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Abstract. We present a novel framework for exploring very large state

spaces of concurrent reactive systems. Our framework exploits application-

independent heuristics using genetic algorithms to guide a state-space

search towards error states. We have implemented this framework in

conjunction with VeriSoft, a tool for exploring the state spaces of soft-

ware applications composed of several concurrent processes executing

arbitrary code. We present experimental results obtained with several

examples of programs, including a C implementation of a public-key au-

thentication protocol. We discuss heuristics and properties of state spaces

that help a genetic search detect deadlocks and assertion violations. For

�nding errors in very large state spaces, our experiments show that a ge-

netic search using simple heuristics can signi�cantly outperform random

and systematic searches.

1 Introduction

Model checking [4] is an automatic technique for verifying �nite-state concur-

rent systems. The state space of a concurrent system is a directed graph that

represents the combined behavior of all the concurrent components in the sys-

tem. Model checking typically involves exhaustively searching the state space

of a system to determine whether some property of the system is satis�ed or

not. State-space exploration techniques have been used successfully to detect

subtle yet important errors in the design and implementation of several complex

hardware and software concurrent reactive systems (e.g., see [1, 3, 9, 19]). It is

worth noting that the main practical interest of systematic state-space explo-

ration (and of \veri�cation" in general) is to �nd errors that would be hard to

detect and reproduce otherwise.

The main practical limitation when model checking real systems is dealing

with the so-called state-explosion problem: the number of states contained in the

state space of large complex systems can be huge, even in�nite, thereby mak-

ing exhaustive state-space exploration intractable. Several approaches have been

proposed to address the state-explosion problem, including symbolic veri�cation,

partial-order methods and symmetry methods. Although these approaches have

increased the scope of model checking to state spaces that are several orders of



magnitude larger, many realistic state spaces are still too large to be handled,

and state explosion remains a fundamental problem in model checking.

When a problem is computationally too hard to solve using an exact and

complete algorithm, it is common in computer science to explore the use of

heuristics in order to �nd approximate solutions to the problem, or to converge

faster towards some solutions. Maybe surprisingly, the idea of exploiting heuris-

tics for model checking has received very little attention so far. This may be

due to two reasons. First, model checking is not an optimization problem: the

primary goal is not to �nd a best solution (e.g., the shortest path leading to

some state), it is to �nd any solution (e.g., any reachable error state). Second,

the historic emphasis in model checking has been on completeness: the primary

goal is to exhaustively check every reachable state of the system.

In this paper, we explore the use of genetic algorithms [11] for exploring

very large state spaces in search for error states. Genetic algorithms are search

algorithms inspired by the mechanics of genetics and natural selection. These

search algorithms combine survival of the �ttest among chromosome-like string

structures with a structured yet randomized information exchange. Genetic al-

gorithms are often viewed as function optimizers, although the range of problems

they have been applied to is quite broad [18].

We present a framework that uses genetic algorithms to exploit heuristics

for guiding a search in the state space of a concurrent reactive system towards

errors like deadlocks and assertion violations. At each visited state during a

state-space exploration, the genetic algorithm decides which transition to ex-

plore next when there are more than one enabled outgoing transitions. We have

implemented this framework in conjunction with VeriSoft [8], an existing tool

for exploring the state spaces of systems composed of several concurrent soft-

ware processes executing arbitrary code. We present experimental results ob-

tained with several examples of programs, including a C implementation of a

public-key authentication protocol. From these experiments, we discuss general

properties of state spaces that seem to help a genetic search �nd errors quickly.

When the state space to be explored is very large, our experiments show that a

genetic search using simple application-independent heuristics can signi�cantly

outperform random and systematic searches.

The rest of the paper is organized as follows. In Section 2, we recall the

basic principles of genetic algorithms. Section 3 describes our framework and

the genetic algorithms we use. We discuss how to modify a model checker to let

its search be guided by a genetic algorithm. In Section 4, we describe several

programs and properties we have analyzed using our implementation. We then

discuss results of experiments, and study the in
uence of various parameters on

the e�ectiveness of a genetic search. In Section 5 we present concluding remarks

and discuss related work.



11 0 0 0 1 0 110 0 0

0 0 10 0 00 1111 0

parent: a parent: b

offspring: c offspring: d

crossover:

0 1111 10 1111 0

offspring: c offspring: c’

mutation:

Fig. 1. Illustration of crossover and mutation operators. Candidate solutions are en-

coded as strings of bits. Parents a and b are recombined to produce o�springs c and

d: a crossover is performed at the 4th bit, i.e., the tails of both parents are swapped

starting from the 4th bit. O�spring c is then mutated to produce c

0

: a mutation is

performed at the 3rd bit, i.e., the value of the 3rd bit is 
ipped.

2 Genetic Algorithms

A genetic algorithm provides an algorithmic framework for exploiting heuristics

that simulates natural-evolution processes like selection and mutation. It evolves

candidate solutions to problems that have large solution spaces and are not

amenable to exhaustive search or traditional optimization techniques. Genetic

algorithms have been applied to a broad range of learning and optimization

problems [18] since their inception by Holland [11].

Typically, a genetic algorithm starts with a random population of encoded

candidate solutions, called chromosomes. Through a recombination process and

mutation operators, it evolves the population towards an optimal solution. Gen-

erating an optimal solution is not guaranteed and the challenge is thus to design

a \genetic" process that maximizes the likelihood of generating such a solution.

The �rst step is typically to evaluate the �tness of each candidate solution in the

current population, and to select the �ttest candidate solutions to act as parents

of the next generation of candidate solutions. After being selected for reproduc-

tion, parents are recombined (using a crossover operator) and mutated (using a

mutation operator) to generate o�springs (see Figure 1 for a description of these

operators). The �ttest parents and the new o�springs form a new population,

from which the process is repeated to create new populations. Figure 2 gives a

standard genetic algorithm in pseudocode.

To illustrate an iteration of a genetic algorithm, consider the boolean satis-

�ability problem. Assume that we want to �nd a satisfying assignment to the

following boolean formula: (x
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). Let's say we have two (randomly gen-

erated) candidate solutions, a : fx

1

= 1; x

2

= 1; x

3

= 0; x

4

= 0; x

5

= 0; x

6

= 1g

and b : fx

1

= 0; x

2

= 0; x

3

= 0; x

4

= 0; x

5

= 1; x

6

= 1g. If we evaluate the for-

mula on a, we see that clauses 3 and 6 are false, whereas evaluating the formula

on b makes clauses 2 and 5 false. Both a and b are not satisfying assignments.

We now recombine a and b to produce an o�spring c : fx

1

= 1; x

2

= 1; x

3

=

0; x

4

= 0; x

5

= 1; x

6

= 1g, which takes the �rst three variable assignments from

a and the last three from b. O�spring c does not de�ne a satisfying assignment



gen := 0;

P[gen] := random population;

fitness[gen] := evaluate(P[gen]);

while (fitness[gen] < T) { // fitness has not reached desired level

gen++;

S[gen] := select(P[gen-1]); // select fittest chromosomes

CM[gen] := crossover(S[gen]); // perform crossover on pairs

CM[gen] := mutate(CM[gen]); // mutate resulting chromosomes

P[gen] := S[gen] + CM[gen]; // produce next generation

fitness[gen] := evaluate(P[gen]); }

Fig. 2. Pseudocode for a standard genetic algorithm

either since it makes clause 5 false. However, if we mutate the value c assigns to

x

3

to produce d : fx

1

= 1; x

2

= 1; x

3

= 1; x

4

= 0; x

5

= 1; x

6

= 1g, we see that d

does provide a satisfying assignment to our boolean formula.

The operations of evaluation, selection, recombination and mutation are usu-

ally performed many times in a genetic algorithm. Selection, recombination, and

mutation are generic operations in any genetic algorithm and have been thor-

oughly investigated in the literature. On the other hand, evaluation is problem

speci�c and relates directly to the structure of the solutions (i.e., how candidate

solutions are encoded as chromosomes and relate to each other). Therefore, in a

genetic algorithm, a major issue is the choice of the structure of solutions and of

the method of evaluation (�tness function). Other parameters include the size

of the population, the portion of the population taking part in recombination,

and the mutation rate. The mutation rate de�nes the probability with which a

bit is 
ipped in a chromosome that is produced by a crossover.

3 Genetic Algorithms for State-Space Exploration

In this section, we discuss how genetic algorithms can be used to guide a search

in the state space of a concurrent reactive system.

3.1 Combining Genetic Algorithms and Model Checking

In our context, the search space to be explored is the (possibly ini�nite) state

space of the system. For simplicity and without loss of generality, we assume that

the state space has a unique initial state. Candidate solutions are �nite sequences

of transitions in the state space starting from the initial state. Each candidate

solution is encoded by a chromosome, i.e., a �nite string of bits. Figure 3 shows

a simple example of encoding. How to encode �nite paths in a graph using

chromosomes is discussed in details below.

To evaluate the �tness of a chromosome, the genetic algorithm executes the

path encoded by the chromosome. This is done by combining the genetic al-

gorithm with a model checker. Given a representation of a system, the model

checker determines the state space to explore. The execution of a path starts in



Fig. 3. Example encoding. Assume a state space with �xed branching (of 4) and �xed

depth (of 4); 8 bits are used to represent a chromosome. The chromosome `10 01 00 11'

encodes the path that visits the �lled states (following the bold edges) in state space.

the initial state. If there are more than one possible transitions from the cur-

rent state, the model checker informs the genetic algorithm about the number

of possibilities. The genetic algorithm decodes a part of the chromosome it is

currently processing and informs the model checker of which transition to take.

The model checker then checks whether the state following that transition is an

error state. If so, the current path is saved and the user is noti�ed. Otherwise,

the model checker repeats this process from the new state.

Since a chromosome can only encode a �nite number of transitions, the state

space is explored up to a �xed depth. Whenever the model checker has explored

a path up to this maximum depth, it prompts the genetic algorithm to evalu-

ate the �tness of the current chromosome. This operation is discussed further

below. Once the �tness of the current chromosome has been computed, another

chromosome of the current population is evaluated using the same process.

3.2 Genetic Encoding

We now discuss a novel chromosome-encoding scheme that can be applied to ar-

bitrary state spaces. Indeed, the simple encoding technique described in Figure 3

is not satisfactory for several reasons.

First, the number of enabled transitions in a state is typically not constant.

Moreover, an upper bound on the number of enabled transitions in a state may

not be known a priori

1

. Therefore, a practical encoding cannot use a �xed num-

ber of bits to encode a single transition. We resolve this issue by dynamically

interpreting a chromosome: if there are n enabled transitions from the current

state being processed during the state-space search, we read the next log(n) bits

from the current chromosome to decide which next transition to explore.

Second, the number of enabled transitions in a state is not necessarily a power

of 2. This means that we may have to deal with spurious encodings: encodings

that fall outside the desired interval of values. The traditional approach [10]

to deal with this issue is to map the decoded integer linearly into the desired

interval. This approach, however, typically introduces bias toward some values

in the desired interval. Therefore, we deal with spurious encodings by updating

1

We assume that the number of enabled transitions in any given state is �nite, and

hence that such a bound exists.



such chromosomes instead: if there are n enabled transitions from the current

state and the next log(n) bits of the current chromosome decode to a value

greater than or equal to n, we randomly generate a number between 0 and n�1

and replace the last log(n) bits read of the chromosome by the binary encoding

of this number. Note that our procedure for updating chromosome bits in this

case is necessary to avoid multiple �tness evaluations of the same chromosome

to evaluate to di�erent values.

Third, a suitable length (i.e., number of bits) for chromosomes cannot be

determined in advance. Since a chromosome can only encode a �nite number

of transitions, the model checker only explores paths up to a �xed depth. For a

maximum depth d, we use su�ciently long chromosomes so that they can encode

any path of length up to d, and we track the e�ective length of chromosomes. The

e�ective length at any point during a genetic evolution is the maximum number

of bits that have been read from any single chromosome up to that point in

the search. Mutations and crossovers are performed only on initial segments of

chromosomes up to the (current) e�ective length.

3.3 Fitness Function

An important parameter of a genetic algorithm is the �tness function that de�nes

the �tness of each chromosome. We consider in this work two classes of errors

that we wish to detect in state spaces: deadlocks and assertion violations. Dead-

locks are states with no outgoing transitions (all the processes in the system are

blocked). Assertions are boolean expressions involving program variables that

are said to be violated when the corresponding boolean expression evaluates to

false. We now discuss heuristics for guiding a genetic search towards both classes

of error states.

For deadlock detection, a simple heuristic to measure the �tness of a chro-

mosome is to sum the number of enabled transitions at each state along the exe-

cution path represented by the chromosome. The intuition behind this heuristic

is that chromosomes with a smaller sum seem more likely to lead to deadlocks,

and should therefore be considered �tter.

For detecting assertion violations, a possible heuristic is to attempt maxi-

mizing assertion evaluations. To achieve this, one can award bonus scores for

chromosomes that lead to as many as possible assertion evaluations. One can

also award bonuses to chromosomes that make choices leading towards assertion

statements at control points in the control 
ow graph of the program; this can be

done by instrumenting the execution of tests (such as \if-then-else" statements)

in the program using a static analysis of the program text.

When analyzing protocols with message exchanges, a sensible heuristic is

to attempt maximizing the number of messages being exchanged. We use this

simple heuristic in the analysis of Needham-Schroeder public key authentication

protocol [15] and identify a (previously known [14]) attack on the protocol (see

Section 4 for details).

Note that our framework can be used to discover multiple (independent)

errors of a same type in a system without requiring to �x previously detected



errors. This can be done by awarding penalty scores to chromosomes that lead

to states where a previously discovered error is detected. Application-speci�c

heuristics can also be used in our framework to �ne tune the performance of the

genetic algorithm if needed.

3.4 Dynamically Adapting Parameters

The genetic algorithm we use in this work is a slight variation of the pseudocode

in Figure 2 where the value of some parameters are adapted as the genetic evo-

lution progresses. In particular, we keep track of the best and worst chromosome

�tness in each generation, and, if both �tness values become equal, we increase

the mutation rate, in order to help the genetic evolution get out of local maxi-

mas. Once there is an improvement in the overall �tness, we restore the original

mutation rate to continue evolution as normal.

As mentioned in Section 3.2, we also update the e�ective length of chromo-

somes during evolution.

If evolution stabilizes (i.e., the �tness does not seem to improve for several

generations) and the search does not �nd any error, we re-start the genetic algo-

rithm with the initial default parameter values and a new randomly generated

seed to generate a new random initial population. This reduces any bias that

may have been introduced in a previous run that used a \bad" seed.

4 Experimental Evaluation

We have implemented the framework presented in the previous section in con-

junction with VeriSoft [8], a tool that implements model-checking algorithms for

exploring the state spaces of systems composed of several concurrent software

processes executing arbitrary code written in full-
edged programming languages

such as C or C++. We report in this section results of experiments comparing

the performances of four state-space search algorithms:

� GA is the genetic algorithm described in the previous section;

� GA

M

is GA with no crossovers (only mutations);

� RAND is a \random search" that explores random paths in a state space;

and

� EXH is a search algorithm that systematically explores the state space up

to some �xed depth

2

, and attempts to explore it exhaustively.

The purpose of these experiments is also to identify heuristics and properties of

state spaces that help a genetic search detect deadlocks and assertion violations.

4.1 Examples of Programs and Properties

We report experiments performed with two sample C programs.

2

Note that, in general, the depth of the state space of a software system composed

of processes executing arbitrary C or C++ code may not be bounded, making the

state space in�nite and a fully exhaustive search impossible.



Dining philosophers Consider the following variant of the well-known dining-

philosophers problem:

while (true) {

think;

nondeterministically

pick left-fork; pick right-fork;

OR

pick right-fork; pick left-fork;

eat;

drop left-fork; drop right-fork; }

The above pseudocode describes a philosopher process. A philosopher starts by

thinking, which then makes him hungry at which point he nondeterministically

decides to either pick his left fork followed by his right fork, or to pick his

right fork followed by his left fork. Once a philosopher has both forks adjacent

to him in his hands, he eats. Finally, he drops �rst the left fork and then the

right fork back onto the table, and repeats this process inde�nitely. Since several

philosophers are sitting around the same table and hence sharing one fork with

each of their two adjacent neighbors, they compete for forks with each other.

For instance, if all philosophers around the table have picked their left fork, the

entire system is then in a deadlock.

We denote by PHIL a C implementation of the above system with 17 philoso-

phers. We arbitrarily choose this large number of processes so that it is not pos-

sible to explore the state space of the system exhaustively within a reasonable

amount of time. Nondeterminism is simulated using the system call VS toss

supported by VeriSoft (see [8]). In what follows, we compare the e�ectiveness of

various search algorithms to �nd deadlocks in this system.

Needham-Schroeder protocol The Needham-Schroeder public-key authenti-

cation protocol [15] aims at providing mutual authentication, so that two parties

can verify each other's identity before engaging in a transaction. The protocol

involves a sequence of message exchanges between an initiator, a responder, and

a mutually-trusted key server. The exact details of the protocol are not neces-

sary for the discussion that follows and we omit these here. An attack against

the original protocol involving six message exchanges was reported in [14]: an

intruder Carol is able to impersonate an initiator Alice to set up a false session

with responder Bob, while Bob thinks he is talking to Alice.

We denote by AUTH a C implementation

3

of the Needham-Schroeder pro-

tocol. This implementation is described by about 500 lines of C code and is

much more detailed than the protocol description analyzed in [14]. The C code

also contains an assertion that is violated whenever an attack to the protocol

occurs. We compare below the e�ectiveness of various search algorithms to �nd

assertion violations representing attacks to this implementation of the protocol.

3

John Havlicek provided us this implementation.



error #errors runtime average time depth

found? #runs (hrs) to find error searched

GA yes 26/50 1:16:21 2 min 57 sec 65

PHIL RAND no 0/1 8:00:00 - 65

EXH no 0/1 8:00:00 - 34

GA yes 3/100 2:33:24 51 min 8 sec 110

AUTH RAND no 0/1 8:00:00 - 110

EXH no 0/1 8:00:00 - 45

Table 1. Genetic search versus random and exhaustive search

4.2 Experimental Results

In the experiments that follow, whenever a genetic search is applied to PHIL to

detect deadlocks, the heuristic (�tness function) used is to minimize the sum of

enabled transitions along a single execution path. In contrast, whenever a genetic

search is applied to AUTH to detect protocol attacks, the heuristic used in the

experiments below is to maximize the number of messages exchanged among

parties involved in the protocol along a single execution path. All experiments

were performed on a Pentium III 700 MHz processor with 256 MB of RAM.

The genetic parameters we use are as follows. The population size is set

to 200 chromosomes. The best 100 chromosomes in a generation reproduce. The

default mutation rate is 200, i.e., each bit of a chromosome that is produced by a

crossover is 
ipped with probability 1/200. The e�ective length of chromosomes

varies between 70 and 320 bits.

Genetic Search versus Random and Exhaustive Searches We compare

the performance of the search algorithms GA, RAND and EXH for analyzing

PHIL and AUTH . For GA and RAND, we limit the depth of the search to

paths of length about twice the length of the shortest path that leads to an error.

(We discuss this choice later in this section.) For EXH , we limit the search depth

to about the length of the shortest path that leads to an error (with the hope of

helping EXH as much as possible).

Table 1 summarizes our results. For PHIL, we run GA 50 times (each run

starts with a randomly-generated seed), and let it evolve for 50 generations

in each run. More than 50% of the runs identify a deadlock. In contrast, both

RAND and EXH are unable to �nd a deadlock in 8 hours of search. For AUTH ,

we run GA 100 times (each run uses a randomly-generated seed), and let it

evolve for 100 generations in each run. Only 3 runs identify an attack on the

C implementation of the Needham-Schroeder protocol. Again, both RAND and

EXH are unable to �nd an attack in 8 hours.

Despite that GA is able to �nd an attack in AUTH , its performance is worse

than when analyzing PHIL. This may be due to our choices of �tness functions:

the heuristic for �nding deadlocks may be a better measure of �tness, than the

simple heuristic of maximizing message exchanges used when exploring the state

space of AUTH . We chose to use and evaluate these particular heuristics in our
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Fig. 4. GA deadlock-detection performance. The maximum and average �tness among

the parent chromosomes in a generation is plotted against the generation number.

experiments because they are application-independent and hence can be used to

analyze other applications.

Figure 4 illustrates a run of GA on PHIL. Typically, a genetic algorithm

makes quick progress in the beginning stages of evolution. Then, there are phases

when it hits local maximas before mutations further improve its performance.

Notice how the average �tness of the parents steadily increases. This indicates

that the genetic operators are e�ective in maximizing �tness while exploring the

state space. It should not come as a surprise that the maximum (average) �tness

among parents never decreases since we are using the so-called elitist model, in

which the best chromosomes always survive to the next generation.

Search Deeper We now investigate how the e�ectiveness of a genetic search

varies as we increase the maximum depth of the search. In these experiments, we

consider a simpli�ed version of AUTH where the �rst two message exchanges

from a known attack (involving a path of 42 steps in the state space) are hard-

wired into the search algorithm and the algorithm needs only to �nd the last 4

message exchanges necessary to complete the attack. We call this simpler prob-

lem AUTH

2

, and use it in the experiments below in order to amplify di�erences

between results we observe.

Table 2 tabulates our results. We run GA on PHIL for 50 generations. We

compare the results of 20 runs using each of the depths 34, 51 and 68, where

34 is the minimum depth required to �nd a deadlock in PHIL. When using

depths 34 and 51, GA is unable to detect a deadlock, whereas when we increase

the depth to 68, 14 out of 20 runs detect a deadlock. When exploring the state

space of AUTH

2

using a depth of 42, GA is unable to �nd an attack in 20 tries,

whereas when we increase the depth to 60, GA �nds an attack 6 times.

The reason why a deeper maximum search depth can actually help a genetic

search may be the following. From most reachable states in the state spaces of

PHIL and AUTH , there exists a path that leads to an error state. Chromosomes



error #errors runtime average time depth

found? #runs (hrs) to find error searched

no 0/20 0:25:33 - 34

PHIL no 0/20 0:30:01 - 51

yes 14/20 0:33:44 2 min 24 sec 68

AUTH

2

no 0/20 0:33:47 - 42

yes 6/20 0:28:31 4 min 45 sec 60

Table 2. GA performance as maximum search depth changes

error #errors runtime average time depth

found? #runs (hrs) to find error searched

PHIL GA yes 26/50 1:16:21 2 min 57 sec 65

GA

M

yes 26/50 0:59:16 2 min 16 sec 65

AUTH

2

GA yes 16/50 1:11:18 4 min 27 sec 60

GA

M

yes 3/50 1:27:07 29 min 2 sec 60

Table 3. Genetic search with (GA) and without (GA

M

) crossover operator

that encode \bad" initial segments are therefore not necessarily penalized since

their tails may contain a path that leads to an error state and are su�cient to

detect the error. If the exploration was limited to the minimum depth necessary

to �nd an error, chromosomes that encoded the \wrong" �rst moves would have

a very low probability of producing an o�spring that corrects these �rst moves.

On the other hand, increasing the depth of the search should be done with

caution since it obviously increases the search space and hence the length of

chromosomes, which in turn leads to slower genetic operations and convergence

of the algorithm.

Mutation Alone Here, we investigate the e�ectiveness of the crossover operator

by comparing the performance of GA and GA

M

, i.e., GA without crossover

operations, when exploring the state spaces of PHIL and AUTH

2

. The same

parameter values are used for both GA and GA

M

.

Table 3 summarizes our results. The performances of GA and GA

M

are

comparable on PHIL: both algorithms �nd the deadlock 26 times out of 50

runs. This may be explained as follows. A deadlock in PHIL results from a set

of choices made by the philosophers, namely that they all choose to pick their

left forks or they all choose to pick their right forks. In particular, it does not

matter in which order the philosophers pick their forks; what matters is which

fork they pick. Mutations alone seem e�ective in �nding a deadlock since each

mutation alters some philosopher's choice and once the right set of choices is

attained, a deadlock is reached.

In contrast, GA is more e�ective than GA

M

in �nding an attack on AUTH

2

.

An attack on the protocol is formed by a speci�c sequence of message exchanges

that allows intrusion: the messages have to be exchanged in a precise order,



error #errors runtime average time depth

found? #runs (hrs) to find error searched

PHIL yes 26/50 1:16:21 2 min 57 sec 65

PHIL

PO

yes 5/50 1:07:32 13 min 30 sec 65

AUTH

2

yes 16/50 1:11:18 4 min 27 sec 60

AUTH

PO

2

yes 1/50 1:24:34 1 hr 24 min 34 sec 60

Table 4. GA performance with and without partial-order reduction

simply �nding the exact set of messages involved in the attack is not su�cient.

Since crossovers combine and preserve sub-sequences (of messages in this case),

their e�ect in converging quickly toward a solution becomes more important.

Therefore, it seems preferable to use GA over GA

M

when exploring arbitrary

state spaces, since GA is e�ective irrespective of the search being for a set or a

sequence of transitions.

Partial-Order Reduction Finally, we investigate how the use of partial-order

reduction techniques (e.g., see [7]) a�ects the performance of a genetic search.

Roughly speaking, partial-order reduction algorithms can dynamically prune

the state space of a concurrent system in a completely reliable way (i.e., with-

out missing any errors) by taking advantage of independent (i.e., commutative)

actions executed by concurrent processes, hence avoiding to consider all their

interleavings during a state-space exploration. The pruned state space de�ned

with partial-order algorithms is thus a subset of the full state space. In the

following experiments, we consider a partial-order reduction algorithm using a

combination of the persistent-set and sleep-set techniques as implemented in

VeriSoft (see [8]). Let PHIL

PO

and AUTH

PO

2

denote the reduced state spaces

of PHIL and AUTH

2

, respectively, that are explored when partial-order reduc-

tion is used.

Results of experiments are tabulated in Table 4. When exploring PHIL

PO

,

GA detects a deadlock only 5 times out of 50 runs. Recall that GA detected

a deadlock 26 times during a same number of runs when exploring PHIL. A

similar decrease in performance is observed when GA explores AUTH

PO

2

.

A possible explanation for this phenomenon is the following. In the reduced

state space resulting from partial-order reduction, most reachable states have

few outgoing transitions that can be selected to be explored next (thanks to

the pruning). Hence, the set of actions corresponding to a set of possible next

transitions can vary a lot from state to state. This means that selecting tran-

sition number i in a state s may result in executing a program action totally

di�erent from the action executed when selecting transition i in another state

s

0

. In other words, same transition choices made in di�erent context may yield

totally di�erent program actions, especially when using partial-order reduction.

After a crossover or mutation operation, the tail of each resulting chromosome

may be interpreted in an entirely di�erent context, which harms the bene�cial

e�ect of these operators.



5 Conclusion and Related work

We have shown in this paper that, when exploring very large state spaces

of concurrent reactive systems, genetic algorithms using simple application-

independent heuristics can signi�cantly outperform traditional random and sys-

tematic state-space searches used in current model checkers. We have discussed

in detail the engineering challenges faced when extending a model checker with

a genetic search algorithm. We believe the use of heuristics in model checking

could contribute to broadening its applicability by several additional orders of

magnitude. Further experiments and studies are needed to validate this claim.

As mentioned in the introduction, genetic algorithms have already been used

for a broad range of applications. In particular, genetic algorithms have been

used to perform structural and functional testing of sequential programs. For

instance, Pargas et al. [16] present a goal-oriented technique for automatic test-

data generation using a genetic algorithm guided by program control depen-

dencies; their implementation aims at achieving statement and branch coverage.

Jones et al. [12] use genetic algorithms to generate test sets that satisfy the re-

quirements for test-data-set adequacy of structural testing. More recently, Bueno

et al. [2] build upon [12] and present a tool for the automation of both test-

data generation and infeasible-path identi�cation. In [13], a framework using

genetic algorithms is developed for testing methods manipulating complicated

data structures; this framework was successfully applied to identify several 
aws

in a naming architecture for dynamic networks of devices and computers.

In contrast with all this previous work, the problem addressed in this paper

is the exploration of (very large) state spaces of concurrent reactive systems

as de�ned with a model checker. This requires the use of original chromosome

encodings and �tness functions suitable for the application domain considered

here. We are not aware of any other work where genetic algorithms have been

used for state-space exploration.

Heuristics for choosing a search order that favor visiting �rst successor states

that are most likely to lead to an error (\best-�rst search") are discussed in [21]

in the context of symbolic model checking and in [5] in the context of explicit

model checking. It is worth noting that a best-�rst search (BFS) can be viewed

as a particular case of genetic search (GS). Indeed, the latter can simulate the

former as follows: GS uses the same �tness function as that of BFS; crossover

and mutation rates are set to 0; the e�ective length of chromosomes is set to n

where n is the current generation; only a single best chromosome in a generation

produces the next generation; the number of o�springs produced by this unique

parent is the number of outgoing transitions at the last state visited by the par-

ent and each o�spring contains the entire parent path plus one more (unique)

transition. Backtracking strategies (breadth-�rst, depth-�rst, etc.) that can be

used in conjunction with BFS can also be simulated by dynamically adapting

parameters of GS and appropriately de�ning the creation of next generation.

In contrast, a best-�rst search cannot simulate a genetic search in general since

its \�tness function" is restricted to local heuristics based on the current state

and next possible transitions, and hence lacks the ability to simulate the global



evaluation of an entire chromosome. Intuitively, a best-�rst search is also more

\deterministic" than a genetic search since it is less general and does not include

randomized operations like crossovers and mutations, which improve robustness

with respect to sub-optimal �tness functions by helping the search avoid being

trapped in local maxima. Further studies are needed to determine which pa-

rameter values of a genetic search (including BFS) are best suited for analyzing

speci�c classes of programs and properties.

Heuristics for over and under approximating BDD representations when these

become too large or for �nding pseudo-optimal BDD-variable orderings are also

commonly used in symbolic veri�cation. Such heuristics tackle di�erent problems

related to model checking and are of di�erent nature than the ones used here.

The issue of changing parameter values during the run of a genetic algorithm

is an active area of research in genetic algorithms. A recent survey is given in [6].

The \1=5 rule" of Rechenberg [17] constitutes a classical adaptive method for

setting the mutation rate. This rule states that the ratio of mutations in which

the o�spring is �tter than the parent, to all mutations should be 1=5, hence if

the ratio is greater than 1=5, the mutation rate is increased, and if the ratio is

less than 1=5, the mutation rate is decreased.

The \Dynamic Parameter Encoding" [20] (DPE) algorithm provides the abil-

ity to encode real-valued parameters of arbitrary precision. DPE �rst searches

for optimal values of more signi�cant digits of the parameters. Next it �xes the

values discovered and progressively searches for lesser signi�cant digits. This way

the same �xed length chromosome encodes di�erent digits of parameters at dif-

ferent points during the algorithm execution. Notice that DPE requires a priori

knowledge of an upper bound on parameter values.

Our dynamic encoding of paths in a state space is novel to the best of our

knowledge; it does not require a priori knowledge of the maximum number of

enabled transitions in any given state of a state space.
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