
Int J Softw Tools Technol Transfer (2011) 13:537–551
DOI 10.1007/s10009-011-0203-0

VMCAI 2009

An abort-aware model of transactional programming

Kousha Etessami · Patrice Godefroid

Published online: 25 May 2011
© Springer-Verlag 2011

Abstract There has been a lot of recent research on
transaction-based concurrent programming, aimed at offer-
ing an easier concurrent programming paradigm that enables
programmers to better exploit the parallelism of modern
multi-processor machines, such as multi-core microproces-
sors. We introduce Transactional State Machines (TSMs) as
an abstract finite-data model of transactional shared-memory
concurrent programs. TSMs are a variant of concurrent
boolean programs (or concurrent extended recursive state
machines) augmented with additional constructs for speci-
fying potentially nested transactions. Namely, some proce-
dures (or code segments) can be marked as transactions and
are meant to be executed “atomically”, and there are also
explicit commit and abort operations for transactions. The
TSM model is non-blocking and allows interleaved execu-
tions where multiple processes can simultaneously be exe-
cuting inside transactions. It also allows nested transactions,
transactions which may never terminate, and transactions
which may be aborted explicitly, or aborted automatically
by the run-time environment due to memory conflicts. We
show that concurrent executions of TSMs satisfy a correct-
ness criterion closely related to serializability, which we call
stutter-serializability, with respect to shared memory. We ini-
tiate a study of model checking problems for TSMs. Model
checking arbitrary TSMs is easily seen to be undecidable, but
we show it is decidable in the following case: when recursion

The work of K. Etessami was done partly while visiting Microsoft
Research.

K. Etessami (B)
University of Edinburgh, Edinburgh, UK
e-mail: kousha@inf.ed.ac.uk; kousha@staffmail.ed.ac.uk

P. Godefroid
Microsoft Research, Redmond, USA
e-mail: pg@microsoft.com

is exclusively used inside transactions in all (but one) of the
processes, we show that model checking such TSMs against
all stutter-invariant ω-regular properties of shared memory
is decidable.

Keywords Transactional programming · Model checking ·
Serializability · Stutter-equivalence

1 Introduction

There has been much recent research on transaction-based
concurrent programming, aimed at offering an easier con-
current programming paradigm that enables programmers
to better exploit the parallelism of modern multi-processor
machines, such as multi-core microprocessors. Roughly
speaking, transactions are marked code segments that are
to be executed “atomically”. The goal of such research is to
use transactions as the main enabling construct for shared-
memory concurrent programming, replacing more conven-
tional but low-level constructs such as locks, which have
proven to be hard to use and highly error prone. High-level
transactional code could in principle then be compiled down
to machine code for the shared memory-machine, as long as
the machine provides certain needed low-level atomic opera-
tions (such as atomic compare-and-swap). Already, a number
of languages and libraries for transactions have been imple-
mented (see, e.g., Larus and Rajwar [16] which surveys many
implementations).

Much of this work, however, lacks precise formal seman-
tics specifying exactly what correctness guarantees are pro-
vided by the transactional framework. Indeed, there often
appears to be a tension between providing strong formal cor-
rectness guarantees and providing an implementation flex-
ible and efficient enough to be deemed useful, the latter
being usually the main concern of the transactional-memorys

123

538 K. Etessami, P. Godefroid

(TM) research community. When formal semantics is dis-
cussed, it is usually to offer an abstract characterization of
some specific low-level TM implementation details: such
semantics are distinguishing low-level semantics in the sense
that they typically distinguish some newly proposed imple-
mentation from all other previous implementations. Even if
transactional constructs were themselves given clear seman-
tics, there would remain the important task of verifying
specific properties of specific transactional programs.

The aim of this paper is to provide a state-machine based
formal model of transactional concurrent programs, and thus
to facilitate an abstract framework for reasoning about them.
In order for such a model to be useful, first, it must be close
enough to existing transactional paradigms so that, in princi-
ple, such models could be derived from actual transactional
programs via a process of abstraction akin to that for ordinary
programs. Second, the model should be simple enough to
enable (automated) reasoning about such programs. Third,
the model should be abstract enough to allow verification
of properties of transactional programs independently of any
specific TM implementation; the model should thus capture a
unifying high-level semantics formalizing the view of trans-
actional programmers (unlike most distinguishing low-level
semantics discussed in the TM research literature, which rep-
resent views of TM implementers).

So, what is a “transaction”? Syntactically, transactions
are marked code segments, e.g., demarcated by “atomic
{. . .}”, or, more generally, they are certain procedures which
are marked as transactional. (Simple examples of
transactional concurrent shared-memory programs are given
in Fig. 1. These examples will be discussed later.) But what
is their semantics? The most common unifying high-level
semantics is the so-called “single-lock semantics” (see, e.g.,
[16]), which says that during concurrent execution each exe-
cuted transaction should appear “as if” it is executing serially
without any interleaving of the operations of that transaction
with other transactions occurring on other processes. In other
words, it should appear “as if” executing each transaction
requires every process to acquire a single global transaction
lock and to release that lock only when the transaction has
completed. The problem with this informal semantics has to
do with precisely what is meant by “as if”. A semantics which
literally assumes that every concurrent execution proceeds
via a single lock, rules out any interleaving of transactions on
different processes. It also violates the intended non-blocking
nature of the transactional paradigm and ignores other fea-
tures, such as the fact that transactions may not terminate,
and that typically transactions can be aborted either explic-
itly by the program or automatically by the run-time system
due to memory conflicts.

Of course, designers of transactional frameworks would
object to this literal interpretation of “as if”. Rather, a
weaker semantics is intended, but phrasing a simple unifying

Fig. 1 Examples

high-level formal semantics which captures precisely what
is desired and leaves sufficient flexibility for an efficient
implementation is itself a non-trivial task. Standard correct-
ness notions such as serializability, which are used in data-
base concurrency control, are not directly applicable to this
setting without some modification. This is because in full-
fledged concurrent programming it is no longer the case that
every operation on memory is done via a transaction con-
sisting of a block of (necessarily terminating) straight-line
code. The “transactional program” running on each process
may consist of a mix of transactional and non-transactional
code, transactions may be nested, and moreover some trans-
actions (which are programs themselves) may never halt!
When adapting correctness criteria to this setting, one needs
to take careful account of all these subtle differences.

The key role that aborts play in transactional program-
ming should not be underestimated. Consider a transactional
program for reserving a seat on a flight. The program starts
a transaction, reads shared memory to see if seats are avail-
able, and if so, attempts to write in shared memory to reserve
a specific seat. If the flight is full or if there is a runtime mem-
ory conflict to reserve that specific seat, the transaction must
be aborted, and the transactional program must be notified
of this abort in order to take appropriate recovery actions. In
particular, always forcing each abort to trigger a retry is not a
viable option in practice (if the flight is full there is no point
retrying forever to book a seat on that flight). So there must

123

An abort-aware model of transactional programming 539

be some abort mechanism, either through explicit aborts or
automatic aborts (or both), which is not equivalent to a retry.
In other words, those aborts must be visible to the transac-
tional programmer and therefore they must be given a seman-
tics. As another example, consider transactional programs
operating under stringent timing constraints. The program-
mer may not wish to do arbitrarily many retries after an
automatic abort, depending on the current program state. We
emphasize these points because earlier feedback we have
received suggests that some people in the TM community
believe it is adequate to provide the transactional programmer
with a high-level semantic model (e.g., single-lock seman-
tics) which does not at all expose them to the possibility of
aborts. We believe this is an oversimplification that will only
lead to greater confusion for programmers.

In this paper, we propose Transactional State Machines
(TSMs) as an abstract finite-data model of transactional
shared-memory concurrent programs. The TSM model is
non-blocking and allows interleaved executions where mul-
tiple processes can simultaneously be executing inside trans-
actions. It also allows nested transactions and transactions
which may never terminate.

Using TSMs as a formalization vehicle, we propose a new
abort-aware unifying high-level semantics which extends the
traditional single-lock semantics by allowing the modeling of
transactions aborted either explicitly in the program or auto-
matically by the underlying TM implementation. Our abort-
aware semantics exposes both explicit and automatic aborts,
but it can easily be adjusted to treat automatic aborts as retries.

We define stutter-serializability, which we feel captures
in a clean and simple way a desired correctness criterion,
namely serializability with respect to committed transac-
tions, which is (trivially) enjoyed by the single-lock seman-
tics (since no transactions ever abort). We show that our
abort-aware TSM semantics preserves this property, while
also accommodating aborted transactions.

Finally, we also study model checking of TSMs. We show
that, although model checking for general TSMs is eas-
ily seen to be undecidable, it is decidable for an interest-
ing fragment. Namely, when recursion is exclusively used
inside transactions in all (but one) of the processes, we show
that model checking such TSMs against all stutter-invariant
ω-regular properties of shared memory is decidable. This
decidability result also holds for several other variants of the
abort-aware TSM semantics.

2 Overview of the abort-aware TSM semantics

Our abort-aware TSM semantics is based on two nat-
ural assumptions which are close in spirit to assump-
tions used in transactional memory systems. First, we
implicitly assume the availability of an atomic (hardware
or software implemented) multi-word compare-and-swap

operation, C AS(x̄, x̄ ′, ȳ, ȳ′), which compares the contents
of the vector of memory locations x̄ to the contents of the
vector of memory locations x̄ ′, and if they are the same, it
assigns the contents of the vector of memory locations ȳ′ to
the vector of memory locations ȳ. How such an atomic CAS
operation is implemented is irrelevant to the semantics. (It
can, for instance, be implemented in software using lower-
level constructs such as locks blocking other processes.) Sec-
ond, we assume a form of strong isolation (strong atomicity).
Specifically, there must be minimal atomic operation units
on all processes, such that these atomic units are indivisible
in a concurrent execution, meaning that a concurrent exe-
cution must consist precisely of some interleaved execution
of these atomic operations from each process. Thus “atom-
icity” of operations must hold at some level of granularity,
however small. Without such an assumption, it is impossible
to reason about asynchronous concurrent computation via an
interleaving semantics, which is what we wish to do.

Based on these two assumptions, we can now give an infor-
mal description of the abort-aware TSM semantics. TSMs are
concurrent boolean programs with procedures, except that
some procedure calls may be transactional (and such calls
may also be nested arbitrarily). Transactional calls are treated
differently at run time. After a transactional call is made, the
first time any part of shared memory is used in that transac-
tion, it is copied into a fixed local copy on the stack frame
for that transaction. A separate, mutable, copy (valuation) of
shared variables is also kept on the transactional stack frame.
All read/write accesses (after the first use) of shared mem-
ory inside the transaction are made to the mutable copy on
the stack, rather than to the universal copy. Each transac-
tion keeps track (on its stack frame) of those shared memory
variables that have been used or written during the execution
of the transaction. Finally, if and when the transaction ter-
minates, we use an atomic compare-and-swap operation to
check that the current values in (the used part of) the universal
copy of shared memory are exactly the same as their fixed
copy on the stack frame, and if so, we copy the new values
of written parts of shared memory from the mutable copy
on the stack frame to their universal copy. Otherwise, i.e.,
if the universal copy of used shared memory is inconsistent
with the fixed copy for that transaction, we have detected a
memory conflict and we abort that transaction.

The key point is this: if the compare-and-swap operation
at the end of a transaction succeeds and the transaction is
not aborted, then we can in fact “schedule” the entire activ-
ity of that transaction inside the “infinitesimal time slot”
during which the atomic compare-and-swap operation was
scheduled. In other words, there exists a serial schedule for
non-aborted transactions, which does not interleave the oper-
ations of distinct non-aborted transactions with each other.
This allows us to establish the stutter-serializability property
for TSMs.

123

540 K. Etessami, P. Godefroid

The above description is over-simplified because, e.g.,
TSMs also allow nested transactions and there are other tech-
nicalities, but it does describe some key aspects of the model.
We describe the full model in detail in Sect. 3. We show
that TSMs are stutter-serializable in Sect. 4. We study model
checking for TSMs in Sect. 5 and show that although model
checking for general TSMs is undecidable, there is an inter-
esting fragment for which it remains decidable.

Examples Figure 1 contains simple example transactional
programs (adapted from [11]). Transactions are syntactically
defined using the keyword atomic. With each example, we
describe the possible effect, in our TSM model, on the vari-
ables r1 (and r2) at the end of the example’s execution. As
mentioned, in the TSM model the execution of transactions
on multiple processes can interleave, and moreover the exe-
cution of transactional and non-transactional code can also
interleave. So, in the top example, what happens if the non-
transactional code executed by Process 2 executes before the
transaction on Process 1 has completed? In the TSM model,
Process 2 would read the value of the shared variable x from
a universal copy of shared memory which has not yet been
touched by the executing transaction on Process 1. So, if Pro-
cess 2 executes its non-transactional code before Process 1
has completed its transactional code, then r1 == 0 will
hold. On the other hand, if Process 1 completes its transac-
tion and commits successfully before Process 2 has executed
its code, then the final value 2 is written to the universal copy
of x , and thereafter Process 2 could read this copy, and thus
it is possible that r1 == 2 after this program has finished.
However, r1 == 1 is not possible. We note that r1 == 1
would be possible at the end under forms of weak atomicity,
e.g., if atomic was implemented as a synchronized block
in Java (see [11]). The middle example in Fig. 1 contains
an explicit abort. In the TSM model, all write operations on
shared variables performed by a transaction only have an
effect on (the universal copy of) shared memory if the trans-
action successfully commits. Otherwise, they have no effect
and are not visible to anyone after the transaction has been
aborted. Thus, r1 == 1 is not possible at the end of this
program. This is a form of deferred update as opposed to
direct update [16], where writes in an aborted transaction do
take effect, but the abort overwrites them with the original
values. In that case, such a write might be visible to non-
transactional code and r1 might have the value 1 at the end
of execution of this example. Note that our semantics for
TSMs does not take into account possible re-orderings that
may be performed by standard compilers or architectures.
For instance, compilers are usually allowed to re-order read
operations, such as those performed by Process 2 in the bot-
tom example in Fig. 1. Such reordering issues [11] are not
addressed in this paper. One could extend TSMs to incor-
porate notions of reordering in the model, but we feel that

would complicate the model too much and detract from our
main goal of having a clean abstract reference model which
brings to light the salient aspects of transactional concurrent
programs.

3 Definition of transactional state machines

In this section we define Transactional State Machines
(TSMs). The definition resembles that of (concurrent) bool-
ean programs and (concurrent) extended recursive state
machines (see, e.g., [2,3,5]), but with additional constructs
for transactions.

3.1 Some preliminaries

Our definition of TSMs will use some standard notions such
as valuations of variables, expressions, types, etc. We now
define these formally.

Let V denote a set of variables. Each variable, v ∈ V has
a type, T (v) ∈ T ypes. Each type, t ∈ T ypes, is associ-
ated with a domain, D(t) (which may in general be infinite,
but for analysis purposes we will assume it to be finite for
all variables). In particular, we allow a boolean type, Bool,
with domain D(Bool) = {T, F}. Let Expr denote a set of
expressions, which we assume are built up from variables,
using operators and combinators. In particular, all variables
are expressions. Each expression expr ∈ Expr also has a
type T (expr). For example, a boolean expression, bexpr ,
is any expression which has type T (bexpr) = Bool. We let
Bool Exp(V)denote the set of boolean expressions over vari-
ables V . The expressions of various types are typically given
by grammars which describe how well-formed expressions
are built up from variables of various types and using appro-
priate operators and constants. But we leave these details
unspecified. We shall call the variables that appear in an
expression its free variables. For a set of expressions Expr ′,
and a set of variables V ′, we let Expr ′(V ′) ⊆ Expr ′ denote
those expressions whose free variables are a subset of V ′. For
example, for an integer variable x , the following is a possi-
ble boolean expression: (x ≥ 5)∨ (x < −3). It has one free
integer variable, x .

A valuation (or interpretation) of V is a map, σ : v ∈
V �→ d ∈ D(T (v)). In other words, σ maps every variable
v ∈ V of type t to an element of the domain D(t). It is
assumed that every valuation σ of the free variables V ′ in a
set of expressions Expr(V ′) uniquely extends to a valuation
for the expressions, i.e., to a map σ : expr ∈ Expr(V ′) �→
d ∈ D(T (expr)).

An assignment over V has the form [x1, x2, . . . , xk] :=
[exp1, exp2, . . . , expk], where x j ∈ V are distinct variables,
and for all j, expj ∈ Expr(T (x j)). The semantics of assign-
ments are defined over pairs (σ1, σ2) of interpretations of V .

123

An abort-aware model of transactional programming 541

Given an assignment α of the above form, we use the nota-
tion σ2 := α(σ1) to denote that (1) σ2(x j) = σ1(exp j) for
all x j , and (2) σ1(y) = σ2(y) for all other variables y ∈
V \ {x1, x2, . . . , xk}. In other words, applying of assignment
α to valuation σ1 yields the new valuation σ2.

3.2 Syntax of TSMs

A Transactional State Machine A is a tuple

A = 〈S, σini t , (Pr)
n
r=1〉

where S is a set of shared variables, σini t is an initial
valuation of S, and P1, . . . , Pn , are processes. Each process
is given by

Pr = (Lr , γ
r
ini t , pr , (A

r
i)

kr
i=1)

where Lr is a finite set of (non-shared) thread-local1 vari-
ables for process r, γ r

init is an initial valuation of Lr , pr ∈
{1, . . . , kr } specifies the index of the initial (main) proce-
dure, Ar

pr
, for process r (where runs of that process begin).

The Ar
i ’s are the procedures for process r . We assume that

the first dr of these are ordinary and the remaining kr − dr

are transactional procedures. The two types of procedures
have a very similar syntax, with the slight difference that
transactional procedures have access to an additional abort
node, abi . Specifically, each procedure Ar

i is formally given
by 〈Nr

i , enr
i , exr

i , abr
i , δ

r
i 〉, whose parts we now describe (for

less cluttered notation, we omit the process superscript, r ,
when it is clear from the context):

– a finite set Ni of nodes (which are control locations in the
procedure)

– special nodes: eni , exi ∈ Ni , known, respectively, as the
entry node and exit node, and (only for transactional com-
ponents) also an abort node abi ∈ Ni .

– A set δi of edges, where an edge can be one of two forms:

– Internal edge A tuple (u, v, g, α). Here, u and v are
nodes in Ni , g ∈ BoolExp(S ∪ Lr) is a guard, given
by a boolean expression over variables from S ∪ Lr .
α ∈ Assign(S ∪ Lr) is a (possibly simultaneous)
assignment over these variables. We assume that u is
neither exi nor abi (because there are no edges out
of the exit or abort nodes), and that v is not the entry
node eni . Intuitively, the above edge defines a pos-
sible transition that can be applied if the guard g is
true, and if it is applied the simultaneous assignments
are applied to all variables (all done atomically), and

1 We note that these thread-local variables are used by all procedures
running on the process. For simplicity, we do not include procedure-
local variables, and we assume procedures take no parameter values and
pass no return values. This is done only for clarity, and we lose nothing
essential by making this simplification.

the local control node (i.e., program counter) changed
from u to v. The set of internal edges in procedure Ai

is denoted by δ I
i .

– Call edge A tuple (u, v, g, c). u and v are nodes in
Ni , g ∈ BoolExp(S∪Lr) is a guard, c ∈ {1, 2, . . . , k}
is the index of the procedure being called. Again, we
assume u �∈ {exi ∪ abi }, and v �= eni . Calls are either
transactional or ordinary, depending on whether the
component Ac that is called is transactional or not
(i.e., whether c > dr or c ≤ dr). Intuitively, a call
edge defines a possible transition that can be taken
when its guard g is true, and the transition involved
calling procedure Ac (which of course involves appro-
priate call stack manipulation, as we will see). Upon
returning (if at all) from the call to Ac, control resumes
at control node v. The set of call edges in component
i is denoted by δC

i .

3.3 Abort-aware semantics of TSMs: intuition

A full formal semantics of TSMs is given in the next sub-
section. Here, we give an informal description to facilitate
intuition and describe salient features. TSMs model concur-
rent shared memory imperative procedural programs with
bounded data and transactions. A configuration of an TSM
consists of a call stack for each of the r processes, a cur-
rent node (the program counter) for each process, as well
as a universal valuation (or universal copy), U , of shared
variables. Crucially, during execution the “view” of shared
variables may be different for different processes that are
inside transactions. In particular, different processes, when
executing inside transactions, will have their own local cop-
ies (valuations) of shared variables on their call stack, and
will evaluate and manipulate those valuations in the middle
of transactions, rather than the single universal copy.

A transaction keeps track (on the stack) of what shared
variables have been used and written. If a shared variable is
written by one of the processes inside the scope of one of the
transactions, the universal copy U is not modified. Instead,
an in-scope mutable copy of that shared variable is modified.
The mutable copy resides on the stack frame of the innermost
transaction on the call stack for that process. The first time a
shared variable is read (i.e., used) inside a transaction, unless
it was already written to in the transaction, its value is copied
from U to a fixed local copy for that transaction and also to
a separate mutable local copy, both on the stack. Thereafter,
both reads and writes inside the transaction will be to this
mutable copy.

At the end of a transaction, the written values will either
be committed or aborted. The transaction is automatically
aborted if a shared memory conflict has arisen, which is
checked using an atomic compare-and-swap operation as
follows: We compare the values of variables in the fixed

123

542 K. Etessami, P. Godefroid

copy of shared memory with the values of those same shared
variables in the universal copy U , and if these are all equal,
then for the written variables, we copy their valuations in the
mutable copy on the stack frame to the universal copy U .
If, on the other hand, the compare-and-swap fails, i.e., the
compared values are not all equal, then we abort the transac-
tion, discard any updates to shared variables, pop the trans-
actional stack frame and restore the calling context. (How
this all works is described in detail in the next subsection.)

If we have nested transactions, and values are committed
inside an inner nested transaction, then their effect will only
be immediately visible in the next outer nested transaction
(i.e., this follows the semantics of closed nested transactions),
and the committed values will only be placed in the muta-
ble copy of shared variables of the next outer transaction.
Otherwise, if the inner transaction aborts, then its effect on
shared variables is discarded before control returns to the
calling context.

We highlight here some other salient features of the
semantics which will be pertinent in other discussions:

– The universal valuation U is only updated upon a suc-
cessful commit of outermost (non-nested) transactions,
not of inner (nested) transactions.

– There are two distinct ways in which an abort can occur.
One is an explicit abort, which occurs if a transaction
reaches a designated abort node. The other is an automatic
abort, carried out by the memory system due to conflicts
with universal memory. (For nested transactions, the only
possible abort is an explicit one, because no conflict is
possible.)

3.4 Formal semantics of TSMs

We now provide the fully detailed formal semantics of TSMs.
A configuration (i.e., state), ψ , of a TSM, A, is a tuple ψ =
〈U , (stackj, u j , γ j)

n
j=1〉, where U , called the universal copy

of shared memory, is a valuation of the set S of shared vari-
ables. For each j, stackj is a stack, i.e., a (possibly empty) list
of “stack frames”. The contents of stack frames is described
in detail later. u j is a node in some procedure of process
j , which denotes the current control location (i.e., the pro-
gram counter). We shall call this the current node of process
j in configuration ψ . γ j is a valuation of the thread-local
variables L j on process j . The initial configuration of A is
ψ0 = 〈σini t , (∅, enr

pr
, γ r

ini t)
n
r=1〉. This starts each process at

the entry point, enr
pr

of its initial (“main”) procedure, Ar
pr

,
with an empty call stack, and initializes the (universal) values
of shared variables, and initializes the thread-local variables
of each process. We shall now describe the global transition
relation of a TSM by describing the effect of each kind of
possible transition on the current configuration, including the
stacks. When the TSM is in a given configuration (i.e., at a

given state), a number of possible transitions can be enabled.
In particular, a transition can be enabled because the guard,
g, of some (internal or call) edge, e, of the TSM holds true
in that configuration. We can categorize transitions basically
into various different types: Calls, Internal transitions, (suc-
cessful) Returns (which are Commits, in case the procedure
is transactional), and (explicit or automatic) Aborts. We will
consider each possible type of transition separately.

In order to simplify our notation when describing these,
we have to make a natural adjustment to the interpretation
of guards g and assignments α. Namely, guards (and assign-
ments) define functions of valuations of variables, but which
copies of those variables? Recall that there are potentially
multiple copies of the same shared variable, x , including the
universal copy as well as fixed/mutable copies on different
stack frames. Different copies will be in-scope at different
times during the execution. A guard g(x̄) is only a function of
the in-scope valuation of relevant variables, x̄ , and likewise
an action α evaluates expressions over the in-scope copies of
variables and assigns values to in-scope copies of variables.
What copies of variables are in scope depends on the stack,
as will become clear from the descriptions we shall give of
different transitions.

Therefore, for simplifying notation, when the guard, g, of
an (internal or call) edge on process j is evaluated, we write g
as a boolean-valued function g(U , stack j , γ j) of both the
stack at process j and the current universal valuation, U of
shared variables, as well as the current valuation γ j of thread-
local variables. Likewise, we abuse notation somewhat and
write the effect of an assignment α as (U ′, stack′

j , γ
′
j) :=

α(U , stack j , γ j). Here, the effect is again a mapping from
the in-scope valuation of variables to a new in-scope valua-
tion. The primed tuple (U ′, stack′

j , γ
′
j) on the left-hand side

reflects the effect that this mapping has on (U , stack j , γ j).
We now consider, case by case, every possible type of

transition. In every configuration, the stack, stack j , of each
process j , is a (possibly empty) sequence

SF1, SF2, . . . , SFm

of stack frames. The stack grows from left to right, so SFm

is the top-most stack frame.

– [Call]: If the current configuration is

ψ = 〈U , (stackj, u j , γ j)
n
j=1〉

and for some process j , which is currently at node
u j , there exists a call edge e = (u j , v, g, c), and
the guard g holds true in the current configuration ψ ,
i.e., g(U , stack j , γ j) = True, then an associated call
transition is enabled in the current configuration. Assum-
ing that stack j = SF1, SF2, . . . , SFm , this transi-
tion will result in a new configuration ψ ′, in which a

123

An abort-aware model of transactional programming 543

new stack frame SFm+1 will be pushed on to stack j .
Furthermore, in ψ ′ the new node on process j shall be
updated to the entry node en j

c of component A j
c (i.e.,

the entry of the procedure that is called). The new stack
frame, SFm+1, will be as follows: If the procedure Ac

called by e is transactional, then SFm+1 := (em+1,

T Pm + 1,Fixedm + 1,Mutm + 1,Usedm+1,Writm+1);
otherwise, if it is non-transactional (ordinary), then
SFm+1 := (em+1, T Pm+1). The contents of these tuples
are as follows:

– em+1 = e = (u j , v, g, c), is the call edge itself, which
is stored on the stack frame for being able to restore
the calling context upon returning or aborting.

– T Pm+1 is a transaction pointer, which points to the
most recent transactional stack frame, if one exists,
and is otherwise NULL. Specifically, if e is a trans-
actional call, i.e., if component A j

c is a transactional
component, then T Pm+1 := m + 1 (in other words,
the transaction pointer points to its own stack frame
as the latest transactional frame). If e is not a transac-
tional call, then if the stack stack j is not empty, then
T Pm+1 := T Pm , and if the call stack is empty then
T Pm := NU L L .2

Furthermore, if the call e is a transactional call, i.e., if
T Pm+1 = m + 1, then the stack frame SFm+1 addition-
ally contains the following things:

– a set Fixedm+1 of pairs of the form (x, w), where
x is shared variable name and w is a value in the
domain of x, D(T (x)). The setFixedm+1 will hold a
copy of those variables x of universal shared memory
whose values are used during the life of the outer-most
transaction on the stack. This is the transaction which
has an associated stack frame SFd which is trans-
actional and such that there does not exist a smaller
d ′ < d such that SFd ′ is transactional. The valuation
in Fixedm+1 will hold the values of these shared

2 Technically, a transaction pointer, T Pm+1, is potentially an
unbounded piece of data (the size of the stack is not bounded), and
we cannot cope with unbounded sized data for model checking. How-
ever, these transaction pointers are only a device we use to describe in
a convenient way how implementations of this transactional paradigm
would proceed without too much overhead. We can easily get seman-
tically equivalent functionality as that given by TPs without requiring
unbounded sized stack frames, albeit in a more cumbersome and less
elegant way. Namely, we can copy all data from the most recent trans-
actional stack frame into each non-transactional stack frame higher in
the call stack (but prior to any higher transactional frame). This allows
us to replace references using the transaction pointer by references to
the current copy of the closest transaction frame. Each stack frame then
contains only a bounded amount of data, regardless of the height of the
stack. When a stack frame is popped this copy is used to update the
copy in the prior stack frame. Clearly, it is also semantically equivalent.
But this is more cumbersome, especially notationally, so we opt for the
more clear and convenient presentation using transaction pointers.

variables at precisely the time when they were first
used during this outer-most transaction.
When the stack frame SFm+1 is created, we ini-
tialize Fixedm+1 as follows: if T Pm �= NU L L ,
then Fixedm+1 := FixedT Pm . Otherwise, (i.e., if
T Pm = NU L L , i.e., stack j is empty and m = 0)
then Fixedm+1 := ∅.

– a separate set Mutm+1, which contains pairs (x, w),
where x is a shared variable, and w ∈ D(T (x)) is
a valuation of x . This mutable set will contain such
pairs for the set of shared variables that have been
used/written up to now during the life of the outer-
most active transaction. Again, when the stack frame
SFm+1 is created, we initialize Mutm+1 just as with
Fixedm+1: if T Pm �= NU L L , then Mutm+1 :=
MutT Pm . Otherwise, (i.e., if T Pm = NU L L or
stack j is empty and thus m = 0) Mutm+1 := ∅.

– a set Usedm+1 containing the names of shared vari-
ables that have been used so far, again during the life
of the outer-most active transaction. Usedm+1 is ini-
tialized in the same way as Fixedm+1 and Mutm+1.

– a set Writm+1 containing the names of shared vari-
ables that have been written so far, again, during
the life of the outer-most active transaction. Again,
Writm+1 is initialized in the same way.

– [Internal Transition]: Internal transitions can occur
when, in configuration ψ = 〈U , (stackj, u j)

n
j=1〉, some

process j is at a control node u j , and there exists
some internal edge e = (u j , v, g, α), such that guard g
holds true in configuration ψ , in other words,
g(U , stack j , γ j) = True. The transition, after evaluat-
ing the guard (and seeing that it holds), applies the assign-
ment α, (U ′, stack′

j , γ
′
j) := α(U , stack j , γ j). This of

course, is done by first evaluating the relevant expressions
on the in-scope copy of variables in (U , stack j , γ j) and
then assigning the values simultaneously to obtain the
updated left-hand side (U ′, stack′

j , γ
′
j). We then move to

a new configuration where the current node on process j
is set to v.
Crucial assumption: it is crucially assumed that the com-
bined effect of both first evaluating the guard g and
then carrying out the assignment α occurs atomically,
meaning in particular that for an assignment of the form
[x1, . . . , xd] := [expr1, . . . , exprd], all assignments are
made simultaneously and atomically. This is basically the
strong isolation assumption.3

3 It may appear too strong to assume that the sequence of both guard
evaluation, and assignment, occur atomically. This is not, strictly speak-
ing, necessary. We can easily rephrase the TSM model definition so that
internal edges either have trivial guards which are always true, or trivial
assignments which do nothing, without changing the expressive power
of the TSM model. (For this, note that multiple edges, even on a single

123

544 K. Etessami, P. Godefroid

When a variable, x , is read or updated by a guard or
an assignment, if the variable is thread-local, then we
read/update its value in the thread-local valuation γ j .
When the variable x is a shared variable, there are a num-
ber of cases to consider, in order to decide what is the
in-scope copy which is read/updated.

– if the transaction pointer of the top frame T Pm =
NU L L , i.e., we are not inside a transaction on pro-
cess j , then we simply read, or write to, the actual
universal copy of the shared variable x . In other words,
we modify the universal valuation U .

– Otherwise, in the case when T Pm = k �= NU L L ,
i.e., we are inside a transaction on process j .
In this case, if the shared variable x is read/used by
the guard or assignment (i.e., occurs in one of the
right-hand-side expressions), then
• if x is not already on the Writk list of the current

transaction frame (i.e., the stack frame SFk pointed
to by T Pm = k), read its current value w from the
universal copy, U , and add (x, w) to the set Mutk

of the current transaction frame. Furthermore, we
also add (x, w) to the Fixedk set of the current
transaction frame. Finally, we add the variable x
to Usedk .

• if x is already in the Writk list, then simply look
up and use its current value in Mutk . (A single val-
uation (x, w) will already be in Mutk , because x
was already written to during the life of this trans-
action frame.)

If a variable x is updated with a value w, i.e., x it
is an assignment assigns x some expression which
evaluates to w, then
• if x is not already in Writk , add it to Writk .
• update the value of x in Mutk . In other words, put

the pair (x, w) to Mutk , overwriting any earlier
pair (x, w′) in Mutk if such a pair exists.

– [Return]: Such a transition is enabled if in the current
configuration, on some process j , the current node is an
exit node, i.e., u j = ex j

c . There are two cases to consider:

– Return from an ordinary (non-transactional) proce-
dure In this case the topmost stack frame, SFm on
stack j is not a transactional frame, i.e., T Pm �= m. In
this case, for effecting this transition, we pop the stack
frame SFm , and we update the current node on pro-
cess j to the target v of the call edge em = (u, v, g, c)
which is also available in SFm .

Footnote 3 continued
process, may be enabled at any given configuration. In other words, we
have non-determinism available in the TSM model even at the level of
a single process.)

– Return (either committed or automatically aborted)
from a transactional procedure In this case, T Pm =m.
If the current transaction frame is not the only
transaction frame remaining (meaning T Pm−1 = d �=
NU L L), then we treat this exit similarly to a non-
transactional procedure exit, except that we move the
values of the fixed and mutable valuations of shared
variables to their fixed and mutable copy in the next
outer transaction frame (overwriting older values if
necessary), and we do likewise with the used/written
sets. In other words, given that T Pm−1 = d, we assign
Fixedd := Fixedm,Mutd := Mutm,Usedd :=
Usedm , and Writd := Writm .4

If this transaction frame is the only remaining one on
the call stack (i.e., T Pm−1 = NU L L), we perform
the following, with the aid of an atomic compare-
and-swap operation: compare values in the fixed copy
Fixedm of shared memory variables stored on the
stack frame with values in the universal copy of those
variables stored in U . If the CAS succeeds, i.e., they
are all equal, then the CAS overwrites the universal
copy of those shared memory variables in U with the
new values of those variables stored in the mutable
copy Mutm on the stack frame; then we pop the stack
frame SFm , and use the call edge em = (u, v, g, c)
which is stored on SFm , to restore the context and
assign the new current node v for process j . If, on the
other hand, the CAS fails, i.e., values in the universal
copy and fixed copy on the stack of shared memory
are not equal, then do exactly the same as done by an
explicit abort operation, which is specified next.

– [Abort]: An abort transition can occur, either because an
explicit abort node is encountered and terminates a trans-
action, meaning in the current configuration some process
j is at an abort node, i.e., u j = ab j

c , or it can also occur
because (as described at the end of the previous [Return]
case), the compare-and-swap at the end of a transaction
failed, resulting in a memory conflict, in which case the
run-time system will do an automatic abort.
In both cases, we do the following: If the abort is being
carried out on process j , and the top stack frame on stack j

is SFm (this is necessarily a transactional frame), then we

4 Note that what this means is that there is never an automatic run-time
abort of a nested transaction. There are only explicit aborts of nested
transactions. Such aborts can simply be viewed as exception handling
mechanisms, which allow the effect of the nested transaction on shared
memory to be “erased”. However, it should be noted that, inevitably, the
nested transaction can nevertheless have “side effects” even if aborted.
In particular, the nested transaction may have updated thread-local vari-
ables. Such side effects can easily be used to program, e.g., an explicit
retry mechanism for transactions in this model, so separate constructs
for retry are not needed.

123

An abort-aware model of transactional programming 545

pop SFm off stack j , and we restore the new node (just
as in the “Return” case).
We also do the following important thing: if this was a
nested transaction, meaning that T Pm−1 = d �= NU L L ,
then we must updateFixedd ,Mutd , andUsedd with the
new values of shared variables that were read for the first
time (in the context of transaction frame SFd) inside this
nested transaction SFm . We do this update as follows:
For every pair (x, w) ∈ Fixedm such that there does
not exist any valuation (x, w′) of variable x in Fixedd ,
add (x, w) to Fixedd , and likewise add (x, w) to Mutd

and add x to Usedd . This updating is done so that these
shared variables, whose universal copy has already been
read once inside the context of the transaction frame SFd

(in fact inside SFm) will not be read again.

This completes the description of the formal seman-
tics of TSMs. As usual, the set of configurations, Q, and
the transition relation, �, of a TSM, A, together define
an ordinary (and in general infinite-state) transition system
TA = (Q,�). A run of A is a (finite or infinite) sequence

ρ = ρ0
e0→ ρ1

e1→ ρ2 . . ., where ψ0 is the initial configuration

and for all i, ρi ∈ Q and (ρi , ei , ρi+1) ∈ �, where the event
ei is a specific edge, return, commit, or abort, operation that
is enabled in state ρi and such that executing it yields state
ρi+1. For a run ρ, we will use ρ(i, j), i ≤ j , to denote the
segment ρi . . . ρ j of the run. We refer to segments ρ(0, j) as
initial segments of ρ.

4 Correctness: stutter-serializability

4.1 Stutter-invariance

We first recall basic definitions about stutter-invariance.
Stutter-invariance was first considered in [15]. For a (finite
or infinite) word w = w0w1w2 . . . over an alphabet
,
with wi ∈
 for all i , and a mapping f : N �→ N

+,
from natural numbers to positive natural numbers, let w f .=
w

f (0)
0 w

f (1)
1 w

f (2)
2 . . ., where, as usual, wn

i denotes the con-
catenation of n copies of the letterwi . Recall that a language
L ⊆
∞ =
ω ∪
∗ over an alphabet
 is stutter-invari-
ant iff for all (finite or infinite) words w = w0w1w2 . . ., and
for all mappings, f : N �→ N

+, w ∈ L iff w f ∈ L . A
word w ∈
∞ is called stutter-free if for all i ∈ N, either
wi �= wi+1 or wi = w j for all j ≥ i . We say that two words
w and w′ ∈
∞, over
 are stutter-equivalent, if there is
some stutter-free word w′′ and some functions f : N �→ N

+
and f ′ : N �→ N

+, such that w = (w′′) f and w′ = (w′′) f ′
.

This is indeed an equivalence relation, because for every
word w ∈
∞ there is a unique stutter-free word w′′, such
that there is a function f : N �→ N

+ with w = (w′′) f .

Equivalently,w andw′ are stutter-equivalent if they agree on
all stutter-invariant properties, i.e., for any stutter-invariant
language L they are either both contained in L or both not.
LTL formulas without the next operator express precisely all
stutter-invariant LTL languages, and there are similarly easy
syntactic restrictions of Büchi automata for describing all
stutter-invariant ω-regular properties (see [10,19]).

4.2 Stutter-serializability

In this section we discuss a correctness property that
TSMs possess. Informally, the correctness property relates
to “atomicity” and serializability of transactions, but such
notions have to be defined carefully with respect to the model.
What we wish to establish is the following fact: if there
exists any run π of a TSM which witnesses a (possibly
infinite) sequence of changes to the universal copy (valua-
tion) of memory, there must also exist a run π ′ which wit-
nesses exactly the same sequence of changes to the universal
copy, but such that all transactions which start and which
do not abort and do terminate in π ′ must execute entirely
serially without any interleaving of steps on other processes
in the execution of the terminating transaction. Formally,
this requires us to consider stutter-invariant temporal prop-
erties over atomic predicates that depend only on the univer-
sal valuation of shared variables in a state of the TSM, and
stutter-equivalence.

We say a run ρ of a TSM contains only serialized suc-
cessful transactions if every transaction on any process in
the run ρ that starts and successfully commits, executes seri-
ally without any interleaving of steps by other processes. In
other words, the entire execution of each successful transac-
tion occupies some contiguous sequence ρiρi+1 . . . ρi+m in
the run. For a run ρ of A, let ρ[U] denote a new word, over
the alphabet of shared variable valuations, such that ρ[U] is
obtained from ρ by retaining only the universal valuation of
shared variables at every position of the run (i.e., replacing
each state ρ by the universal valuation in that state). We say
that a TSM, A, is stutter-serializable if for every run ρ of A,
there exists a (possibly different) run ρ′ of A such that ρ[U]
is stutter-equivalent to ρ′[U], and such that ρ′ contains only
serialized successful transactions.

Theorem 1 All TSMs are stutter-serializable.

Proof First, we sketch the basic intuition. If at the end of
a non-nested transaction which is about to attempt to com-
mit, the atomic compare-and-swap operation succeeds, then
at exactly the point in “time” when the compare-and-swap
operation executed, the values in the universal copy of shared
variables used inside the transaction are exactly the same
as the values that were read from the universal copy the
first time these variables were encountered in the transac-
tion. Each shared variable is read from the universal copy

123

546 K. Etessami, P. Godefroid

at most once inside any transaction. All subsequent acces-
ses to shared variables are to the local mutable copy on the
transactional stack frame. Consequently, since the values of
shared variables are the only input to the transaction from its
“environment” (i.e., from other processes), the entire execu-
tion of that transaction can be “delayed” and “rescheduled” in
the same “infinitesimal time slot” just before the atomic com-
pare-and-swap operation occurred, and the resulting effect
of the transaction on the universal copy of memory after it
commits would be identical (because it would have identical
input). The only visible effect on the universal copy of mem-
ory during the run that this rescheduling has is that of adding
or removing “stuttering” steps, because the rescheduled steps
do not change values in the universal copy of shared memory.

We now give the formal proof, which just formalizes
the above intuition. Given any run ρ of a TSM, A, let
ρ(0, j) = ρ0 . . . ρ j be an initial segment of ρ such that
ρ j is the state just after a transaction on some process
k terminates successfully and commits. Let the transitions

ρi1

ei1→ ρi1+1, ρi2

ei1→ ρi2+1, . . . , ρim

ei1→ ρim+1 = ρ j be pre-

cisely those transitions of the run associated with the exe-
cution of a particular transaction on process k from start to
finish (i.e., from just before the transaction call to just after
its successful commit). Note that the only transition among
these that can possibly change the universal valuation is the

final (commit) transition ρim

ei1→ ρim+1.

We now inductively construct a new run ρ′, by induc-
tion on the length j of such initial segments of ρ whose last
state is the state just after a successful commit of a trans-
action. Given such an initial segment, we delay the events
ei1 , . . . , eim−1 and reschedule them just before eim . In other
words, the new event sequence will look as follows:

e1e2 . . . ei1−1ei1+1ei1+2 . . . ei2−1ei2+1

. eim−1−1eim−1+1 . . . eim−1ei1 ei2 . . . eim .

We claim that these events remain enabled after this
reordering and generate a valid initial segment of a run,
ρ′(0, j) = ρ′

0 . . . ρ
′
j , and that furthermore ρ′(0, j)[U] is

stutter-equivalent to ρ(0, j)[U], and finally that the last state
ρ′

j is exactly equal to ρ j . The reasons these claims hold were
basically described in the sketch proof in the body of the
paper: since the only communication between processes is
through the universal copy of shared memory, no event on
processes other than k is disabled because of the delay of the
non-committing events inside this transaction on process k,
and furthermore, all the events in the transaction will remain
enabled after the delay because, since the compare-and-swap
of the commit operation em−1 succeeded in the original run,
the universal values of all shared variables remain the same as
they were when each read inside the transaction took place.
Note that stuttering of the universal values can be introduced
(or removed) by this reordering of events, but the final states

are identical, because every process’ view of the initial seg-
ment ρ′(0, j) is exactly the same as ρ(0, j). By induction on
the length of initial segment of ρ which end in a successful
commit, we can convert longer and longer initial segments,
and thus the entire run ρ, into a new run ρ′ such that ρ′[U] is
stutter-equivalent to ρ[U] and such that ρ′ contains only seri-
alized successful transactions. (Note that there is no danger
that an event will be indefinitely delayed by this reordering,
because the only events that are delayed in the reordering are
non-commit events of a transaction which commits success-
fully, and they are only delayed a finite number of steps until
just prior to the successful commit.) ��

Note that TSMs can reach new states due to transactions
being aborted by the run-time environment due to memory
conflicts. In other words, even aborted transactions have side
effects. For instance, a TSM can use a thread-local variable
to test/detect that its last (possibly nested) transaction was
aborted, and take appropriate measures accordingly, includ-
ing reaching new states that are reachable only following such
an abort. This fact does not contradict the above correctness
assertion about TSMs, because the correctness assertion does
not rule out the possibility that in order for a certain feasible
sequence of changes to universal memory U to be realized
some transactions might necessarily have to abort during the
run. In general, it does not seem possible to devise a reason-
able model of imperative-style transactional programs where
transactions that are aborted will have no side effects. Any-
way, there are good reasons not to want this. One useful
consequence of side effects is that one can easily imple-
ment a “retry” mechanism in TSMs which repeatedly tries
to execute the transaction until it succeeds. Some transac-
tional memory implementations offer “retry” as a separate
construct (see [16]).

5 Model checking

It can be easily observed (via arguments similar to, e.g., [21])
that model checking for general TSMs, even with 2 processes,
is at least as hard as checking whether the intersection of two
context-free languages is empty. We thus have

Proposition 1 Model checking arbitrary TSMs, even those
with 2 processes, even against stutter-invariant LTL proper-
ties of shared memory is undecidable.

On the other hand, we show next that there is an interesting
class of TSMs for which model checking remains decidable.
Let the class of top-transactional TSMs be those TSMs with
the property that the initial (main) procedure for every pro-
cess makes only transactional calls (but inside transactions
we can execute arbitrary recursive procedures). Let us call
a TSM almost-top-transactional if one process is entirely

123

An abort-aware model of transactional programming 547

unrestricted, but all other processes must have main proce-
dures which make only transactional calls, just as in the prior
definition.

Theorem 2 The model checking problem for almost-top-
transactional TSMs against all stutter-invariant linear time
(LTL or ω-regular) properties of (universal) shared memory
is decidable.

Proof Given a TSM, A, our first task will be to compute
the following information: For each process r (other than the
one possible process, r ′, which does not have the property
that all calls in its main procedure are transactional) we will
compute, for every transactional procedure, Ac on process r ,
certain generalized summary paths. A generalized summary
path (GSP) for a transactional procedure Ac is a tuple

G = (γstart , R, γ f inish, status, σ)

where γstart and γ f inish are valuations of the thread-local
variables Lc; status is a flag that can have either the value
commit or abort; σ is a partial valuation of shared vari-
ables, meaning it is a set of pair (x, w)where x is a shared var-
iable andw is a value in x’s domain (and there is at most one
such pair in σ for every shared variable x); R = R1, . . . , Rd

is a sequence of distinct partial valuations of shared variables,
where furthermore, different Ri ’s do not evaluate the same
variable. In other words, for each shared variable x , there is
at most one pair of the form (x, w) in the entire sequence R.
Such a sequence R yields a partial valuation σR = ∪d

i=1 Ri

(and we shall need to refer both to the sequence R and to σR).
We now define what it means for a GSP, G, to be valid

for the transactional procedure Ac. Informally, this means
that G summarizes one possible terminating behavior of
the transaction Ac if it is run in sequential isolation (with
no other process running). More formally, we call a GSP,
G = (γstart , R, γ f inish, status, σ), valid for the transac-
tional procedure Ac, if it satisfies the following property:
Suppose a call to Ac is executed in sequential isolation (i.e.,
with no other process running). Suppose, furthermore that in
the starting state ψ0 in which this call is made γstart is the
valuation of thread-local variables Lr on process r and that
the universal copy of shared memory U is consistent with the
partial valuation σR (in other words it agrees with σR on all
variables evaluated in σR). Then there exists some sequential
run of Ac from such a start state ψ0 where during this run:

1. The sequence of reads of the universal copy of shared
memory variables executed during the run corresponds
precisely to the d partial valuations R1, . . . , Rd . For
example, if R3 = {(x1, w1), (x2, w2)}, then the third
time during the run in which the universal copy of shared
memory is accessed (i.e., third time when shared vari-
ables are used that have not been used or written before)

requires a simultaneous read5 of shared variables x1

and x2 from the universal copy U , and clearly the values
read will be w1 and w2, because U is by definition con-
sistent with σR . (Note that U does not change in the mid-
dle of the sequential execution of Ac, because it is run
in sequential isolation, with no other process running.)

2. After these sequences of reads, the run of Ac terminates
in a state where the valuation of local variables is γ f inish

and either commits or aborts, consistent with the value
of status.

3. Moreover, if it does commit, then the partial valuation
of shared variables that it writes to the universal copy U
(via compare-and-swap) at the commit point is σ . (And
otherwise, σ is by default the empty valuation.)

Let Gc denote the set of all valid GSPs for transactional
procedure Ac. It is clear that for any transactional procedure,
every GSP G is a finite piece of data and furthermore that
there are only finitely many GSPs. This is because the uni-
versal valuation of every shared variable can be read at most
once during the life of the transaction, and of course there
are only finitely many variables, and each variable can have
only finitely many distinct values.

Lemma 1 The set Gc is computable for every transactional
procedure Ac.

Proof Recall that there are only finitely many possible GSPs.
Moreover, even though a transaction may internally be a
recursive procedure, since we are considering sequential exe-
cutions of the transaction in isolation from all other processes
we can treat the transaction just like a standard Recursive
State Machine (RSM) (or, equivalently, Pushdown System)
and use the well-known algorithms for model checking them
(see [2]) in order to determine whether an execution corre-
sponding to each given generalized summary path is possible
(i.e., valid) or not, as follows:

Specifically, for a given GSP, G, we can use an LTL
property to describe the possible sequence of (simultaneous)
atomic reads corresponding to G. Intuitively, we can use an
LTL formula with nested untils to describe a sequence like
the following: “the first shared variable that is read (atom-
ically) is xi1 with a value read of wi1 , and thereafter there
are no reads of unused shared variables until xi2 and xi3 are
read simultaneously, with values wi2 and wi3 , and thereafter
. . .”. Furthermore, the LTL formula corresponding to G can
also describe the values according to G: of thread-local vari-
ables at the beginning and end of the execution, the values of
shared variables that are committed (if any) to U at the end,
and whether the transaction did indeed commit or abort.

5 Again, recall that the reason there may be simultaneous reads from
universal shared variables is an artifact of the strong isolation assump-
tion combined with our formulation of (potentially simultaneous)
assignment statements.

123

548 K. Etessami, P. Godefroid

Model checking such an LTL formula for G against the
Recursive State Machine corresponding to Ac will decide
whether the given GPS, G, is valid or not. We can do this
check separately for every possible GPS, to compute the set
Gc of valid ones. We can do so because there are only finitely
many GSPs. (There are in fact more efficient ways to com-
pute the valid GSPs in an aggregate way, using standard tech-
niques from program analysis, but we do not need these for
the result.) ��

We shall compute the set Gc for every transactional pro-
cedure Ac and use this information to construct a finite-state
summary state-machine Br , for every process r , which sum-
marized that process’s behavior. We will also describe the
behavior of the single unrestricted process r ′ using a Recur-
sive State Machine (RSM), B ′

r ′ . We shall then use these Br ’s
and B ′

r ′ to construct a new RSM B = (⊗r �=r ′ Br) ⊗ B ′
r ′

which is an appropriate asynchronous product of all the Br ’s
and B ′

r ′ . The RSM B essentially summarizes (up to stutter-
equivalence) the behavior of the entire TSM with respect to
shared memory.

We now describe the construction of Br ’s, B ′
r ′ , and B.

First we describe the construction of the finite summary
state-machine, Br , for process r . A state of Br contains a
valuation of local memory, a partial valuation of universal
shared memory (the reason why it is partial will be made clear
shortly), and a control location (control node) which corre-
sponds either to a control node of the main procedure of pro-
cess r , or to some auxiliary control nodes which are needed as
intermediate states in the middle of mimicking the execution
of generalized summary paths. Also, the states having such
auxiliary control nodes will additionally need to keep an extra
fixed partial valuation of shared memory, as described below.

Intuitively, the state machine Br mimics the execution of
the “main” procedure, Ar

pr
of process r , except recall that

the main procedure can only make transactional calls. Sup-
pose an enabled call e = (u, v, g, c) to a transaction, Ac,
is encountered, in a state where the thread-local valuation
and (partial) universal valuations of variables are γ and σ ′.6
Rather than actually executing the call e and maintaining
a call stack, Br non-deterministically “guesses” some valid
GSP, G = (γstart , R, γ f inish, status, σ) ∈ Gc such that
γstart = γ . (If no such valid GSP exists, then that means
no halting behavior of this transaction is possible if it is exe-
cuted starting in the memory “environment”given by γ . In
such a case, Br effectively “hangs” as a process.) If such a
GSP, G does exist, and if Br has guessed G non-determin-
istically, it then goes through a sequence of d intermediate
auxiliary states, which reflect the sequence of d (potentially
simultaneous) reads R = R1, . . . , Rd that occur in G, and

6 Such a call is enabled if we are at control node u and the guard g is
satisfied by the thread-local valuation γ together with any full shared
valuation σ ∗ which extends σ ′, i.e., such that σ ′ ⊆ σ ∗.

the partial valuations of shared memory that they define.
The intermediate auxiliary state associated with read Ri has
partial valuation Ri of shared memory. These intermediate
states also retain another fixed partial valuation. Namely, the
j’th intermediate state in the sequence contains fixed partial
valuation Fj = ∪ j

i=1 Ri . Finally, at the end of the auxiliary
sequence we update local valuation γ to γ f inish , and update
the partial valuation of universal shared memory to a new
valuation σ ′′, consistent with status and σ , as follows: If
status = commit, then we non-deterministically either set
σ ′′ := σ or σ ′′ := ∅7, and if status = abort then σ ′′ = ∅.
The control node is then set to v, the return point of the call.8

Transitions of Br are labeled by either the edge e of the TSM
that enabled them, or by commit, automatic-abort,
manual-abort if it is a transaction’s commit step, auto-
matic abort step, or manual abort step, respectively, or by
return if the transition corresponds to a return from an
ordinary procedure call. If the transition corresponds to an
intermediate auxiliary step within a transaction, it has a spe-
cial label auxiliary. This completes our description of
Br . (We forgo more formal notation defining the states and
transitions of Br , which is rather tedious.) We can readily
observe that since there is only finite data, and since the length
d of such generalized summary paths is bounded, the number
of states of Br is finite.

Construction of the single RSM, B ′
r ′ , corresponding to the

unrestricted process r ′, is easier, because we do not have to
incorporate summaries for it. We can retain all the stack pro-
cessing done on one process of the TSM (including that done
for transactions) on the call stack of the RSM, B ′

r ′ . We omit
a detailed description of B ′

r ′ here. (The only minor subtlety
to observe is that states of B ′

r ′ are also labeled by appropriate
partial valuations of the universal copy of shared memory,
as in the case of the summary state-machines Br .)

Armed with the summary state machines Br for all
“top-transactional” processes, together with the RSM, B ′

r ′ ,
corresponding to the single unrestricted process, we can con-
struct the asynchronous product RSM B = (⊗r �=r ′ Br)⊗ B ′

r ′ .
Informally, this asynchronous product mimics the interleaved
execution of all these processes when they run concurrently,
including the possible interleaving of steps of other processes
in the middle of auxiliary steps associated with a transaction
running on one of the processes. A state s of the asynchronous
product B consists of a tuple of process states, one for each
process, such that the partial valuations of universal shared
memory in all of the process states in the tuple are consistent

7 The two possibilities here correspond to either a successful com-
mit or an automatic abort by the run-time system due to a memory
conflict. Later in the construction of the asynchronous product B this
non-deterministic choice is resolved by checking consistency with the
universal shared valuations of other processes.
8 In the final transition out of the auxiliary sequence we discard the
final fixed partial valuation Fd . Fd is used later in the construction of B.

123

An abort-aware model of transactional programming 549

with each other (meaning no two of them give different values
to the same variable). A state s of B also contains a universal
partial valuation σs which is the union of the (consistent) uni-
versal partial valuations of each process. Transitions of B are
determined by transitions of individual processes: they trans-
form the process state for that process only, together with the
universal partial valuation σs . A transition on process i is
enabled at a state s, with process state si for process i , under
the following conditions: If that process’s transition is labeled
by an edge e, then it is enabled if there is an extension of the
thread-local (partial) valuation of that process’s state, si , and
an extension of the combined universal (partial) valuation σs

of all processes, which satisfies the guard of edge e.9 Sim-
ilarly, if that process’s transition is labeled by return or
labeled auxiliary, then it is always enabled. A commit
step is enabled if the fixed valuation Fd in the process state
si is consistent with the universal valuation σs . By contrast,
an automatic-abort step is enabled if the fixed valu-
ation Fd is inconsistent with σs . (This ensures that commit
steps only occur if there is a successful compare-and-swap at
the end of the transaction.) Finally, manual-abort steps
are always enabled. This completes our description of B (we
forgo a more formal description.) It is not hard to see that
since there is only one unrestricted process, B can itself be
viewed as an RSM, with the call stack of B ′

r ′ now serving
also as the call stack of the entire product RSM, B.

It follows from the construction that B has the following
properties: For every run ρ of the entire TSM, A, there is a
run π of B such that π is stutter-equivalent to the restriction
ρ[U] of the run ρ to its sequence of universal shared mem-
ory valuations. And likewise, for every run π of B, there
is a run ρ of A such that ρ[U] is stutter-equivalent to π .
Thus, once the RSM B is constructed, we can use the model
checking algorithm for RSMs ([2]) on B to check any given
stutter-invariant LTL, or stutter-invariant ω-regular, property
of universal shared memory of A. ��

We remark that the complexity of model checking can be
shown to be singly exponential in the encoding size of the
TSM, under a natural encoding of TSMs. (Note that TSMs
are compactly encoded: they are extended concurrent recur-
sive state machines, with variables that range over bounded
domains.)

Finally, we note that a similar decidability result can be
obtained with other variant semantics, where (1) automatic
aborts are systematically considered as retries, (2) terminat-
ing transactions nondeterministically commit or abort, or (3)
never more than one transaction executes concurrently (this

9 Of course, since we only keep states s where partial valuations of
universal memory are consistent, this also implicitly implies that the
transition is only enabled if the valuations of shared memory that it
results in, based on what variables are written to, is consistent between
different processes.

is equivalent to the single-lock semantics). Indeed, those
variant semantics are simpler to define and can be viewed
as particular cases of the abort-aware TSM semantics.

6 Related work

There is an extensive literature on Transactional Memory and
there are already many prototype implementations (see the
online bibliography [7], and see the recent book by Larus
and Rajwar [16]). Most of this work discusses how to imple-
ment transactional memory either in hardware or software,
from a systems point of view with the main emphasis on
performance. Some researchers have formalized and studied
the semantics of transactional memory implementations, in
order to clarify subtle semantics distinctions between various
implementations and the interface between these implemen-
tations and higher-level “transactional programs” running
on top of them. Such distinguishing low-level semantics are
quite complicated, and are not suitable for higher-level trans-
actional program verification.

Recent work [1,18] discusses transaction semantics in the
difficult setting of weak isolation/atomicity, where imple-
mentations do not detect conflicting accesses to shared mem-
ory between non-transactional and transactional code, and
thus these may interfere unpredictably. By contrast, we
assume a form of strong isolation, as described earlier. We
aim for a clean model that can highlight the issues which
are specific to transactions, and we do not want to obfus-
cate them with difficult issues that arise by introducing weak
memory models, weak consistency, out-of-order execution,
and weak isolation. Such notions are somewhat orthogonal
and are problematic semantically even in settings without
transactions. Our goal is to define an abstract, idealized, yet
relevant, model of transactional programming that could in
principle serve as a foundation for verification. There are var-
ious design choices in the implementation of a transactional
memory framework (see [16] for a taxonomy of choices), and
our TSM model reflects several such choices. For instance,
our definition of nested transactions is a form of closed
nested transactions. We do not consider the so-called open
nested transactions, where an inner transaction may commit
while an outer one aborts (because we cannot see any sen-
sible semantics for them, even in the single-process purely
sequential setting). Some of these choices are adjustable in
the model, as discussed in the previous section.

Independently, [13] has recently proposed the notion of
“opacity” as an alternative semantics criterion for transac-
tions. Loosely speaking, opacity also requires serializability
of aborted transactions in addition to serializability of com-
mitted transactions, with the goal of preventing aborted trans-
actions from reading “inconsistent” values. In contrast, our
abort-aware semantics does not require the stronger opacity

123

550 K. Etessami, P. Godefroid

criterion. Instead, it assumes that programmers can deal with
automatically aborted transactions as they currently han-
dle runtime exceptions in other programming languages. Of
course, opacity could be formalized using an alternate TSM
semantics.

Mechanisms other than transactions, such as locks, have
been proposed to enforce “atomicity” and have been studied
from a verification point of view. For instance, concurrent
reactive programs where processes synchronize with locks
were studied in [20] where a custom procedure exploiting
“atomicity” (based on Lipton’s reduction) is used to sim-
plify the computation of “summaries” for such programs.
Also, several verification problems are shown to be decid-
able in [14] for a restricted class of programs where locks
are nested. Several other restrictions of concurrent pushdown
processes for which verification problems are decidable have
also been identified (e.g., [8], among others). There are some
high-level similarities between these prior results and our
results in Sect. 5, but the details are substantially different
due to the specifics of the TSM model.

Other related works discuss how to check the correctness
of implementations of transactional memory using testing
[17] or model checking [9,12]. By contrast, we do not address
the problem of analyzing the correctness of implementations
of transactional memory, but rather the correctness of transac-
tional programs running on top of (correct) implementations.
The semantic properties and finite-state reference models
used when checking STM implementations in this other line
of work differ from TSMs and our abort-aware semantics,
which are aimed at capturing a unifying high-level abstract
semantics of transactional programs for transactional pro-
grammers (and program analysis and verification of transac-
tional programs) rather than for TM implementers. However,
alternate high-level TSM semantics could be defined, possi-
bly exposing more/other implementation details, and studied
in the future.

Notions of serializability have been studied in database
concurrency control for decades [6]. However, there are
subtle distinctions between the semantics of serializability
in different setting. [4] systematically studied automata-
based formalization of serializability and other related
concepts. We formulate a clean and natural notion of stutter-
serializability for TSMs and show it is satisfied by them. The
notion arose from our considerations of the abort-aware TSM
model and does not appear to have been studied before in the
literature.

7 Conclusions

This work initiates a study of transactional programming
from a program analysis and verification point of view. Our
goal is to provide a formal foundation for high-level reason-

ing about transactional programs, which nevertheless does
not ignore the meaning of manual aborts nor automatic aborts
in such programs, and facilitates building program analysis
and verification tools for transactional programs. In contrast
with prior semantics work on transactional memory systems,
we do not consider the (lower-level) verification of trans-
actional-memory implementations but instead focus on the
(higher-level) abstract semantics of transactional programs
running on top of those implementations. The paper makes
two main contributions:

– We propose Transactional State Machines as an abstract
finite-data model for transactional programs. TSMs are
essentially concurrent extended recursive state machines
augmented with constructs to specify transactions. Their
significant expressiveness allows the modeling of inter-
leaved executions of concurrent and potentially nested
and/or non-terminating transactions. However, we show
that, provided recursion is confined to occurring inside
transactions, the expressiveness of TSMs is reduced and
model checking of a large class of properties becomes
decidable.

– We offer a critique of the current dominant high-level
semantics for transactional programming, namely the
single-lock semantics, and extend it with an alterna-
tive abort-aware semantics which captures important fea-
tures of real transactional programs such as explicit and
automatic aborts. We identify stutter-serializability as
a key formal property (enjoyed, e.g., under single-lock
semantics), and we show that our abort-aware semantics
still enjoys this property and provides a clean and pre-
cise high-level semantics also for explicit and automatic
aborts.

TSMs are concurrent state machines, so it is natural to
study them under fairness assumptions that insure progress
on all processes. Note that for linear time model checking,
such fairness assumptions can be specified within LTL spec-
ifications.

Acknowledgments We thank Jim Larus for several helpful discus-
sions and encouragements, and Martin Abadi, Tom Ball, Sebastian
Burckhardt, Dave Detlefs, Tim Harris, Madan Musuvathi, Shaz Qadeer
and Serdar Tasiran for helpful comments.

References

1. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transac-
tional memory and automatic mutual exclusion. In: Proceedings of
POPL’08 (2008)

2. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.,
Yannakakis, M.: Analysis of recursive state machines. ACM Trans.
Program. Lang. Syst. 27(4), 786–818 (2005)

123

An abort-aware model of transactional programming 551

3. Alur, R., Chaudhuri, S., Etessami, K., Madhusudan, P.: On-the-fly
reachability and cycle detection for recursive state machines. In:
TACAS, pp. 61–76 (2005)

4. Alur, R., McMillan, K.L., Peled, D.: Model-checking of correct-
ness conditions for concurrent objects. Inf. Comput. 160(1-2), 167–
188 (2000)

5. Ball, T., Rajamani, S.: Bebop: a symbolic model checker for bool-
ean programs. In: SPIN’2000. LNCS, vol. 1885, pp. 113–130
(2000)

6. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency con-
trol and Recovery in Database Systems. Addison-Wesley, Read-
ing (1987)

7. Bobba, J., Rajwar, R., Hill, M. (eds.): Transactional memory bib-
liography (online). http://www.cs.wisc.edu/trans-memory/biblio

8. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the
static analysis of concurrent programs with procedures. In: Pro-
ceedings of POPL’03 (2003)

9. Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.:
Verifying correctness of transactional memories. In: Proceedings
of FMCAD’2007 (Formal Methods in Computer-Aided Design)
(2007)

10. Etessami, K.: Stutter-invariant languages, ω-automata, and tempo-
ral logic. In: Proceedings of the 11th International Conference on
Computer Aided Verification, pp. 236–248 (1999)

11. Grossman, D., Manson, J., Pugh, W.: What do high-level memory
models mean for transactions? In: MSPC’06, pp. 62–69 (2006)

12. Guerraoui, R., Henzinger, T.A., Jobstmann, B., Singh, V.: Model
checking transactional memories. In: ACM SIGPLAN 2008

Conference on Programming Language Design and Implementa-
tion (PLDI) (2008)

13. Guerraoui, R., Kapalka, M.: On the correctness of transactional
memory. In: Proceedings of 13th ACM Symposium on Princi-
ples and Practice of Parallel Programming (PPOPP), pp. 175–184
(2008)

14. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads com-
municating via locks. In: Proceedings of CAV’05 (2005)

15. Lamport, L.: What good is temporal logic. In: Mason, R.E.A. (ed.)
Information Processing ’83: Proc. IFIP 9th World Computer Con-
gress, pp. 657–668 (1983)

16. Larus, J., Rajwar, R.: Transactional Memory. Morgan & Clay-
pool, New York (2007)

17. Manovit, C., Hangal, S., Chafi, H., McDonald, A., Kozyrakis, C.,
Olukotun, K.: Testing implementations of transactional memory.
In: Proceedings of the 15th international conference on Parallel
architectures and compilation techniques (2007)

18. Moore, K.F., Grossman, D.: High-level small-step operational
semantics for transactions. In: Proceedings of POPL’08 (2008)

19. Peled, D., Wilke, Th.: Stutter-invariant temporal properties
are expressible without the next-time operator. Inf. Process.
Lett. 63, 243–246 (1997)

20. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in
concurrent programs. In: Proceedings of POPL’04 (2004)

21. Ramalingam, G.: Context-sensitive synchronization-sensitive anal-
ysis is undecidable. ACM Trans. Program. Lang. Syst. 22(2), 416–
430 (2000)

123

http://www.cs.wisc.edu/trans-memory/biblio

	An abort-aware model of transactional programming
	Abstract
	1 Introduction
	2 Overview of the abort-aware TSM semantics
	3 Definition of transactional state machines
	3.1 Some preliminaries
	3.2 Syntax of TSMs
	3.3 Abort-aware semantics of TSMs: intuition
	3.4 Formal semantics of TSMs

	4 Correctness: stutter-serializability
	4.1 Stutter-invariance
	4.2 Stutter-serializability

	5 Model checking
	6 Related work
	7 Conclusions
	Acknowledgments
	References

