
The ULg Partial-Order Package for SPIN

Patrice Godefroid

AT&T Bell Laboratories

1000 E. Warrenville Road

Naperville, IL 60566, U.S.A.

god@research.att.com

Abstract

This document presents an overview of the Partial-Order Package for SPIN de-

veloped at the University of Li�ege (ULg) in 1992 { 1994. The current version of the

ULg Partial-Order Package (Version 3.0) is available free of charge for educational

and research purposes by anonymous ftp from ftp.monte�ore.ulg.ac.be in the /pub/po-

package directory.

1 Introduction

SPIN is an automated validation system for communication protocols modeled in the Promela

language [Hol91]. SPIN checks properties of such systems by exploring a global state graph,

called state space, representing the combined behavior of all concurrent components in the

system. This is done by recursively exploring all successor states of all states encountered

during the search, starting from a given initial state, by executing all enabled transitions in

each state. Of course, the number of visited states can be very large: this is the well-known

state-explosion problem, which limits the applicability of state-space exploration techniques.

Partial-Order methods [God90, Val90] are state-space exploration techniques that can

avoid parts of the state explosion due to the exploration of all possible interleavings of

concurrent transitions. Precisely, given a property, partial-order methods explore only a

reduced part of the global state space that is provably su�cient to check the given property.

The di�erence between the reduced and the global state spaces is that all interleavings of

concurrent events are not systematically represented in the reduced one. See [God94] for a

complete survey of these methods.

Given any Promela program, the ULg Partial-Order Package explores only a reduced part

of the global state space of the program that is su�cient for checking deadlocks, unreachable

1



code, and assertion violations. Speci�cally, the partial-order package includes the implemen-

tation of a selective search using persistent sets [GP93], sleep sets [GW93], and the \proviso"

introduced in [HGP92]. We refer the reader to [God94] for a detailed presentation of these

algorithms and of their correctness proofs.

Using the Partial-Order Package decreases the resource requirements of the state-space

exploration performed by SPIN: the memory and time requirements are usually much smaller

when using the Package than without using it.

The reduction obtained depends on the coupling between the processes in the concurrent

system. When the coupling is very tight, partial-order methods yield no reduction, and

the selective search becomes equivalent to a classical exhaustive search. When the coupling

between the processes is very loose, the reduction can be very impressive. For most re-

alistic examples, partial-order methods provide a signi�cant reduction of the memory and

time requirements needed to verify protocols. Therefore, they broaden the applicability of

veri�cation by state-space exploration to more complex protocols.

2 Using the Partial-Order Package

To install the partial-order package, proceed as follows.

1. In a new directory, copy the �les README and po-pack.tar.Z available by anonymous

ftp from ftp.monte�ore.ulg.ac.be in the /pub/po-package directory.

2. Execute the following unix commands:

uncompress po-pack.tar.Z

tar xvf po-pack.tar

3. Execute \make" in the PO-PACKAGE-3.0 directory.

The use of SPIN with the Partial-Order Package remains very similar to the use of SPIN

alone. The validation of a PROMELA program can be performed as follows.

spin -a �lename (build the validator)

cc -c pan.c (compile the validator)

cc -c po.c (compile the partial-order functions)

cc -o pan pan.o po.o (link the object code with the partial-order functions object code)

pan (run the validator)

By default, the validation reports deadlocks, unreachable code and assertion violations.

In order to detect deadlocks only, use the DEADLOCK option as follows (the reduced state

space can be further reduced when searching for deadlocks only):

2



cc -DDEADLOCK -c pan.c

cc -DDEADLOCK -c po.c

cc -o pan pan.o po.o

Version 3.0 of the ULg Partial-Order Package is compatible with the Promela language

as de�ned in Version 1.6.5 of SPIN. A few minor changes to the Promela language have been

made in order to make systems described in Promela compatible with the assumptions under

which the partial-order algorithms have been developed, and in order to clarify the semantics

of Promela when needed. For instance, dynamic process creation has been forbidden, and

the use of the \atomic" Promela expression has been de�ned more strictly. Promela has also

been extended with two predicates Empty and Full on FIFO channels [GP93], for which

optimizations are implemented in the Package. See the README �le for the complete and

detailed list of these assumptions.

The supertrace option -DBITSTATE of SPIN is compatible with the Partial-Order Pack-

age. They can be used simultaneously by compiling the pan.c �le as follows:

cc -DBITSTATE -c pan.c

cc -DBITSTATE -c po.c

cc -o pan pan.o po.o

3 State-Space Caching

The ULg Partial-Order Package also includes an implementation of the state-space caching

technique. State-space caching [Hol85, JJ91] is a memory management technique for storing

the states encountered during a depth-�rst search that consists in storing all the states of

the current explored path (i.e., those in the current depth-�rst search \stack") plus as many

other states as possible given the remaining amount of available memory. It thus creates a

restricted cache of selected system states that have already been visited. Initially, all states

encountered are stored into the cache. When the cache �lls up, old states that are not in

the stack are removed from the cache to accommodate new ones. This method never tries to

store more states than possible in the cache. Thus, if the size of the cache is greater than the

maximal size of the stack during the exploration, the search is not truncated, and eventually

terminates.

In [GHP92, God94], it is shown that state-space caching and partial-order methods com-

bine very well: the memory requirements needed to validate large protocol models can be

strongly decreased (e.g., more than 100 times) without seriously increasing the time require-

ments.

When the state space being explored by SPIN is too large to be stored in memory, even

3



with the Partial-Order Package, try the state-space caching option. A new option -nC

specifying the maximum number C of states that can be stored in memory (i.e., the size of

the cache) has been added to the executable �le pan:

pan -nC -wN

where C is the maximum number of states that can be stored in main memory (C is

typically set to slightly less than M=S where M is the amount of RAM available on your

computer and S is the state vector size, which is indicated in the diagnosis produced by

SPIN; C must be small enough to avoid paging) and where N is about log

2

(2C) (in order to

keep the hash table at 50% not full).

4 More

The ULg Partial-Order Package is distributed free of charge for research and educational use

only. No guarantee is expressed or implied by the distribution of this code.

This software was written by Patrice Godefroid, Didier Pirottin and Pierre Wolper, Com-

puter Science Department, University of Li�ege, with the collaboration of Gerard J. Holzmann,

AT&T Bell Laboratories. The main reference describing the algorithms implemented in the

Partial-Order Package and presenting results of experimentations is [God94]. Please send

your comments, questions, bug-reports and results of experiments to:

po-package@monte�ore.ulg.ac.be

References

[GHP92] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited. In

Proc. 4th Workshop on Computer Aided Veri�cation, volume 663 of Lecture Notes

in Computer Science, pages 178{191, Montreal, June 1992. Springer-Verlag.

[God90] P. Godefroid. Using partial orders to improve automatic veri�cation methods.

In Proc. 2nd Workshop on Computer Aided Veri�cation, volume 531 of Lecture

Notes in Computer Science, pages 176{185, Rutgers, June 1990. Springer-Verlag.

Extended version in ACM/AMS DIMACS Series, volume 3, pages 321{340, 1991.

[God94] Patrice Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Sys-

tems { An Approach to the State-Explosion Problem. PhD thesis, University of

Li�ege, Computer Science Department, November 1994. (Also available by anony-

mous ftp from ftp.monte�ore.ulg.ac.be in the pub/po-package directory, �le the-

sis.ps.Z).

4



[GP93] P. Godefroid and D. Pirottin. Re�ning dependencies improves partial-order veri�-

cation methods. In Proc. 5th Conference on Computer Aided Veri�cation, volume

697 of Lecture Notes in Computer Science, pages 438{449, Elounda, June 1993.

Springer-Verlag.

[GW93] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cation

of deadlock freedom and safety properties. Formal Methods in System Design,

2(2):149{164, April 1993.

[HGP92] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction

strategies for reachability analysis. In Proc. 12th IFIP WG 6.1 International Sym-

posium on Protocol Speci�cation, Testing, and Veri�cation, pages 349{363, Lake

Buena Vista, Florida, June 1992. North-Holland.

[Hol85] G. J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(12):2413{2434,

1985.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1991.

[JJ91] C. Jard and Th. Jeron. Bounded-memory algorithms for veri�cation on-the-y. In

Proc. 3rd Workshop on Computer Aided Veri�cation, volume 575 of Lecture Notes

in Computer Science, Aalborg, July 1991. Springer-Verlag.

[Val90] A. Valmari. A stubborn attack on state explosion. In Proc. 2nd Workshop on

Computer Aided Veri�cation, volume 531 of Lecture Notes in Computer Science,

pages 156{165, Rutgers, June 1990. Springer-Verlag.

5


