

and enters a new component via a box of Am.

The Labeled Transition System (LTS) TA = (Q,Σ, δ) is called the “unfolding” of
A. The set Q of reachable states can be infinite. For a state s of the LTS TA and a node
v of A, s⇒ v denotes that s can reach some state 〈(b1, V1), . . . , (br, Vr), (v, Vr+1, V )〉
in TA whose node is v.

2.3 Special Classes

ERSMs generalize several other well-known models of computation.

– A Recursive State Machine (RSM) is an ERSM with no Boolean variables, i.e.,
where V and the sets Vi are all empty, the guards G are all vacuously true, and the
commands C do not modify the value of any variable.

– An Extended Hierarchical State Machine (EHSM) is an ERSM with no cycle of
recursive calls between the procedures, i.e., where every procedure Ai can only
call a procedure Aj with j > i, i.e., we have ∀i : ∀b ∈ Bi : Yi(b) > i.

– A Hierarchical State Machine (HSM) is an EHSM with no Boolean variables.
– An Extended Finite State Machine (EFSM) is an ERSM (or EHSM) with a single

procedure A1 and no boxes.
– A Finite State Machine (FSM) is an EFSM with no Boolean variables.

A procedure or machine Ai is called single-entry when it has a single entry node e,
i.e., when Eni = {e}. Similarly, a procedure or machine Ai is called single-exit when
it has a single exit node x, i.e., when Exi = {x}. An ERSM is single-entry or single-
exit if all its procedures are. As mentioned earlier, any ERSM can be transformed to an
equivalent single-entry, single-exit ERSM by introducing additional variables. This is
not the case for RSMs.

A Boolean program A is called input/output bounded, or I/O bounded for short,
if the number of the input and output variables of every procedure, and the number
of global variables are O(log |A|) (i.e., upper bounded by c · log |A| for some fixed
constant c). The procedures themselves can be arbitrarily large and complex, and use an
arbitrary number of local variables. The I/O bounded property characterizes programs
where there is a limited amount of information communicated between the different
procedures.

A procedure Ai is called acyclic if the graph (Ni ∪ Bi, Ei) is acyclic, where Ei
contains an edge from a node u or box b to another node u′ or box b′ iff δi contains
a transition from u or a vertex of b to u′ or a vertex of b′ (regardless of the guard and
command of the transition). An ERSM is acyclic iff all its procedures are.

A procedure is called deterministic if, for all its vertices, the guards of all its tran-
sitions at that vertex are mutually exclusive. In that case, each state of that procedure
can have at most one successor state. A program is deterministic if all its procedures
are deterministic. Usual programs (without abstraction) are deterministic.



2.4 Expansion of an ERSM

Given an ERSM A = 〈A1, . . . Ak, V 〉, we can construct an RSM A′ = 〈A′
1, . . . A

′
k〉

(without variables) that is equivalent to A, in the sense that their unfoldings TA and TA′

are identical. The construction ofA′ involves combining every vertex of each procedure
of A with every valuation for the global and local variables (see the full paper for
the detailed construction). The RSM A′ is in general exponentially larger than A. In
particular, if m = maxi |V ∪ Vi| then the size |A′| of the RSM A′ is (at most) |A| · 2m.
We call A′ the expanded RSM corresponding to A.

3 Reachability

Let Init denote a given set of initial states, consisting of some entry nodes together
with specified valuations for the variables in the scope of their procedures. Given an
ERSM A = 〈A1, . . . Ak, V 〉 and such a set Init, let Init ⇒ v denote that for some
s ∈ Init, s ⇒ v. Our goal in simple reachability analysis is to determine whether a
specific target node t is in the set {v | Init⇒ v} of reachable vertices. In this section,
we study the complexity of the reachability analysis problem for ERSMs and several
special cases.

Theorem 1. Reachability analysis for ERSMs is EXPTIME-complete. Furthermore,
this holds even for deterministic, acyclic ERSMs.

Sketch: Membership in EXPTIME follows essentially from previous work (e.g., [4, 1]).
Given a ERSM A, we can construct the corresponding expanded RSM A′, which has
size (at most) exponential in A. Since reachability analysis for RSMs can be solved in
polynomial time (cubic in the general case, and linear for single-entry or single-exit
RSMs to be precise [1]), we obtain an algorithm with EXPTIME complexity overall.

For the hardness part, we reduce the acceptance problem for 1-tape alternating poly-
nomial space machines, which is known to be EXPTIME-complete [10], to reachability
analysis of ERSMs. Figure 1 shows a Boolean program (left) simulating an alternating
PSPACE machine. The proof is given in the full paper.

The Boolean program of Figure 1 is deterministic and acyclic, so these features
do not make a dramatic difference in the complexity of ERSM reachability analysis.
Note that the procedure Acc in the program of Figure 1 is recursive and passes a linear
amount of information in each call. We now show that restricting the use of recursion
or the amount of I/O information reduces the complexity to a lower class.

In the hierarchical case, reachability analysis becomes PSPACE-complete, thus, no
worse than simple EFSMs. Note that if we expand the EHSM to an (exponentially
larger) HSM and apply the HSM reachability algorithm, the resulting algorithm will
have exponential space complexity, and this is probably inherent in that approach since
reachability for HSM is P-complete [3].

Theorem 2. Reachability analysis for EHSMs is PSPACE-complete. Furthermore, the
problem remains PSPACE-complete for deterministic, acyclic EHSMs.



p r o c e d u r e Top ( )
{

i f Acc (q0 , 0 , I n i t i a l Tape )
t h e n p r i n t ( ‘ ‘M a c c e p t s ’ ’ ) ;

}

boo l Acc ( s t a t e q , head l o c a t i o n h , Tape T )
{

i f ( q i n QT ) t h e n r e t u r n t r u e ;
i f ( q i n QF ) t h e n r e t u r n f a l s e ;

boo l r e s ;
i f ( q i n Q∃ ) t h e n r e s = f a l s e ;
e l s e r e s = t r u e ; / / c a s e ( q i n Q∀ )

f o r each ( q ’ , s ,D) i n δM ( q , T [ h ] )
{

compute new t a p e l o c a t i o n h ’ and t a p e T ’ ;
i f ( q i n Q∃ ) t h e n r e s = r e s∨Acc ( q ’ , h ’ , T ’ ) ;
e l s e r e s = r e s∧Acc ( q ’ , h ’ , T ’ ) ;

}
r e t u r n r e s ;

}

p r o c e d u r e Top ( )
{

i f SAT [ 0 ] ( )
t h e n p r i n t ( ‘ ‘ψ i s SAT ’ ’ ) ;

}

boo l SAT[ n ] ( boo l x1, . . . , xn )
{

r e t u r n (φ(x1, . . . , xn) ) ; / / e v a l u a t e φ
}

/ / i f i i s odd , xi+1 i s a f t e r ∀ i n ψ
boo l SAT[ i ] ( boo l x1, . . . , xi )
{

r e t u r n (SAT[ i + 1 ] (x1, . . . , xi, 0 )
∧ SAT[ i + 1 ] (x1, . . . , xi, 1 ) ) ;

}

/ / i f i i s even , xi+1 i s a f t e r ∃ i n ψ
boo l SAT[ i ] ( boo l x1, . . . , xi )
{

r e t u r n (SAT[ i + 1 ] (x1, . . . , xi, 0 )
∨ SAT[ i + 1 ] (x1, . . . , xi, 1 ) ) ;

}

Fig. 1. Boolean programs simulating an alternating PSPACE machine M (left) and for checking
satisfiability of the QBF formula ψ = ∃x1∀x2∃x3 . . . Qxnφ(x1, . . . , xn) (right).

Sketch: Membership in PSPACE follows from nondeterministically simulating a com-
putation that reaches the target node using polynomial space, and applying Savitch’s
theorem to make it deterministic. Since reachability analysis is already known to be
PSPACE-hard for EFSMs, PSPACE-hardness for the more general EHSMs follows im-
mediately. Moreover, the problem remains PSPACE-complete for EHSMs that are de-
terministic and acyclic. For this purpose, we reduce Quantified Boolean Formula (QBF)
satisfiability (QSAT), known to be PSPACE-complete, to EHSM reachability: Figure 1
shows a deterministic acyclic hierarchical Boolean program (on the right) for checking
the satisfiability of a QBF formula ψ of the form ∃x1∀x2∃x3 . . . Qxnφ(x1, . . . , xn).
The proof is given in the full paper.

For acyclic EFSM and, more generally, for acyclic EHSMs where the depth of the
hierarchy is bounded by a constant, the complexity of reachability analysis is reduced
further to NP-complete.

Theorem 3. Reachability analysis for acyclic EHSMs of bounded depth is NP-complete.

We now consider the subclass of I/O bounded Boolean programs, and show that the
complexity is lower.

Theorem 4. Reachability analysis for I/O bounded deterministic acyclic EHSMs is in
P.

Theorem 5. Reachability analysis for I/O bounded nondeterministic acyclic EHSMs is
NP-complete.

Theorem 6. Reachability analysis for I/O bounded cyclic EHSMs is PSPACE-complete.

Moreover, in the world of I/O bounded programs, reachability analysis for ERSMs is
not more expensive than for EHSMs or just EFSMs.



Class of Program Restriction General Case I/O Bounded
ERSM EXPTIME PSPACE
EHSM PSPACE PSPACE
EHSM nondeterministic acyclic PSPACE NP
EHSM deterministic acyclic PSPACE P

Fig. 2. Complexity of reachability analysis.

Theorem 7. Reachability analysis for I/O bounded ERSMs is PSPACE-complete.

Sketch: The algorithm involves doing first a partial expansion of the ERSM where we
only expand in each procedure the input and output variables and the global variables.
Then we remove the boxes from the procedures, yielding a collection of EFSMs, and
solve iteratively a sequence of EFSM reachability problems to infer incrementally the
reachabilities between the expanded entries and exits of the procedures. Finaly we con-
struct a final single EFSM Ĉ that incorporates the entry-exit reachabilities and inter-
connects the procedures, and solve an EFSM reachability problem on Ĉ to compute all
the vertices that are reachable from the initial set Init. See the full paper for details.

Most of the results of this section are summarized in Figure 2.

4 LTL Model Checking

We now consider linear time properties expressed in Linear Temporal Logic (LTL) or
using Büchi automata. Formulas of LTL are built from a finite set Prop of atomic
propositions using the usual Boolean operators ¬, ∨, ∧, the unary temporal operators
X (next), and the binary operatorU (until). A Büchi automaton is a finite (nondetermin-
istic) automaton on infinite words that accepts a word w iff it has a run on w that visits
the subset of accepting states infinitely often. Every LTL formula φ can be translated
to an equivalent Büchi automaton Dφ over the alphabet Σ = 2Prop (the translation
may increase exponentially the size in general). The LTL or automaton model checking
problem is to determine whether all computations of a given Kripke structure T (start-
ing from designated initial states) satisfy a given LTL formula φ or are accepted by a
Büchi automaton D. We refer to [13] for detailed background on LTL, automata and
model checking. In our case the Kripke structure is the unfolding TA of a given ERSM
A over Σ = 2Prop.

All the results for reachability of the last section extend to model checking of all
linear time properties, with the same dependency of the complexity on the size of the
program (this is called the program complexity) in all the cases, i.e., for general ERSMs
as well as for their subclasses. The dependence of the complexity on the size of the
specification is polynomial for automata specifications and exponential for LTL (as is
the case for model checking of even nonrecursive finite state structures). Rather than
list the individual results, we state them collectively in the following:

Theorem 8. The program complexity of model checking linear time properties of ERSMs
is the same as that given for reachability analysis in the last section, for all the consid-
ered classes of ERSMs.



Due to space constraints we will not give the proofs for the various classes. Roughly
speaking, LTL model checking involves forming the product ERSM Â of the ERSM
with an automaton D¬φ representing the negation of the property, and testing whether
(the unfolding of) Â has a reachable cycle that contains an accepting state or has an ac-
cepting computation path where the stack grows without bound. Both of these cases can
be solved using suitable reachability problems. The specifics of the algorithms depend
on the class of ERSMs; in some cases this is easy, while in others it is nontrivial.

5 Branching-Time Properties

We now consider the verification of properties expressed in the branching-time logic
CTL [12]. CTL allows quantification over computations of a system, such as “along
some computation, eventually p” or “along all computations, eventually p”. The tem-
poral logic CTL uses the temporal operators U (until), X (nexttime) and the existential
path quantifier E, in addition to the operators ¬ (not) and ∨ (or). We use the standard
abbreviations Ap (for all paths p) for ¬E¬p, Fp (eventually p) for trueUp, and Gp
(always p) for ¬F¬p. See [13] for a detailed description of the syntax and semantics of
CTL.

The CTL model checking problem is to decide whether a Kripke structure satis-
fies a CTL formula [12]. In our context, unfoldings of ERSMs will be used as Kripke
structures.

Theorem 9. The program complexity of CTL model checking for ERSMs is 2EXPTIME-
complete.

Sketch: Given an ERSM A, we can build an exponentially larger RSM A′ such that
their unfoldings TA and TA′ are identical. Then, we can use the CTL model checking
algorithm for RSMs discussed in [1], whose running time can be exponential in the size
of the RSMs. Overall, we thus obtain an algorithm with 2EXPTIME complexity.

To prove 2EXPTIME-hardness, we reduce the acceptance problem for 1-tape alter-
nating exponential space machines, which is known to be 2EXPTIME-complete [10],
to CTL model checking of ERSMs. Given an alternating EXPSPACE machine M and
an input x, we construct a Boolen program P that simulates the computations of M on
x. A problem here is that the exponentially large tape cannot be passed as an argument
(unlike the proof of Theorem 1). The main idea to address this is to have the program
nondeterministically guess continuously the contents of the tape, cell by cell, and store
it in the stack. Another part of the program may nondeterministically at any point stop
the computation and backtrack to try to check whether the content of a particular cell
is consistent with the previous configuration. The constructed CTL formula ϕ is a fixed
formula that says that there is a computation of the program P that leads to acceptance
and if we were to do any check along the way it would turn out ok. We show that the
EXPSPACE alternating machine M accepts an input x if and only if P satisfies ϕ; see
the full paper for the details of the construction and the proof.

The 2EXPTIME-hardness proof relies on the Boolean program to be nondeterminis-
tic. Indeed, we now prove that CTL model checking for deterministic Boolean programs
is “only” EXPTIME-complete.



Theorem 10. The program complexity of CTL model checking for deterministic ERSMs
is EXPTIME-complete.

The proof involves the development of a new efficient algorithm for CTL model
checking of deterministic RSM showing the following:

Theorem 11. CTL model checking for deterministic multi-exit RSMs can be done in
time linear in the size of the structure.

Sketch: Given a deterministic multi-exit RSM A we show how to construct in linear
time an equivalent single-exit RSM A”, and then we use the linear-time algorithm for
CTL model checking of single-exit RSMs from [1]. The construction of A” involves
two phases. In the first phase, we compute for each initial node incrementally all the
reachable vertices, and for each reachable vertex, we compute whether it can reach an
exit node of its component and which one. This has to be done carefully to ensure that
nonterminating computations are cut off promptly and that every reachabe vertex is
processed only at most twice, and thereby achieve linear time in the number of reach-
able vertices. In the second phase, we construct in linear time from the information of
Phase 1 a single-exit RSM A” that contains several procedures for each component of
A with the property that every reachable vertex and edge of A appears in exactly one
procedure of A”, and A” has no other vertices and edges. Furthermore, the reachable
parts of the unfoldings of A and A” are identical. See the full paper for the details.

Theorem 10 can be shown then by expanding the given deterministic ERSM A to a
RSM and applying the algorithm of Theorem 11. The expansion can be done in fact on
the fly, only to the extent that is needed, starting from the set Init of initial states, so
that the whole CTL model checking algorithm takes time proportional to the number of
reachable vertices in the expanded RSM.

The algorithm used in the proof of Theorem 10 is useful also to reduce the com-
plexity of reachability and LTL model checking for deterministic ERSM, from cubic to
linear in the number of reachable expanded vertices. (Of course we cannot expect an
exponential reduction in view of Theorem 1.)

Obviously, Theorem 11 implies that CTL model checking of deterministic multi-
exit HSMs can also be done in linear time (since HSMs are special RSMs), in contrast
with the general case of nondeterministic multi-exit HSMs for which the program com-
plexity of CTL model checking is known to be PSPACE-complete [3].

In the case of EHSMs, we can show that determinism does not help reduce the
program complexity of CTL model checking compared to the nondeterministic case.
However, and perhaps surprisingly, the program complexity of CTL model checking
for EHSMs is the same as for HSMs: it is also PSPACE-complete.

Theorem 12. The program complexity of CTL model checking for EHSMs is PSPACE-
complete.

Since EFSMs are special cases of EHSMs, the previous PSPACE upper bound car-
ries over to EFSMs, and we have the following.

Corollary 1. The program complexity of CTL model checking for EFSMs is PSPACE-
complete.



Class of Program Restriction LTL CTL
FSM Linear Linear

EFSM PSPACE PSPACE
HSM Linear PSPACE
HSM deterministic Linear Linear

EHSM PSPACE PSPACE
EHSM deterministic PSPACE PSPACE
RSM Cubic EXPTIME
RSM deterministic Linear Linear

ERSM EXPTIME 2-EXPTIME
ERSM deterministic EXPTIME EXPTIME

Fig. 3. Complexity bounds in the size of the program. The new bounds from this paper are high-
lighted in bold.

Since EFSMs are standard, the last result might be already known, but we do not know
if it is stated somewhere in the literature.

Finally we note that all the algorithms of this section apply also to the more powerful
branching time logic CTL* (see [13] for a definition) with exactly the same complexity:

Theorem 13. The program complexity of CTL* model checking is as follows:
1. For ERSMs it is 2EXPTIME-complete.
2. For deterministic ERSMs it is EXPTIME-complete.
3. For EHSMs it is PSPACE-complete.

6 Discussion

6.1 Summary of Results

Figure 2 summarizes the results for reachability and linear time properties. For general
Boolean programs (ERSMs) the problems are EXPTIME-complete which means that
the analysis provably requires exponential time in the worst-case. Since even reach-
ability of simple EFSMs (which have no recursion) is PSPACE-complete, we cannot
hope for better than PSPACE for programs with variables that include EFSMs. As we
see, PSPACE suffices for important subclasses including EHSM (hierarchical recur-
sion) and I/O bounded ERSM (bounded communication). For the I/O bounded class,
the complexity is reduced further in more restricted cases.

Figure 3 summarizes the results regarding the program complexity of LTL and CTL
(and CTL*) model checking for general (nondeterministic) and deterministic ERSMs
and EHSMs and their counterparts RSM, HSM that have no variables. New results from
this work are highlighted in bold.

From Figure 3, we observe that the program complexity of CTL model checking
for deterministic programs is exponentially better than for nondeterministic ones, ex-
cept for EHSMs where the complexity does not change. In practice, this means that
whenever it is possible to hoist nondeterministic choices in a Boolean programs to
its initial states, then the program effectively becomes deterministic and CTL model
checking can be exponentially faster in the size of the program. On the other hand,



FSM 

HSM 

RSM 

EFSM 

ERSM 

EHSM 

LTL 

FSM 

HSM 

RSM 

EFSM 

ERSM 

EHSM 

CTL 

P 

PSPACE 

EXPTIME 

exp 

exp 

PSPACE 

EXPTIME 2-EXPTIME 

exp 

exp 

exp 

NLOGSPACE NLOGSPACE 

Fig. 4. Visual summary for the program complexity of LTL and CTL model checking.

for LTL model checking, determinism decreases the complexity more modestly, by a
polynomial amount.

Figure 4 compares the program complexity of LTL and CTL model checking for
the main (no restriction) classes of programs considered in Figure 3. From this figure,
we make the following observations.

– Adding Boolean variables (extension “E”) to programs increases the program com-
plexity of model checking except for HSMs and CTL model checking.

– Adding hierarchy to EFSMs does not increase the program complexity of model
checking for LTL or CTL. Adding further full recursion increases somewhat the
complexity for LTL, but much more drastically (more than exponentially) for CTL.

– For a fixed program class, CTL model checking can be exponentially more expen-
sive in the size of the program than LTL model checking, except in the case of
EFSMs and EHSMs (where the complexity remains PSPACE-complete) and in the
FSM case (where the complexity is linear in both cases).

6.2 Comparison with Pushdown Model Checking

In [1], it is shown that every RSM is bisimilar to a pushdown system (also called push-
down automaton). Therefore, the program complexity of model checking for RSMs and
pushdown systems is the same. Since Boolean programs can be exponentially more suc-
cinct than ordinary pushdown systems or recursive state machines, the program com-
plexity of model checking for Boolean programs does not follow directly from prior
work on model checking for traditional pushdown systems. The same comment applies
to prior work on hierarchical systems (e.g. [3, 2, 20, 26]).

[17] defines ”symbolic pushdown systems”, which are pushdown systems extended
with variables in the control states and the stack symbols, it shows how to derive such a
system from a Boolean program, and gives an algorithm for LTL model checking (the
algorithm has exponential complexity). No lower bound is given on the complexity of
the problem.



6.3 Impact on Logic Encodings

The complexity results presented in our work also shed new light on how to represent
classes of Boolean programs using logic, and the abilities and limitations of different
logics in this respect.

An approach to symbolic program analysis consists in representing the program by a
logic formula, possibly generated incrementally, and then reducing reachability analysis
and property checking to a satisfiability or validity check for the corresponding logic
performed using a SAT or SMT solver. This is the methodology used in verification-
condition generation [16, 18, 6] and SAT/SMT-based bounded model checking [11, 14].

For a polynomial-size logic encoding of a specific class of programs, it is necessary
to use a sufficiently-expressive logic. For instance, consider the EHSM case. Theorem 2
states that reachability analysis for EHSMs is PSPACE-complete. This suggests that a
polynomial-size encoding for EHSMs is possible using a logic like QBF since satisfia-
bility for QBF is also PSPACE-complete. (Such an encoding is indeed possible.) This
also proves that a polynomial-size encoding in a less expressive logic, such as propo-
sitional logic, is impossible: a (precise) translation from EHSMs to propositional logic
may result in formulas that are exponentially larger than the program. In contrast, The-
orems 3 and 5 identify specific classes of EHSMs for which reachability analysis is
“only” NP-complete and for which precise polynomial-size encodings to propositional
logic are possible (as satisfiability for propositional logic is NP-complete).

7 Conclusion
Boolean programs are a simple, natural and popular abstract domain for static-analysis-
based software model checking. This paper presents the first comprehensive study of
the worst-case complexity of several basic analyses of Boolean programs, including
reachability analysis, cycle detection, and model checking for the temporal logics LTL,
CTL and CTL*. We also studied several natural classes of Boolean programs which
are easier to analyze. We presented matching lower and upper bounds for all these
problems. The overall picture is quite rich and varied and required a range of different
techniques. The results help explain what features of Boolean programs contribute to
the overall worst-case complexity. For instance, nondeterminism does not impact drasti-
cally the complexity of reachability analysis for Boolean programs (it increases it only
polynomially) while it impacts much more significantly (exponentially) the program
complexity of CTL model checking.

Acknowledgments. Research partially supported by NSF Grant CCF-1017955.

References

1. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis of
Recursive State Machines. ACM Trans. on Programming Languages and Systems (TOPLAS),
27(4):786–818, 2005.

2. R. Alur, S. Kannan, and M. Yannakakis. Communicating Hierarchical State Machines. In
Proc. ICALP, pages 169–178. Springer-Verlag, 1999.

3. R. Alur and M. Yannakakis. Model Checking of Hierarchical State Machines. ACM
TOPLAS, 23(3):273–303, 2001.



4. T. Ball and S. Rajamani. Bebop: A Symbolic Model Checker for Boolean Programs. In
Proceedings of the 7th SPIN Workshop, pages 113–130, 2000.

5. T. Ball and S. Rajamani. The SLAM Toolkit. In Proceedings of CAV’2001, volume 2102 of
Lecture Notes in Computer Science, pages 260–264, Paris, July 2001. Springer-Verlag.

6. M. Barnett and K. R. M. Leino. Weakest Precondition of Unstructured Programs. In Proc.
PASTE (Program Analysis For Software Tools and Engineering), pages 82–87, 2005.

7. G. Basler, D. Kroening, and G. Weissenbacher. SAT-based Summarization for Boolean
Programs . In Proceedings of SPIN’2007, LNCS 4595, pages 131–148, 2007.

8. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata: Ap-
plication to Model-Checking. In Proc. CONCUR, LNCS 1243, pages 135–150. Springer-
Verlag, 1997.

9. O. Burkart and B. Steffen. Model Checking for Context-Free Processes. In Proceedings of
CONCUR’92, LNCS 630, pages 123–137. Springer-Verlag, 1992.

10. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1981.

11. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model Checking Using Satisfiability
Solving. Formal Methods in System Design, 19(1):7–34, 2001.

12. E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-Time Temporal Logic. In D. Kozen, editor, Proc. of the Workshop on Logic of
Programs, volume 131 of LNCS, pages 52–71. Springer-Verlag, 1981.

13. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
14. E. M. Clarke, D. Kroening, and K. Yorav. Behavioral Consistency of C and Verilog Programs

using Bounded Model Checking. In Design Automation Conference (DAC), pages 368–371.
ACM, 2003.

15. B. Cook, A. Podelski, and A. Rybalchenko. Termination Proofs for Systems Code. In
Proceedings of PLDI’2006, pages 415–426, 2006.

16. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Comm. of the ACM, 18:453–457, 1975.

17. J. Esparza and S. Schwoon. A BDD-based Model Checker for Recursive Programs. In Proc.
CAV, LNCS 2102. Springer-Verlag, 2001.

18. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
Static Checking for Java. In Proceedings of PLDI’2002, pages 234–245, 2002.

19. P. Godefroid, A. Nori, S. Rajamani, and S. Tetali. Compositional May-Must Program Anal-
ysis: Unleashing The Power of Alternation. In Proc. POPL, pages 43–55, 2010.

20. S. Goller and M. Lohrey. Fixpoint Logics over Hierarchical Structures. Theory Comp. Sys.,
48(1):93–131, 2011.

21. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Proceedings of
CAV’97, LNCS 1254, pages 72–83. Springer-Verlag, 1997.

22. A. Gurfinkel, O. Wei, and M. Chechik. Yasm: A Software Model Checker for Verification
and Refutation. In Proc. CAV, LNCS 4144, pages 170–174. Springer-Verlag, 2006.

23. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In Proceedings of
POPL’2002, pages 58–70, Portland, January 2002.

24. O. Kupferman, M. Y. Vardi, and P. Wolper. An Automata-Theoretic Approach to Branching-
Time Model Checking. Journal of the ACM, 47(2):312–360, March 2000.

25. K. R. M. Leino. A SAT Characterization of Boolean Program Correctness . In Proceedings
of SPIN, 2003.

26. M. Lohrey. Model-checking hierarchical structures. J. Comp. Sys. Sc., 78(2):461–490, 2012.
27. C. H. Papadimitriou and M. Yannakakis. A Note on Succinct Representation of Graphs. Inf.

and Comp., 71(3):181–185, 1986.
28. I. Walukiewicz. Model Checking CTL Properites of Pushdown Systems. In Proc. FSTTCS,

pages 127–138, 2000.


