
Software Tools for Technology Transfer manuscript No.

(will be inserted by the editor)

Exploring Very Large State Spaces Using Genetic

Algorithms

Patrice Godefroid

1

and Sarfraz Khurshid

2

1

Bell Laboratories, Lucent Technologies, e-mail: god@bell-labs.com

2

Laboratory for Computer Science, Massachusetts Institute of Technology, e-mail: khurshid@lcs.mit.edu

Received: date / Revised version: date

Abstract. We present a novel framework for explor-

ing very large state spaces of concurrent reactive sys-

tems. Our framework exploits application-independent

heuristics using genetic algorithms to guide a state-space

search towards error states. We have implemented this

framework in conjunction with VeriSoft, a tool for ex-

ploring the state spaces of software applications com-

posed of several concurrent processes executing arbitrary

code. We present experimental results obtained with sev-

eral examples of programs, including a C implementa-

tion of a public-key authentication protocol. We discuss

heuristics and properties of state spaces that help a ge-

netic search detect deadlocks and assertion violations.

For �nding errors in very large state spaces, our exper-

iments show that a genetic search using simple heuris-

tics can signi�cantly outperform random and systematic

searches.

1 Introduction

Model checking [5] is an automatic technique for ver-

ifying �nite-state concurrent systems. The state space

of a concurrent system is a directed graph that repre-

sents the combined behavior of all the concurrent com-

ponents in the system. Model checking typically involves

exhaustively searching the state space of a system to

determine whether some property of the system is sat-

is�ed or not. State-space exploration techniques have

been used successfully to detect subtle yet important

errors in the design and implementation of several com-

plex hardware and software concurrent reactive systems

(e.g., see [2, 4, 11, 22]). It is worth noting that the main

practical interest of systematic state-space exploration

(and of \veri�cation" in general) is to �nd errors that

would be hard to detect and reproduce otherwise.

The main practical limitation when model checking

real systems is dealing with the so-called state-explosion

2 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

problem: the number of states contained in the state

space of large complex systems can be huge, even in�-

nite, thereby making exhaustive state-space exploration

intractable. Several approaches have been proposed to

address the state-explosion problem, including symbolic

veri�cation, partial-order methods and symmetry meth-

ods. Although these approaches have increased the scope

of model checking to state spaces that are several orders

of magnitude larger, many realistic state spaces are still

too large to be handled, and state explosion remains a

fundamental problem in model checking.

When a problem is computationally too hard to solve

using an exact and complete algorithm, it is common in

computer science to explore the use of heuristics in order

to �nd approximate solutions to the problem, or to con-

verge faster towards some solutions. Maybe surprisingly,

the idea of exploiting heuristics for model checking has

received very little attention so far. This may be due to

two reasons. First, model checking is not an optimization

problem: the primary goal is not to �nd a best solution

(e.g., the shortest path leading to some state), it is to

�nd any solution (e.g., any reachable error state). Sec-

ond, the historic emphasis in model checking has been on

completeness: the primary goal is to exhaustively check

every reachable state of the system.

In this paper, we explore the use of genetic algo-

rithms [14] for exploring very large state spaces in search

for error states. Genetic algorithms are search algorithms

inspired by the mechanics of genetics and natural selec-

tion. These search algorithms combine survival of the

�ttest among chromosome-like string structures with a

structured yet randomized information exchange. Ge-

netic algorithms are often viewed as function optimizers,

although the range of problems they have been applied

to is quite broad [21].

We present a framework that uses genetic algorithms

to exploit heuristics for guiding a search in the state

space of a concurrent reactive system towards errors like

deadlocks and assertion violations. At each visited state

during a state-space exploration, the genetic algorithm

decides which transition to explore next when there are

more than one enabled outgoing transitions. We have im-

plemented this framework in conjunction with VeriSoft [10],

an existing tool for exploring the state spaces of systems

composed of several concurrent software processes exe-

cuting arbitrary code. We present experimental results

obtained with several examples of programs, including

a C implementation of a public-key authentication pro-

tocol. From these experiments, we discuss general prop-

erties of state spaces that seem to help a genetic search

�nd errors quickly. When the state space to be explored

is very large, our experiments show that a genetic search

using simple application-independent heuristics can sig-

ni�cantly outperform random and systematic searches.

The rest of the paper is organized as follows. In Sec-

tion 2, we recall the basic principles of genetic algo-

rithms. Section 3 describes our framework and the ge-

netic algorithms we use. We discuss how to modify a

Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms 3

11 0 0 0 1 0 110 0 0

0 0 10 0 00 1111 0

parent: a parent: b

offspring: c offspring: d

crossover:

0 1111 10 1111 0

offspring: c offspring: c’

mutation:

Fig. 1. Illustration of crossover and mutation operators. Candidate solutions are encoded as strings of bits. Parents a and b are recombined

to produce o�spring c and d: a crossover is performed at the 4th bit, i.e., the tails of both parents are swapped starting from the 4th bit.

O�spring c is then mutated to produce c

0

: a mutation is performed at the 3rd bit, i.e., the value of the 3rd bit is ipped.

model checker to let its search be guided by a genetic al-

gorithm. In Section 4, we describe several programs and

properties we have analyzed using our implementation.

We then discuss results of experiments, and study the

inuence of various parameters on the e�ectiveness of a

genetic search. In Section 5 we compare our framework

to related work. We conclude in Section 6.

2 Genetic Algorithms

A genetic algorithm (GA) provides an algorithmic frame-

work for exploiting heuristics that simulates natural-

evolution processes like selection and mutation. It evolves

candidate solutions to problems that have large solu-

tion spaces and are not amenable to exhaustive search or

traditional optimization techniques. Genetic algorithms

have been applied to a range of learning and optimiza-

tion problems [21] since their inception by Holland [14].

Typically, a genetic algorithm starts with a random

population of encoded candidate solutions, called chro-

mosomes. Through a recombination process and muta-

tion operators, it evolves the population towards an op-

timal solution. Generating an optimal solution in �nite

time is not guaranteed and the challenge is thus to design

a \genetic" process that maximizes the likelihood of gen-

erating such a solution. The �rst step is typically to eval-

uate the �tness of each candidate solution in the current

population, and to select the �ttest candidate solutions

to act as parents of the next generation of candidate

solutions. After being selected for reproduction, parents

are recombined (using a crossover operator) and mu-

tated (using a mutation operator) to generate o�spring

(see Figure 1 for a description of these operators). The

�ttest parents and the new o�spring form a new popu-

lation, from which the process is repeated to create new

populations. Figure 2 gives a standard genetic algorithm

in pseudocode.

To illustrate �tness evaluation as well as crossover

and mutation operators, consider the boolean satis�a-

bility problem. Assume that we want to �nd a satisfy-

ing assignment to the following boolean formula: (x

1

_

4 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

gen := 0;

P[gen] := random population;

fitness[gen] := evaluate(P[gen]);

while (fitness[gen] < T) { // fitness has not reached desired level

gen++;

S[gen] := select(P[gen-1]); // select fittest chromosomes

CM[gen] := crossover(S[gen]); // perform crossover on pairs

CM[gen] := mutate(CM[gen]); // mutate resulting chromosomes

P[gen] := S[gen] + CM[gen]; // produce next generation

fitness[gen] := evaluate(P[gen]);

}

Fig. 2. Pseudocode for a standard genetic algorithm

x

2

_ :x

3

) ^ (x

2

_ x

3

_ x

4

) ^ (:x

2

_ x

5

_ :x

6

) ^ (:x

4

_

:x

5

_:x

6

)^ (x

3

_ :x

5

_:x

6

) ^ (x

3

_ x

4

_ x

5

). Suppose

we have the following two (randomly generated) assign-

ments as candidate solutions: a : fx

1

= 1; x

2

= 1; x

3

=

0; x

4

= 0; x

5

= 0; x

6

= 1g and b : fx

1

= 0; x

2

= 0; x

3

=

0; x

4

= 0; x

5

= 1; x

6

= 1g. Assume we de�ne the �tness

of a candidate to be the number of clauses that become

true on the assignment. If we evaluate the formula on a,

we see that clauses 3 and 6 are false, whereas evaluating

the formula on b makes clauses 2 and 5 false; both candi-

dates have a �tness of 4 but neither is a satisfying assign-

ment. We now recombine a and b to produce an o�spring

c : fx

1

= 1; x

2

= 1; x

3

= 0; x

4

= 0; x

5

= 1; x

6

= 1g,

which takes the �rst three variable assignments from a

and the last three from b. O�spring c does not de�ne

a satisfying assignment either since it makes clause 5

false, however it has a higher �tness value of 5. Now,

if we mutate the value assigned to x

3

in c to produce

d : fx

1

= 1; x

2

= 1; x

3

= 1; x

4

= 0; x

5

= 1; x

6

= 1g,

we see that d does provide a satisfying assignment to

our boolean formula. It is worth noting that the use of

GAs for solving constraint satisfaction problems has re-

ceived considerable attention (e.g., see [8, 23, 27]) and

modern approaches employ various heuristics and tech-

niques much more sophisticated than those illustrated

by the simple example above.

The operations of evaluation, selection, recombina-

tion and mutation are usually performed many times in

a genetic algorithm. Selection, recombination and mu-

tation are generic operations that have been thoroughly

investigated in the literature. On the other hand, �tness

evaluation is problem speci�c and relates directly to the

structure of the solutions (i.e., how candidate solutions

are encoded as chromosomes and relate to each other).

Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms 5

Therefore, in a genetic algorithm, a major issue is the

choice of the structure of solutions and of the method of

evaluation (�tness function). Other parameters include

the size of the population, the portion of the population

taking part in recombination, and the mutation rate.

The mutation rate de�nes the probability with which a

bit is ipped in a chromosome that is produced by a

crossover.

3 Genetic Algorithms for State-Space

Exploration

In this section, we discuss how genetic algorithms can be

used to guide a search in the state space of a concurrent

reactive system.

3.1 Combining Genetic Algorithms and Model

Checking

In our context, the search space to be explored is the

(possibly ini�nite) state space of the system. For sim-

plicity and without loss of generality, we assume that

the state space has a unique initial state. Candidate so-

lutions are �nite sequences of transitions in the state

space starting from the initial state. Each candidate so-

lution is encoded by a chromosome, i.e., a �nite string of

bits. Figure 3 shows a simple example of encoding. How

to encode �nite paths in a graph using chromosomes is

discussed in details below.

To evaluate the �tness of a chromosome, the genetic

algorithm executes the path encoded by the chromo-

some. This is done by combining the genetic algorithm

with a model checker. Given a representation of a sys-

tem, the model checker determines the state space to

explore. The execution of a path starts in the initial

state. If there are more than one possible transitions

from the current state, the model checker informs the

genetic algorithm about the number of possibilities. The

genetic algorithm decodes a part of the chromosome it

is currently processing and informs the model checker of

which transition to take. The model checker then checks

whether the state following that transition is an error

state. If so, the current path is saved and the user is no-

ti�ed. Otherwise, the model checker repeats this process

from the new state.

Since a chromosome can only encode a �nite number

of transitions, the state space is explored up to a �xed

depth. Whenever the model checker has explored a path

up to this maximum depth, it prompts the genetic algo-

rithm to evaluate the �tness of the current chromosome.

This operation is discussed further below. Once the �t-

ness of the current chromosome has been computed, an-

other chromosome of the current population is evaluated

using the same process.

3.2 Genetic Encoding

We now discuss a novel chromosome-encoding scheme

that can be applied to arbitrary state spaces. Indeed,

6 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

Fig. 3. Example encoding. Assume a state space with �xed branching (of 4) and �xed depth (of 4); 8 bits are used to represent a

chromosome. The chromosome `10 01 00 11' encodes the path that visits the �lled states (following the bold edges) in state space.

the simple encoding technique described in Figure 3 is

not satisfactory for several reasons.

First, the number of enabled transitions in a state

is typically not constant. Moreover, an upper bound on

the number of enabled transitions in a state may not be

known a priori

1

. Therefore, a practical encoding cannot

use a �xed number of bits to encode a single transi-

tion. We resolve this issue by dynamically interpreting

a chromosome: if there are n enabled transitions from

the current state being processed during the state-space

search, we read the next log(n) bits from the current

chromosome to decide which next transition to explore.

Second, the number of enabled transitions in a state

is not necessarily a power of 2. This means that we may

have to deal with spurious encodings: encodings that fall

outside the desired interval of values. The traditional ap-

proach [12] to deal with this issue is to map the decoded

integer linearly into the desired interval. This approach,

however, typically introduces bias toward some values in

the desired interval. As an illustration of the bias, con-

1

We assume that the number of enabled transitions in any state

is �nite.

sider using two bits to generate a number between 0 and

2 using the (modulo) function mod 3; this function maps

0 ! 0, 1 ! 1, 2 ! 2 and 3 ! 0; thus, the probability

that the bits encode the number 0 is twice the proba-

bility that the bits encode the number 1. Therefore, we

deal with spurious encodings by updating such chromo-

somes instead: if there are n enabled transitions from

the current state and the next log(n) bits of the current

chromosome decode to a value greater than or equal to n,

we randomly generate a number between 0 and n�1 and

replace the last log(n) bits read of the chromosome by

the binary encoding of this number. Note that our pro-

cedure for updating chromosome bits in this case is nec-

essary to avoid multiple �tness evaluations of the same

chromosome to di�erent values.

Third, a suitable length (i.e., number of bits) for

chromosomes cannot be determined in advance. Since

a chromosome can only encode a �nite number of tran-

sitions, the model checker only explores paths up to a

�xed depth. For a maximum depth d, we use su�ciently

long chromosomes so that they can encode any path of

length up to d, and we track the e�ective length of chro-

Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms 7

mosomes. The e�ective length at any point during a ge-

netic evolution is the maximum number of bits that have

been read from any single chromosome up to that point

in the search. Mutations and crossovers are performed

only on initial segments of chromosomes up to the (cur-

rent) e�ective length.

3.3 Fitness Function

An important parameter of a genetic algorithm is the

�tness function that de�nes the �tness of each chromo-

some. We consider in this work two classes of errors that

we wish to detect in state spaces: deadlocks and asser-

tion violations. Deadlocks are states with no outgoing

transitions (all the processes in the system are blocked).

Assertions are boolean expressions involving program

variables that are said to be violated when the corre-

sponding boolean expression evaluates to false. We now

discuss heuristics for guiding a genetic search towards

both classes of error states.

For deadlock detection, a simple heuristic to mea-

sure the �tness of a chromosome is to sum the number

of enabled transitions at each state along the execution

path represented by the chromosome. The intuition be-

hind this heuristic is that chromosomes with a smaller

sum seem more likely to lead to deadlocks, and should

therefore be considered �tter

2

.

2

This �tness function assumes the system can deadlock by

evolving through a sequence of states where the number of en-

abled transitions monotonically decreases.

For detecting assertion violations, a possible heuris-

tic is to attempt maximizing assertion evaluations. To

achieve this, one can award bonus scores for chromo-

somes that lead to as many as possible assertion eval-

uations. One can also award bonuses to chromosomes

that make choices leading towards assertion statements

at control points in the control ow graph of the pro-

gram; this can be done by instrumenting the execution

of tests (such as \if-then-else" statements) in the pro-

gram using a static analysis of the program text.

When analyzing protocols with message exchanges,

a sensible heuristic is to attempt maximizing the num-

ber of messages being exchanged. We use this simple

heuristic in the analysis of Needham-Schroeder public

key authentication protocol [18] and identify a (previ-

ously known [17]) attack on the protocol (see Section 4

for details).

Note that our framework can be used to discover mul-

tiple (independent) errors of a same type in a system

without requiring to �x previously detected errors. This

can be done by awarding penalty scores to chromosomes

that lead to states where a previously discovered error

is detected. Application-speci�c heuristics can also be

used in our framework to �ne tune the performance of

the genetic algorithm if needed.

3.4 Dynamically Adapting Parameters

The genetic algorithm we use in this work is a slight

variation of the pseudocode in Figure 2 where the value

8 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

of some parameters are adapted as the genetic evolu-

tion progresses. In particular, we keep track of the best

and worst chromosome �tness in each generation, and, if

both �tness values become equal, we increase the muta-

tion rate, in order to help the genetic evolution get out

of local maximas. Once there is an improvement in the

overall �tness, we restore the original mutation rate to

continue evolution as normal.

As mentioned in Section 3.2, we also update the ef-

fective length of chromosomes during evolution.

If evolution stagnates (i.e., the �tness does not seem

to improve for several generations) and the search does

not �nd any error, we re-start the genetic algorithm with

the initial default parameter values and a new randomly

generated seed to generate a new random initial popu-

lation. This reduces any bias that may have been intro-

duced in a previous run that used a \bad" seed.

4 Experimental Evaluation

We have implemented the framework presented in the

previous section in conjunction with VeriSoft [10], a tool

that implements model-checking algorithms for explor-

ing the state spaces of systems composed of several con-

current software processes executing arbitrary code writ-

ten in full-edged programming languages such as C or

C++. We report in this section results of experiments

comparing the performances of four state-space search

algorithms:

{ GA is the genetic algorithm described in the previous

section;

{ GA

M

is GA with no crossovers (only mutations);

{ RAND is a \random search" that explores random

paths in a state space; and

{ EXH is a search algorithm that systematically ex-

plores the state space up to some �xed depth

3

, and

attempts to explore it exhaustively.

The purpose of these experiments is also to identify heuris-

tics and properties of state spaces that help a genetic

search detect deadlocks and assertion violations.

4.1 Examples of Programs and Properties

We report experiments performed with two sample C

programs.

4.1.1 Dining philosophers

Consider the variant of the well-known dining-philosophers

problem shown in Figure 4. The pseudocode in the �g-

ure describes the behavior of a philosopher process. A

philosopher starts by thinking, which then makes him

hungry at which point he nondeterministically decides

to either pick up his left fork followed by his right fork,

or to pick up his right fork followed by his left fork.

Once a philosopher has both forks adjacent to him in

3

Note that, in general, the depth of the state space of a software

system composed of processes executing arbitrary C or C++ code

may not be bounded, making the state space in�nite and a fully

exhaustive search impossible.

Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms 9

while (true) {

think;

nondeterministically

pick left-fork; pick right-fork;

OR

pick right-fork; pick left-fork;

eat;

drop left-fork; drop right-fork;

}

Fig. 4. Pseudocode for nondeterministic dining philosophers

his hands, he eats. Finally, he drops �rst the left fork

and then the right fork back onto the table, and repeats

this process inde�nitely. Since several philosophers are

sitting around the same table and hence sharing one fork

with each of their two adjacent neighbors, they compete

for forks with each other. For instance, if all philosophers

around the table have picked up their left fork, the entire

system is then in a deadlock.

We denote by PHIL a C implementation of the above

system with 17 philosophers. We arbitrarily choose this

large number of processes so that it is not possible to ex-

plore the state space of the system exhaustively within a

reasonable amount of time. Nondeterminism is simulated

using the system call VS toss supported by VeriSoft

(see [10]). In what follows, we compare the e�ectiveness

of various search algorithms to �nd deadlocks in this

system.

4.1.2 Needham-Schroeder protocol

The Needham-Schroeder public-key authentication pro-

tocol [18] aims at providing mutual authentication, so

that two parties can verify each other's identity before

engaging in a transaction. The protocol involves a se-

quence of message exchanges between an initiator, a re-

sponder, and a mutually-trusted key server. The exact

details of the protocol are not necessary for the dis-

cussion that follows and we omit these here. An attack

against the original protocol involving six message ex-

changes was reported in [17]: an intruder Carol is able

to impersonate an initiator Alice to set up a false ses-

sion with responder Bob, while Bob thinks he is talking

to Alice.

We denote by AUTH a C implementation

4

of the

Needham-Schroeder protocol. This implementation is de-

scribed by about 500 lines of C code and is much more

detailed than the protocol description analyzed in [17].

The C code also contains an assertion that is violated

whenever an attack to the protocol occurs. We compare

below the e�ectiveness of various search algorithms to

�nd assertion violations representing attacks to this im-

plementation of the protocol.

4.2 Experimental Results

In the experiments that follow, whenever a genetic search

is applied to PHIL to detect deadlocks, the heuristic

4

John Havlicek provided us this implementation.

10 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

error #errors runtime average time depth

found? #runs (hrs) to find error searched

GA yes 26/50 1:16:21 2 min 57 sec 65

PHIL RAND no 0/1 8:00:00 - 65

EXH no 0/1 8:00:00 - 34

GA yes 3/100 2:33:24 51 min 8 sec 110

AUTH RAND no 0/1 8:00:00 - 110

EXH no 0/1 8:00:00 - 45

Table 1. Genetic search versus random and exhaustive search

used is to minimize the sum of enabled transitions along

a single execution path; following the spirit of maxi-

mizing �tness using a GA, we use the �tness function

1500 � �

s2�

�(s), where �(s) is the number of enabled

transitions in state s on path �. In contrast, whenever

a genetic search is applied to AUTH to detect protocol

attacks, the heuristic used in the experiments below is

to maximize the number of messages exchanged among

parties involved in the protocol along a single execution

path; the �tness function is 100 ��

m2�

1+�

s2�

1, where

m denotes a message exchange and s a state on path �.

All experiments were performed on a Pentium III 700

MHz processor with 256 MB of RAM.

The genetic parameters we use are as follows. The

population size is set to 200 chromosomes. The �ttest

100 chromosomes in a generation reproduce. To produce

an o�spring, we randomly select two of these �ttest chro-

mosomes and perform a single point crossover, i.e., we

randomly select an index less than the e�ective length

and perform the crossover at that index. The default mu-

tation rate is 0.005, i.e., each bit of a chromosome that

is produced by a crossover is ipped with probability

0.005. Once we have generated 100 children, we evaluate

their �tness and sort the entire population (which com-

prises the 100 parents and the 100 children) accordingly.

As is usual with heuristic-based approaches, we experi-

mented with di�erent values for genetic parameters and

selected the ones that seemed to increase the evolvabil-

ity for a range of systems; in particular we experimented

with di�erent population sizes, mutation rates, number

of crossover points, and numbers of parents. We limit

evolution in a particular GA run to 50 generations for

PHIL and 100 generations for AUTH . The e�ective

length of chromosomes varies between 70 and 320 bits.

4.2.1 Genetic versus Random and Exhaustive Searches

We compare the performance of the search algorithms

GA, RAND andEXH for analyzing PHIL andAUTH .

Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms 11

550

600

650

700

750

800

0 5 10 15 20 25

fi
tn

es
s

generation

"max.dat"
"ave.dat"

Fig. 5. GA deadlock-detection performance. The maximum and average �tness among the parent chromosomes in a generation is plotted

against the generation number.

For GA and RAND, we limit the search to paths of

length about twice the length of the shortest path

5

that

leads to an error. (We discuss this choice later in this

section.) For EXH , we limit the search depth to about

the length of the shortest path that leads to an error

(with the hope of helping EXH as much as possible).

Table 1 summarizes our results. For PHIL, we run

GA 50 times (each run starts with a randomly-generated

seed), and let it evolve for 50 generations in each run.

More than 50% of the runs identify a deadlock. In con-

trast, both RAND and EXH are unable to �nd a dead-

lock in 8 hours of search. For AUTH , we run GA 100

times (each run uses a randomly-generated seed), and

let it evolve for 100 generations in each run. Only 3

runs identify an attack on the C implementation of the

Needham-Schroeder protocol. Again, both RAND and

EXH are unable to �nd an attack in 8 hours.

5

Notice that paths of di�erent lengths may witness the violation

of the same correctness property.

Despite that GA is able to �nd an attack in AUTH ,

its performance is worse than when analyzing PHIL.

This may be due to our choices of �tness functions: the

heuristic for �nding deadlocks may be a better mea-

sure of �tness, than the simple heuristic of maximiz-

ing message exchanges used when exploring the state

space of AUTH . We chose to use and evaluate these

particular heuristics in our experiments because they are

application-independent and hence can be used to ana-

lyze other applications.

Figure 5 illustrates a run of GA on PHIL. Typically,

a genetic algorithm makes quick progress in the begin-

ning stages of evolution. Then, there are phases when it

hits local maximas before mutations further improve its

performance. Notice how the average �tness of the par-

ents steadily increases. This indicates that the genetic

operators are e�ective in maximizing �tness while ex-

ploring the state space. It should not come as a surprise

12 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

error #errors runtime average time depth

found? #runs (hrs) to find error searched

no 0/20 0:25:33 - 34

PHIL no 0/20 0:30:01 - 51

yes 14/20 0:33:44 2 min 24 sec 68

AUTH

2

no 0/20 0:33:47 - 42

yes 6/20 0:28:31 4 min 45 sec 60

Table 2. GA performance as maximum search depth changes

that the maximum (average) �tness among parents never

decreases since we are using the so-called elitist model,

in which the best chromosomes always survive to the

next generation.

4.2.2 Search Deeper

We now investigate how the e�ectiveness of a genetic

search varies as we increase the maximum depth of the

search. In these experiments, we consider a simpli�ed

version of AUTH where the �rst two message exchanges

from a known attack (involving a path of 42 steps in the

state space) are hard-wired into the search algorithm

and the algorithm needs only to �nd the last 4 message

exchanges necessary to complete the attack. We call this

simpler problem AUTH

2

, and use it in the experiments

below in order to amplify di�erences between results we

observe.

Table 2 tabulates our results. We run GA on PHIL

for 50 generations. We compare the results of 20 runs

using each of the depths 34, 51 and 68, where 34 is the

minimum depth required to �nd a deadlock in PHIL.

When using depths 34 and 51, GA is unable to detect

a deadlock, whereas when we increase the depth to 68,

14 out of 20 runs detect a deadlock. When exploring the

state space of AUTH

2

using a depth of 42, GA is unable

to �nd an attack in 20 tries, whereas when we increase

the depth to 60, GA �nds an attack 6 times.

The reason why a deeper maximum search depth

can actually help a genetic search may be the follow-

ing. From most reachable states in the state spaces of

PHIL and AUTH , there exists a path that leads to an

error state. Chromosomes that encode \bad" initial seg-

ments are therefore not necessarily penalized since their

tails may contain a path that leads to an error state and

are su�cient to detect the error. If the exploration was

limited to the minimum depth necessary to �nd an er-

ror, chromosomes that encoded the \wrong" �rst moves

would have a very low probability of producing an o�-

spring that corrects these �rst moves.

Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms 13

error #errors runtime average time depth

found? #runs (hrs) to find error searched

PHIL GA yes 26/50 1:16:21 2 min 57 sec 65

GA

M

yes 26/50 0:59:16 2 min 16 sec 65

AUTH

2

GA yes 16/50 1:11:18 4 min 27 sec 60

GA

M

yes 3/50 1:27:07 29 min 2 sec 60

Table 3. Genetic search with (GA) and without (GA

M

) crossover operator

On the other hand, increasing the depth of the search

should be done with caution since it obviously increases

the search space and hence the length of chromosomes,

which in turn leads to slower genetic operations and con-

vergence of the algorithm.

4.2.3 Mutation Alone

Here, we investigate the e�ectiveness of the crossover op-

erator by comparing the performance of GA and GA

M

,

i.e., GA without crossover operations, when exploring

the state spaces of PHIL and AUTH

2

. The same pa-

rameter values are used for both GA and GA

M

.

Table 3 summarizes our results. The performances

of GA and GA

M

are comparable on PHIL: both algo-

rithms �nd the deadlock 26 times out of 50 runs. This

may be explained as follows. A deadlock in PHIL results

from a set of choices made by the philosophers, namely

that they all choose to pick up their left forks or they

all choose to pick up their right forks. In particular, it

does not matter in which order the philosophers pick up

their forks; what matters is which fork they pick up. Mu-

tations alone seem e�ective in �nding a deadlock since

each mutation alters some philosopher's choice and once

the right set of choices is attained, a deadlock is reached.

In contrast, GA is more e�ective than GA

M

in �nd-

ing an attack on AUTH

2

. An attack on the protocol is

formed by a speci�c sequence of message exchanges that

allows intrusion: the messages have to be exchanged in

a precise order, simply �nding the exact set of messages

involved in the attack is not su�cient. Since crossovers

combine and preserve sub-sequences (of messages in this

case), their e�ect in converging quickly toward a solution

becomes more important.

Therefore, it seems preferable to use GA over GA

M

when exploring arbitrary state spaces, since GA is ef-

fective irrespective of the search being for a set or a

sequence of transitions.

4.2.4 Partial-Order Reduction

Finally, we investigate how the use of partial-order re-

duction techniques (e.g., see [9]) a�ects the performance

of a genetic search. Roughly speaking, partial-order re-

14 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

error #errors runtime average time depth

found? #runs (hrs) to find error searched

PHIL yes 26/50 1:16:21 2 min 57 sec 65

PHIL

PO

yes 5/50 1:07:32 13 min 30 sec 65

AUTH

2

yes 16/50 1:11:18 4 min 27 sec 60

AUTH

PO

2

yes 1/50 1:24:34 1 hr 24 min 34 sec 60

Table 4. GA performance with and without partial-order reduction

duction algorithms can dynamically prune the state space

of a concurrent system in a completely reliable way (i.e.,

without missing any errors) by taking advantage of in-

dependent (i.e., commutative) actions executed by con-

current processes, hence avoiding to consider all their in-

terleavings during a state-space exploration. The pruned

state space de�ned with partial-order algorithms is thus

a subset of the full state space. In the following exper-

iments, we consider a partial-order reduction algorithm

using a combination of the persistent-set and sleep-set

techniques as implemented in VeriSoft [10]. Let PHIL

PO

and AUTH

PO

2

denote the reduced state spaces of PHIL

andAUTH

2

, respectively, that are explored when partial-

order reduction is used.

Results of experiments are tabulated in Table 4. When

exploring PHIL

PO

, GA detects a deadlock only 5 times

out of 50 runs. Recall that GA detected a deadlock 26

times during a same number of runs when exploring

PHIL. A similar decrease in performance is observed

when GA explores AUTH

PO

2

.

A possible explanation for this phenomenon is the fol-

lowing. In the reduced state space resulting from partial-

order reduction, most reachable states have few outgo-

ing transitions that can be selected to be explored next

(thanks to the pruning). Hence, the set of actions corre-

sponding to a set of possible next transitions can vary a

lot from state to state. This means that selecting transi-

tion number i in a state s may result in executing a pro-

gram action totally di�erent from the action executed

when selecting transition i in another state s

0

. In other

words, same transition choices made in di�erent context

may yield totally di�erent program actions, especially

when using partial-order reduction. After a crossover or

mutation operation, the tail of each resulting chromo-

some may be interpreted in an entirely di�erent context,

which harms the bene�cial e�ect of these operators.

It would be interesting to investigate how to de�ne

partial-order aware �tness functions and genetic opera-

tions that allow e�cient use of genetic algorithms in the

presence of partial-order reductions.

Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms 15

4.3 Summary

We summarize the main conclusions drawn from our ex-

periments in the previous subsections.

{ For �nding errors in very large state spaces, a genetic

search using simple application-independent heuris-

tics can signi�cantly outperform random and system-

atic searches.

{ The search depth of a genetic search should be longer

than the shortest path leading to an error, but not

too long either. In practice, in the presence of a com-

pletely unknown state space, this implies that various

search depths should be tried.

{ Using both mutation and crossover operations seem

more e�ective in �nding errors reachable via speci�c

sequences of transitions than using mutation alone.

{ Partial-order reduction seems to hamper rather than

help a genetic search in �nding errors in very large

state spaces.

It would be interesting to perform further experi-

ments and studies on other examples to con�rm these

general �ndings.

5 Related Work and Discussion

As mentioned in the introduction, genetic algorithms

have already been used for a broad range of applica-

tions. In particular, genetic algorithms have been used

to perform structural and functional testing of sequen-

tial programs. For instance, Pargas et al. [19] present a

goal-oriented technique for automatic test-data genera-

tion using a genetic algorithm guided by program con-

trol dependencies; their implementation aims at achiev-

ing statement and branch coverage. Jones et al. [15]

use genetic algorithms to generate test sets that sat-

isfy the requirements for test-data-set adequacy of struc-

tural testing. More recently, Bueno et al. [3] build upon

[15] and present a tool for the automation of both test-

data generation and infeasible-path identi�cation. In

previous work [16], the second author presented a GA-

based framework for testing methods manipulating com-

plicated data structures; this framework was applied to

identify several aws in a naming architecture for dy-

namic networks of devices and computers.

Genetic algorithms are part of a larger class of algo-

rithms often called evolutionary algorithms. Other types

of evolutionary algorithms than GAs have also been ap-

plied for automatic test-case generation in structural,

functional and performance testing of various systems [25,

26, 28].

In contrast with all this previous work, the problem

addressed in this paper is the exploration of (very large)

state spaces of concurrent reactive systems as de�ned

with a model checker. This requires the use of origi-

nal chromosome encodings and �tness functions suitable

for the application domain considered here. We are not

aware of any other work where genetic algorithms have

been used for state-space exploration.

16 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

Heuristics for choosing a search order that favor vis-

iting �rst successor states that are most likely to lead to

an error (\best-�rst search") are discussed in [29] in the

context of symbolic model checking and in [6] in the con-

text of explicit model checking. In particular, the HSF-

SPIN tool discussed in [6] implements various best-�rst

search algorithms, including variants of the well-known

A

�

algorithm with a �tness function that takes into ac-

count the distance from the start state. HSF-SPIN is

optimized for �nding short error traces by using heuris-

tics for non-exhaustive, guided state-space exploration.

It is worth noting that a best-�rst search (BFS) can

be viewed as a particular case of genetic search (GS).

Indeed, the latter can simulate the former as follows: GS

uses the same �tness function as that of BFS; crossover

and mutation rates are set to 0; the e�ective length of

chromosomes is set to n where n is the current gener-

ation; only a single best chromosome in a generation

produces the next generation; the number of children

produced by this unique parent is the number of out-

going transitions at the last state visited by the par-

ent and each child contains the entire parent path plus

one more (unique) transition. Backtracking strategies

(breadth-�rst, depth-�rst, etc.) that can be used in con-

junction with BFS can also be simulated by dynami-

cally adapting parameters of GS and appropriately de�n-

ing the creation of next generation. In contrast, a best-

�rst search cannot simulate a genetic search in general

since its \�tness function" is restricted to local heuristics

based on the current state and next possible transitions,

and hence lacks the ability to simulate the global eval-

uation of an entire chromosome. Intuitively, a best-�rst

search is also more \deterministic" than a genetic search

since it is less general and does not include randomized

operations like crossovers and mutations, which improve

robustness with respect to sub-optimal �tness functions

by helping the search avoid being trapped in local max-

ima. Further studies are needed to determine which pa-

rameter values of a genetic search (including BFS) are

best suited for analyzing speci�c classes of programs and

properties.

Structural heuristics, which focus on the branching

structure and thread interdependence of a program, have

recently been used in the Java PathFinder (JPF) model

checker [13]. JPF implements a best-�rst search using

a priority queue for storing the states to be expanded

next. JPF allows setting a bound on the queue length:

for a bound k, JPF discards from further exploration

any state that does not have a �tness higher than the

best k states currently in the queue. As an illustration,

consider expanding a state s, in which one process is

enabled to make a nondeterministic boolean choice; s

can be expanded to two possible states, one, say t, in

which the choice made is true and the other, say u, in

which the choice made is false; if the queue limit is

set to 1, (at most) one of t and u will be added to the

queue for further expanding. Using best �rst search with

very small bounds on the queue length and a heuristic

Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms 17

that maximizes thread interleaving, JPF has been used

to quickly �nd deadlocks in a Java implementation of

the dining-philosophers problem similar to the one dis-

cussed in Section 4.1. The reason why very small queue

lengths su�ce to �nd a deadlock quickly for this ex-

ample is that each philosopher makes the same nonde-

terministic choice by default with the JPF implementa-

tion, i.e., always chooses �rst the left fork over the right

one, in which case the interleaving heuristic immediately

�nds the deadlock. It is, however, not clear how well this

heuristic performs if the philosopher's choice depends

on other factors, such as the philosopher's parity (as-

suming philosophers are identi�ed by unique consecutive

integers). Consider, for example, replacing the philoso-

pher's (purely) nondeterministic choice (VS toss(1))

with (VS toss(1) || (phil id % 2 == 1)), where the

invocation VS toss(1) nondeterministically returns `0'

(false) or `1' (true), and the integer phil id is a philoso-

pher identi�er. For this new variant, a genetic search still

quickly �nds a deadlock when using our �tness function

for �nding deadlocks, which minimizes the sum of all en-

abled transitions along an entire path (chromosome); in

contrast, a best-�rst search with a small queue length

that maximizes thread interleaving is easily lost in the

state space.

Heuristics for over and under approximating binary

decision diagram (BDD) representations when these be-

come too large or for �nding pseudo-optimal BDD-variable

orderings are also commonly used in symbolic veri�ca-

tion. Such heuristics tackle di�erent problems related to

model checking and are of di�erent nature than the ones

used here.

The issue of changing parameter values during the

run of a genetic algorithm is an active area of research

in genetic algorithms. A recent survey is given in [7].

For instance, the \1=5 rule" of Rechenberg [1, 20] (for

real-coded evolution strategies) constitutes a classical

adaptive method for setting the mutation rate. This rule

states that the ratio of mutations in which the o�spring

is �tter than the parent, to all mutations should be 1=5,

hence if the ratio is greater than 1=5, the mutation rate is

increased, and if the ratio is less than 1=5, the mutation

rate is decreased.

The \Dynamic Parameter Encoding" [24] (DPE) al-

gorithm provides the ability to encode real-valued pa-

rameters of arbitrary precision. DPE �rst searches for

optimal values of more signi�cant digits of the param-

eters. Next it �xes the values discovered and progres-

sively searches for lesser signi�cant digits. This way the

same �xed length chromosome encodes di�erent digits

of parameters at di�erent points during the algorithm

execution. Notice that DPE requires a priori knowledge

of an upper bound on parameter values.

Our dynamic encoding of paths in a state space is

novel to the best of our knowledge; it does not require

a priori knowledge of the maximum number of enabled

transitions in any given state of a state space.

18 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

6 Conclusion

We have shown in this paper that, when exploring very

large state spaces of concurrent reactive systems, genetic

algorithms using simple application-independent heuris-

tics can signi�cantly outperform traditional random and

systematic state-space searches used in current model

checkers. We have discussed in detail the engineering

challenges faced when extending a model checker with

a genetic search algorithm. We believe the use of heuris-

tics in model checking could contribute to broadening its

applicability by several additional orders of magnitude.

Further experiments and studies are needed to validate

this claim.

Acknowledgments

We thank John Havlicek for sharing with us his imple-

mentation of the Needham-Schroeder protocol, Darko

Marinov and Audris Mockus for helpful comments on

early versions of this paper, and Enoch Peserico for in-

spiring discussions on genetic algorithms. We also thank

the anonymous reviewers for helpful comments on the

presentation of the paper. The work of the second au-

thor was done partly while visiting Bell Laboratories and

was also funded in part by ITR grant #0086154 from the

National Science Foundation. The work of the �rst au-

thor was supported in part by NSF grant CCR-0341658.

References

1. Hans-Georg Beyer and Hans-Paul Schwefel. Evolution

strategies|a comprehensive introduction. Natural Com-

puting, 1(1), 2002.

2. B. Boigelot and P. Godefroid. Model checking in practice:

An analysis of the ACCESS.bus protocol using SPIN. In

Proceedings of Formal Methods Europe'96, volume 1051

of Lecture Notes in Computer Science, pages 465{478,

Oxford, March 1996. Springer-Verlag.

3. Paul Marcos Siqueira Bueno and Mario Jino. Identi�ca-

tion of potentially infeasible program paths by monitor-

ing the search for test data. In Proceedings of the 15th

IEEE International Conference on Automated Software

Engineering (ASE), Grenoble, France, September 2000.

4. E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E.

Long, K. L. McMillan, and L. A. Ness. Veri�cation of

the Futurebus+ cache coherence protocol. In Proceedings

of the Eleventh International Symposium on Computer

Hardware Description Languages and Their Apllications.

North-Holland, 1993.

5. Edmund M. Clarke, Orna Grumberg, and Doron A.

Peled. Model Checking. The MIT Press, Cambridge,

MA, 1999.

6. S. Edelkamp, A. L. Lafuente, and S. Leue. Directed ex-

plicit model checking with hsf-spin. In Proceedings of the

2001 SPIN Workshop, volume 2057 of Lecture Notes in

Computer Science, pages 57{79. Springer-Verlag, 2001.

7. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Param-

eter control in evolutionary algorithms. IEEE Transac-

tions on Evolutionary Computation, 3(2):124{141, 1999.

Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms 19

8. A.E. Eiben, J.I. van Hemert, E. Marchiori, and A.G.

Steenbeek. Solving binary constraint satisfaction prob-

lems using evolutionary algorithms with an adaptive �t-

ness function. In Proceedings of the 5th Conference on

Parallel Problem Solving from Nature, 1998.

9. Patrice Godefroid. Partial-Order Methods for the Ver-

i�cation of Concurrent Systems { An Approach to the

State-Explosion Problem, volume 1032 of Lecture Notes

in Computer Science. Springer-Verlag, January 1996.

10. Patrice Godefroid. Model checking for programming lan-

guages using VeriSoft. In Proceedings of the 24th Annual

ACM Symposium on the Principles of Programming Lan-

guages (POPL), pages 174{186, Paris, France, January

1997.

11. Patrice Godefroid, Robert Hanmer, and Lalita Ja-

gadeesan. Model Checking Without a Model: An Anal-

ysis of the Heart-Beat Monitor of a Telephone Switch

using VeriSoft. In Proceedings of ACM SIGSOFT IS-

STA'98 (International Symposium on Software Testing

and Analysis), pages 124{133, Clearwater Beach, March

1998.

12. David E. Goldberg. Genetic Algorithms in Search, Opti-

mization, and Machine Learning. Addison-Wesley Pub-

lishing Company, Inc., Reading, MA, 1989.

13. Alex Groce and Willem Visser. Model checking Java

programs using structural heuristics. In Proceedings of

the International Symposium on Software Testing and

Analysis (ISSTA), July 2002.

14. John Holland. Adaptation in Natural and Arti�cial Sys-

tems. The University of Michigan Press, Ann Arbor, MI,

1975.

15. B. F. Jones, H. H. Sthamer, and D. E. Eyres. Automatic

structural testing using genetic algorithms. Software En-

gineering Journal, pages 299{306, Sep 1996.

16. Sarfraz Khurshid. Testing an intentional naming sys-

tem using genetic algorithms. In Proceedings of the 7th

International Conference on Tools and Algorithms for

Construction and Analysis of Systems (TACAS), Gen-

ova, Italy, April 2001.

17. Gavin Lowe. An attack on the Needham-Schroeder

public-key authentication protocol. Information Process-

ing Letters, 1995.

18. Roger Needham and Michael Schroeder. Using encryp-

tion for authentication in large networks of computers.

Communications of the ACM, 21(12):993{999, 1978.

19. Roy P. Pargas, Mary Jean Harrold, and Robert Peck.

Test-data generation using genetic algorithms. Journal of

Software Testing, Veri�cation, and Reliability, 9(4):263{

282, 1999.

20. Ingo Rechenberg. Evolutionsstrategie: Optimierung tech-

nischer Systeme nach Prinzipien der biologischen Evolu-

tion. Frommann-Holzbog, Stuttgart, 1973.

21. Peter Ross and Dave Corne. Applications of genetic al-

gorithms. AISB Quaterly on Evolutionary Computation,

pages 23{30, Autumn 1994.

22. H. Rudin. Protocol development success stories: Part

I. In Proc. 12th IFIP WG 6.1 International Symposium

on Protocol Speci�cation, Testing, and Veri�cation, Lake

Buena Vista, Florida, June 1992. North-Holland.

23. L. Schoofs and B. Naudts. Solving CSP instances beyond

the phase transition using stochastic search algorithms.

In Proceedings of the 6th Conference on Parallel Problem

Solving from Nature, 2000.

20 Patrice Godefroid and Sarfraz Khurshid: Exploring Very Large State Spaces Using Genetic Algorithms

24. Nicol N. Schraudolph and Richard K. Belew. Dynamic

parameter encoding for genetic algorithms. Machine

Learning, 9(1):9{21, 1992.

25. Alan C. Schultz, John J. Grefenstette, and Kenneth

A. De Jong. Learning to break things: Adaptive test-

ing of intelligent controllers. Handbook of Evolutionary

Computing, 1997.

26. H. Sthamer, J. Wegener, and A. Baresel. Using evolu-

tionary testing to improve e�ciency and quality in soft-

ware testing. In Proceedings of the 2nd Asia-Paci�c Con-

ference on Software Testing Analysis and Review, Mel-

bourne, Australia, July 2002.

27. J. van Hemert. Comparing classical methods for solving

binary constraint satisfaction problems with state of the

art evolutionary computation. In Applications of Evolu-

tionary Computing, Proceedings of EvoWorkshops2002,

2002.

28. Joachim Wegener and Matthias Grochtmann. Verifying

timing constraints of real-time systems by means of evo-

lutionary testing. Real-Time Systems, 15(3), 1998.

29. C. H. Yang. Prioritized Model Checking. PhD thesis,

Stanford University, 1998.

