
Software Model Checking: The VeriSoft Approach

Patrice Godefroid

Bell Laboratories, Lucent Technologies

�

August 1, 2003

Abstract

Veri�cation by state-space exploration, also often referred to asmodel checking, is an e�ective

method for analyzing the correctness of concurrent reactive systems (for instance, communica-

tion protocols). Unfortunately, traditional model checking is restricted to the veri�cation of

properties of models, i.e., abstractions, of concurrent systems.

We discuss in this paper how model checking can be extended to analyze arbitrary software,

such as implementations of communication protocols written in programming languages like C or

C++. We then introduce a search technique that is suitable for exploring the state spaces of such

systems. This algorithm has been implemented in VeriSoft, a tool for systematically exploring

the state spaces of systems composed of several concurrent processes executing arbitrary code.

During the past �ve years, VeriSoft has been applied successfully for analyzing several soft-

ware products developed in Lucent Technologies, and has also been licensed to hundreds of users

in industry and academia. We discuss applications, strengths and limitations of VeriSoft, and

compare it to other approaches to software model checking, analysis and testing.

1 Introduction

Concurrent systems are systems composed of elements that can operate concurrently and com-

municate with each other. Each component can be viewed as a reactive system, i.e., a system

that continuously interacts with its environment. Concurrent reactive systems are notably hard

to design and test because their components may interact in many unexpected ways. Traditional

testing techniques are of limited help since test coverage is bound to be only a minute fraction of

the possible behaviors of the system. Furthermore, scenarios leading to errors are often extremely

di�cult to reproduce.

An e�ective approach for analyzing the correctness of a concurrent reactive system consists

of systematically exploring its state space. The state space of a concurrent system is a directed

graph that represents the combined behavior of all concurrent components in the system. Such a

state space can be computed automatically from an abstract description of the concurrent system

speci�ed in a (essentially �nite-state) modeling language. Many properties of a model of a system

�

Address: 2701 Lucent Lane, Lisle, IL 60532, U.S.A. Email: god@bell-labs.com

1

can be checked by exploring its state space: deadlocks, dead code, violations of user-speci�ed

assertions, etc. Moreover, the range of properties that state-space exploration techniques can

verify has been substantially broadened during the last decade thanks to the development of model-

checking methods for various temporal logics (e.g., [CES86, LP85, QS81, VW86]). In what follows,

we will use the term \model checking" in a broad sense, to denote any automatic state-space

exploration technique that can be used for veri�cation purposes.

1

Examples of tools that follow the above paradigm are CAESAR [FGM

+

92], COSPAN [HK90],

CWB [CPS93], MURPHI [DDHY92], SMV [McM93] and SPIN [Hol91], among others. These tools

di�er by the modeling languages they use for representing systems and properties. But all of

them are based on state-space exploration algorithms, in one form or another, for performing the

veri�cation itself.

The e�ectiveness of model checking for analyzing the correctness of concurrent reactive systems

is becoming increasingly well-established. A large variety of complex reactive systems, ranging

from circuit designs to communication protocols, have been modeled and then analyzed using

state-space exploration techniques. In many cases, these analyzes were able to reveal quite subtle

design errors (e.g., [Rud92, CGH

+

93, BG96]). Once the model of a new software application has

been thoroughly analyzed, it can also be used as the core of the implementation of the application

(e.g., [HP89, FHS95]).

It is worth emphasizing that the practical interest of systematic state-space exploration (and

of \veri�cation" in general) is mainly to �nd errors that would be hard to detect and reproduce

otherwise, and not necessarily to prove the absence of errors. While mathematically proving that

a model of a system conforms to a speci�c set of properties does increase the con�dence that

the actual system is \correct", it does not provide a proof of this fact. Therefore, although model

checking is a veri�cation framework, it is closer to testing in practice since any veri�cation process is

inherently incomplete: only some abstract models or system con�gurations can be checked against

some properties in some environment, and veri�cation results can also be approximate when an

exact answer is too expensive to compute.

In this paper, we discuss how model checking can be extended to deal directly with \actual"

descriptions of concurrent systems, such as implementations of communication protocols written in

general-purpose programming languages like C or C++. We show that existing search techniques

for state-space exploration are fundamentally limited to the analysis of systems for which each

state of the system can be readily represented by a unique identi�er. We then introduce an e�cient

search technique that does not rely on this assumption. This search algorithm can therefore be

applied to systems composed of several concurrent processes executing arbitrary code written in

full-
edged programming languages.

1

Traditionally, the term \model checking" means \to check whether a system is a model of a temporal logic

formula", in the classic logical sense. This de�nition does not imply that a \model", i.e., an abstraction, of a system

is checked.

2

2 Concurrent Systems and Dynamic Semantics

We consider a concurrent system composed of a �nite set P of processes and a �nite set O of

communication objects. Each process P 2 P executes a sequence of operations described in a

sequential program written in a full-
edged programming language such as C or C++. Such

sequential programs are deterministic: every execution of the program on the same input data

performs the same sequence of operations. We assume that processes communicate with each other

by performing atomic operations on communication objects. A communication object O 2 O is

de�ned by a pair (V;OP), where V is the set of all possible values for the object (its domain), and

OP is the set of operations that can be performed on the object. Examples of communication objects

are shared variables, semaphores, and FIFO bu�ers. Since we assume operations on communication

objects are atomic, at most one operation can be performed on a given communication object at any

time. Operations on communication objects are called visible operations, while other operations

are by default called invisible. The execution of an operation is said to be blocking if it cannot

currently be completed; for instance, waiting for the reception of a message blocks until a message

is received. We assume that only executions of visible operations may be blocking.

At any time, the concurrent system is said to be in a state. The system is said to be in a global

state when the next operation to be executed by every process in the system is a visible operation.

Every process in the system is always expected to eventually attempt executing a visible operation.

(If a process does not attempt to execute a visible operation within a given amount of time, an

error, called divergence, is reported at run-time.) This assumption implies that initially, after the

creation of all the processes of the system, the system can reach a �rst and unique global state s

0

,

called the initial global state of the system. A process transition, or transition for short, is de�ned

as one visible operation followed by a �nite sequence of invisible operations performed by a single

process and ending just before a visible operation. Let T denote the set of all transitions of the

system.

A transition is said to be disabled in a global state s when the execution of its visible operation

is blocking in s. Otherwise, the transition is said to be enabled in s. A transition t that is enabled

in a global state s can be executed from s. Since the number of invisible operations in a transition

is �nite, the execution of an enabled transition always terminates. When the execution of t from s

is completed, the system reaches a global state s

0

, called the successor of s by t.

2

We write s

t

! s

0

to mean that the execution of the transition t leads from the global state s to the global state s

0

,

while s

w

) s

0

means that the execution of the �nite sequence w of transitions leads from s to s

0

.

We now de�ne a formal semantics for the concurrent systems that satisfy our assumptions. A

concurrent system as de�ned here is a closed system: from its initial global state, it can evolve and

change its state by executing enabled transitions. Therefore, a natural way to describe the possible

behaviors of such a system is to consider its set of reachable global states and the transitions that

are possible between these.

Formally, the joint global behavior of all processes P

i

in a concurrent system can be represented

2

Operations on objects (and hence transitions) are deterministic: the execution of a transition t in a state s leads

to a unique successor state.

3

/* phil.c : dining philosophers (version without loops) */

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#define N 2

philosopher(i,semid)

int i, semid;

{

printf("philosopher %d thinks\n",i);

semwait(semid,i,1); /* take left fork */

semwait(semid,(i+1)%N,1); /* take right fork */

printf("philosopher %d eats\n",i);

semsignal(semid,i,1); /* release left fork */

semsignal(semid,(i+1)%N,1); /* release right fork */

exit(0);

}

main()

{

int semid, i, pid;

semid = semget(IPC_PRIVATE,N,0600);

for(i=0;i<N;i++)

semsetval(semid,i,1);

for(i=0;i<(N-1);i++) {

if((pid=fork()) == 0)

philosopher(i,semid);

};

philosopher(i,semid);

}

Figure 1: Example of concurrent C program simulating dining philosophers

4

s0

P1:semwait

P2:semwait

P2:semwait

P1:semwait

P1:semwait P1:semsignal P1:semsignal P2:semwait P2:semwait P2:semsignal

P2:semsignal

P2:semwait P2:semsignal P2:semsignal P1:semwait P1:semwait P1:semsignal

P1:semsignal

deadlock deadlock

Figure 2: Global state space for the two-dining-philosophers system

by a transition system A

G

= (S;�; s

0

) such that

� S is the set of global states of the system,

� � � S � S is the transition relation de�ned as follows:

(s; s

0

) 2 � i� 9t 2 T : s

t

! s

0

;

� s

0

is the initial global state of the system.

An element of � corresponds to the execution of a single transition t 2 T of the system. The

elements of � will be referred to as global transitions. As usual, we restrict A

G

to its global states

and transitions that are reachable from s

0

, since the other global states and transitions play no role

in the behavior of the system. In what follows, a \state in A

G

" denotes a state that is reachable

from s

0

. By de�nition, states in A

G

are global. We call A

G

the global state space of the system.

Example 1 Consider the concurrent C program shown in Figure 1. This program represents a

concurrent system composed of two processes that communicate using UNIX semaphores. The

program describes the behavior of these processes as well as the initialization of the system. This

example is inspired by the well-known dining-philosophers problem, with two philosophers. The

two processes communicate by executing the (visible) operations semwait and semsignal on two

semaphores that are identi�ed by the integers 0 and 1 respectively. The operations semwait and

semsignal take 3 arguments: the �rst argument is an identi�er for an array of semaphores, the

second is the index of a particular semaphore in that array, and the third argument is a value

by which the counter associated with the semaphore identi�ed by the �rst two arguments must

be decremented (in the case of semwait) or incremented (in the case of semsignal). The value of

both semaphores is initialized to 1 with the operation semsetval. By implementing these operations

using actual UNIX semaphores (the exact UNIX system calls to do this are similar), the program

above can be compiled and run on any UNIX machine. The state space A

G

of this system is

shown in Figure 2, where the two processes are denoted by P1 and P2, and global transitions are

5

labeled with the visible operation of the corresponding process transition. The operation exit is

a visible operation whose execution is always blocking. Since all the processes are deterministic,

nondeterminism in A

G

is caused only by concurrency.

Since we consider here closed concurrent systems, the environment of one process is formed

by the other processes in the system. This implies that, in the case of a single \open" reactive

system, the environment in which this system operates has to be represented, possibly using other

processes. In practice, a complete representation of such an environment may not be available, or

may be very complex. It is then convenient to use a simpli�ed representation of the environment

to simulate its behavior. For this purpose, we introduce a special operation \VS toss" to express

a valuable feature of modeling languages, not found in programming languages: nondeterminism.

This operation takes as argument a positive integer n, and returns an integer in [0; n]. The operation

is visible and nondeterministic: the execution of a transition starting with VS toss(n) may yield

up to n+ 1 di�erent successor states, corresponding to di�erent values returned by VS toss.

Which properties of a concurrent system is it possible to check by examining its state space

A

G

as de�ned above? Here, we focus mainly on two veri�cation problems (other properties will

be discussed later in Section 5): the detection of deadlocks and assertion violations. Deadlocks

are states where the execution of the next operation of every process in the system is blocking.

Deadlocks are a notorious problem in concurrent systems, and are extremely di�cult to detect

through conventional testing. Assertions can be speci�ed by the user with the special operation

\VS assert". This operation can be inserted in the code of any process, and is considered visible.

It takes as its argument a boolean expression that can test and compare the value of variables and

data structures local to the process. When \VS assert(expression)" is executed, the expression is

evaluated. If the expression evaluates to false, the assertion is said to be violated. Many undesirable

system properties, such as unexpected message receptions, bu�er over
ows and application-speci�c

error conditions, can easily be expressed as assertion violations.

The following theorem states that deadlocks and assertion violations can be detected by explor-

ing only the global states of a concurrent system.

Theorem 1 Consider a concurrent system as de�ned above, and let A

G

denote its state space.

Then, all the deadlocks that are reachable after the initialization of the system are global states, and

are therefore in A

G

. Moreover, if there exists a state reachable after the initialization of the system

where an assertion is violated, then there exists a global state in A

G

where the same assertion is

violated.

Proof: See Appendix.

This theorem justi�es our choice for the \dynamic" semantics described in this section.

In the next section, we discuss how to build a representation of the state space of a concurrent

system as de�ned above. We brie
y review standard state-space exploration techniques, and show

why they are not appropriate for exploring state spaces of concurrent systems whose processes are

described by arbitrary programs.

6

1 Initialize: Unexplored is empty; Explored is empty;

2 add s

0

to Unexplored;

3 Loop: while Unexplored 6= ; do f

4 take s out of Unexplored;

5 if s is NOT already in Explored then f

6 enter s in Explored;

7 T = enabled(s);

8 for all t in T do f

9 s

0

= succ(s) after t;

10 add s

0

to Unexplored;

11 g

12 g

13 g

Figure 3: Algorithm 1 { classical search

3 Existing State-Space Exploration Techniques

In the case of models of concurrent systems, a state space A

G

is usually computed by performing a

search of all the states that are reachable from the initial state s

0

of the model of the system. An

algorithm for performing such a search is shown in Figure 3. This algorithm recursively explores

all successor states of all states encountered during the search, starting from the initial state, by

executing all enabled transitions in each state (lines 7{8). The main data structures used are a

set Unexplored to store the states whose successors still have to be explored, and a set Explored

(often implemented as a hash-table) to store all the states that have already been visited during the

search. The set of all transitions enabled in a state s is denoted by enabled(s). The state reached

from a state s after the execution of a transition t is denoted \succ(s) after t". It is easy to prove

that, if A

G

is �nite, all the states of A

G

are visited during the search performed by the algorithm

of Figure 3 [AHU74]. The order in which the search is performed (depth-�rst, breadth-�rst, etc.)

depends on how the operations \add" and \take" are implemented.

It is important to note that the algorithm of Figure 3 assumes that each state s can be represented

by a unique identi�er, that can be stored in the data structures Unexplored and Explored during

the search. Although other search algorithms for modeling languages, such as symbolic veri�cation

methods [BCM

+

90, CGL92, McM93], may use other types of data structures (e.g., Binary Decision

Diagrams [Bry92]) for representing state spaces, they all rely on the assumption that each state

of the system has a unique representation (typically a string of bits) that is easy to compute and

manipulate.

When dealing with processes described by arbitrary programs written in full-
edged program-

ming languages, this assumption is not valid anymore. Indeed, the state of each process is deter-

mined by the values of all the memory locations that can be accessed by the process and in
uence

7

its behavior (including activation records associated with procedure calls). This information is

typically far too large and complex to be e�ciently and unambiguously encoded by a string of bits,

which could then be saved in memory at each step of the state-space exploration.

However, nothing prevents us from systematically searching the state space of a concurrent sys-

tem without storing any intermediate states in memory, by successively enumerating and exploring

all possible sequences of transitions in the state space. Let us call such a search a state-less search.

Of course, if the state space A

G

contains cycles, a state-less search through it will not terminate,

even if A

G

is �nite (unless an upper bound on the number of states of A

G

is known). Even state-less

searches of \small" �nite acyclic state spaces (e.g., composed of only a few thousand states) may

not terminate in a reasonable amount of time. To illustrate this phenomenon, let us consider the

dining-philosophers example again. (The state space of this system does not contain any cycles.)

The number of transitions explored by a classical search (Algorithm 1) and by a state-less search

are compared in Figure 5, for various numbers N of processes. The run-time of both algorithms

is proportional to the number of explored transitions. One clearly sees that the state-less search

is much slower than the classical one. In the case of four processes, the state-less search explores

386,816 transitions, while they are only 708 transitions in A

G

. While every transition of A

G

is exe-

cuted exactly once during a classical search, every transition of A

G

is executed on average about 546

times during a state-less search! This tremendous di�erence is due to the numerous re-explorations

of unstored parts of the state space during the state-less search.

4 An E�cient State-Less Search Algorithm

The state-less search technique can be viewed as a particular case of state-space caching [Hol85,

JJ91, GHP95], a memory management technique for storing the states encountered during a clas-

sical search performed in depth-�rst order. State-space caching consists of storing all the states

of the current explored path plus as many other states as possible given the remaining amount

of available memory. It thus creates a restricted cache of selected states that have already been

visited. This method never tries to store more states than possible in the cache. A state-less search

corresponds to the extreme case where the cache does not contain any state at all.

State-space caching su�ers the same drawback as the state-less search: multiple redundant

explorations of large unstored parts of the state space yield an unacceptable blow-up of the run-

time. Indeed, almost all states in the state spaces of concurrent systems are typically reached

several times during the search. There are two causes for this:

1. From the initial state, the exploration of any interleaving of a single �nite partial ordering

of transitions of the system always leads to the same state. This state will thus be visited

several times because of all these interleavings.

2. From the initial state, explorations of di�erent �nite partial orderings of transitions may lead

to the same state.

In [GHP95], it is shown that most of the e�ects of the �rst cause given above can be avoided when

using a search algorithm based on the notion of sleep sets [God90, GW93]. Such an algorithm

8

dynamically prunes the state space of a concurrent system without incurring the risk of any in-

completeness in the veri�cation results. Empirical results [GHP95, God96] show that, in many

cases, most of the states are visited only once during a state-space exploration performed with this

search technique. This makes it possible not to store most of the states previously visited during

the search without incurring much redundant exploration of parts of the state space.

Sleep sets belong to a broader family of algorithms, referred to as partial-order methods [God96],

that were developed to tackle the \state explosion" phenomenon that limits the e�ciency and

applicability of veri�cation by state-space exploration. In [God96], it is shown that sleep sets can

be combined with another pruning technique based on the notion of persistent sets. Using both

techniques simultaneously preserves the bene�cial properties of sleep sets outlined in the previous

paragraph while substantially reducing the number of states and transitions that have to be visited.

In this section, we present a new state-space exploration algorithm that combines a state-less

search with the persistent-set and sleep-set techniques. Before turning to the presentation of this

algorithm, we brie
y recall some basic principles of partial-order methods.

The basic idea behind partial-order methods that enables them to check properties of A

G

without

constructing the whole of A

G

is the following: A

G

contains many paths that correspond simply to

di�erent execution orders of the same process transitions. If these transitions are \independent",

for instance because they are executed by noninteracting processes, then changing their order will

not modify their combined e�ect.

This notion of independency between transitions and its complementary notion, the notion of

dependency, can be formalized by the following de�nition (adapted from [KP92]).

De�nition 1 Let T be the set of system transitions and D � T � T be a binary, re
exive, and

symmetric relation. The relationD is a valid dependency relation for the system i� for all t

1

; t

2

2 T ,

(t

1

; t

2

) 62 D (t

1

and t

2

are independent) implies that the two following properties hold for all global

states s in the global state space A

G

of the system:

1. if t

1

is enabled in s and s

t

1

! s

0

, then t

2

is enabled in s i� t

2

is enabled in s

0

(independent

transitions can neither disable nor enable each other); and

2. if t

1

and t

2

are enabled in s, then there is a unique state s

0

such that s

t

1

t

2

) s

0

and s

t

2

t

1

) s

0

(commutativity of enabled independent transitions).

This de�nition characterizes the properties of possible \valid" dependency relations for the transi-

tions of a given system. In practice, it is possible to give easily checkable syntactic conditions that

are su�cient for transitions to be independent. In a concurrent system as de�ned in Section 2,

dependency can arise between transitions of di�erent processes that perform (visible) operations

on the same communication objects. For instance, two wait operations on a binary semaphore are

dependent when they are enabled, while two signal operations on a same non-binary semaphore are

independent. Carefully de�ning dependencies between operations on communication objects is by

no means a trivial task. We refer the reader to [God96] for a detailed presentation of that topic.

9

All partial-order algorithms follow the same basic pattern: they operate as classical state-space

searches except that, at each state s reached during the search, they compute a subset T of the

set of transitions enabled at s, and explore only the transitions in T , the other enabled transitions

are not explored. Such a search is called a selective search. It is easy to see that a selective search

through A

G

only reaches a subset (not necessarily proper) of the states and transitions of A

G

.

Two main techniques for computing such sets T have been proposed in the literature: the

persistent-set and sleep-set techniques. The �rst technique actually corresponds to a whole family

of algorithms [Ove81, Val91, GP93, GW93, Pel93]. In [God96], it is shown that all these algorithms

compute \persistent sets". Intuitively, a subset T of the set of transitions enabled in a state s of A

G

is called persistent in s if all transitions not in T that are enabled in s, or in a state reachable from

s through transitions not in T , are independent with all transitions in T . In other words, whatever

one does from s, while remaining outside of T , does not interact with or a�ect T . Formally, we

have the following [GP93].

De�nition 2 A set T of transitions enabled in a state s is persistent in s i�, for all nonempty

sequences of transitions

s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

from s in A

G

and including only transitions t

i

62 T , 1 � i � n, t

n

is independent with all transitions

in T .

Note that the set of all enabled transitions in a state s is trivially persistent since nothing is

reachable from s by transitions that are not in this set. It is beyond the scope of this paper to

present algorithms for computing persistent sets. In a nutshell, these algorithms infer persistent sets

from the static structure of the system being veri�ed (such as \process x can perform operation

y on communication object z"). They di�er by the type of information about the system that

they use. The aim of these algorithms is to obtain the smallest possible nonempty persistent sets.

See [God96] for several such algorithms and a comparison of their complexity.

The second technique for computing the set of transitions T to consider in a selective search

is the sleep set technique [God90, GW93]. This technique does not exploit information about the

static structure of the system, but rather about the past of the search. Used in conjunction with a

persistent set algorithm, sleep sets can further reduce the number of explored states and transitions.

An algorithm that combines persistent sets and sleep sets with a state-less search is shown in

Figure 4. This algorithm performs a selective depth-�rst search (DFS) in the state space of a

concurrent system. The data structure Stack contains the sequence of transitions that leads from

the initial global state s

0

to the current global state being explored. A set denoted by Sleep is

associated with each global state reached during the search, i.e., with each call to the procedure

DFS. The sleep set associated with a global state s is a set of transitions that are enabled in s but

will not be explored from s. The sleep set associated with the initial global state s

0

is the empty

set. Each time a new global state s is encountered during the search, a call to DFS is executed.

The sleep set that is associated with s is passed as argument. In line 6, a new set of transitions

is selected to be explored from s. Persistent Set() returns a persistent set in the current global

state s that is nonempty if there exist transitions enabled in s. Lines 11 and 14 describe how to

10

1 Initialize: Stack is empty;

2 Search() f

3 DFS(;);

4 g

5 DFS(set: Sleep) f

6 T = Persistent Set()nSleep;

7 while T 6= ; do f

8 take t out of T ;

9 push (t) onto Stack;

10 Execute(t);

11 DFS(ft

0

2 Sleep j t

0

and t are independentg);

12 pop t from Stack;

13 Undo(t);

14 Sleep = Sleep [ftg;

15 g;

16 g

Figure 4: Algorithm 2 { state-less depth-�rst search using persistent sets and sleep sets

compute the sleep sets associated with the successor global states of s from the value of its sleep

set Sleep. In line 10, a transition t is executed from s. The procedure Execute(t) returns after a

new global state has been reached by the concurrent system. Then all the transitions of Sleep that

are independent with t are passed into the sleep set associated with that new global state (line 11).

Once the search from that new state (and hence the corresponding call to DFS) is completed, the

exploration of the other transitions selected to be explored from s may proceed. The concurrent

system is then brought back to the global state s in line 13. (This can be done by reinitializing the

system and reexecuting the sequence of transitions in Stack, for instance.) Next, transition t, i.e.,

the last transition explored from s, is added to Sleep in line 14.

The correctness of Algorithm 2 is established by the following theorem.

Theorem 2 Consider a concurrent system as de�ned in Section 2, and let A

G

denote its state

space. Assume A

G

is �nite and acyclic. Then, all the deadlocks in A

G

are visited by Algorithm 2.

Moreover, if there exists a global state in A

G

where an assertion is violated, then there exists a

global state visited by Algorithm 2 where the same assertion is violated.

Proof: See Appendix.

In other words, deadlocks and assertion violations can be detected using Algorithm 2. As discussed

in the previous section, the termination of Algorithm 2 is guaranteed only when the state space

A

G

is �nite and does not contain any cycles. In practice, Algorithm 2 can be used to e�ciently

explore the state space of any concurrent system, whether its state space is acyclic or not.

Finally note that Algorithm 2 is di�erent from the algorithms combining persistent sets and

11

Transitions

Processes

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 2 3 4 5 6 7 8 9 10

State-less

Algo 2

Algo 1

Figure 5: Comparison of performances for the dining-philosophers system

VeriSoft scheduler

System Processes

Figure 6: Overall architecture of VeriSoft (in automatic state-space exploration mode)

sleep sets that appeared in [God96]. Indeed, with a state-less search, di�erent sleep sets associated

with the same global state (corresponding to di�erent visits of that state via di�erent paths from

s

0

) cannot interfere with each other during the search. Moreover, cycles cannot be detected in the

context of a state-less search, which makes the use of the provisos discussed in [God96] impossible.

Results of experiments with Algorithm 2 for the dining-philosophers example are presented in

Figure 5. Thanks to the use of persistent sets and sleep sets, the run-time explosion of the state-less

search is now avoided. Moreover, they yield a signi�cant reduction in the number of transitions

that need be explored. Although Algorithm 2 does not store any state in memory, it explores fewer

transitions than Algorithm 1!

5 VeriSoft

VeriSoft is a tool for systematically exploring the state space of a concurrent system as de�ned

in Section 2. Systematic state-space exploration is performed by controlling and observing the

12

execution of all the visible operations of the concurrent processes of the system. Every process of

the concurrent system to be analyzed is mapped to a UNIX process. The execution of the system

processes is controlled by an external process, called the scheduler (see Figure 6). This process

observes the visible operations performed by processes inside the system, and can suspend their

execution. By resuming the execution of (the next visible operation of) one selected system process

in a global state, the scheduler can explore one transition in the state space A

G

of the concurrent

system. The scheduler also contains an implementation of a state-less search using persistent sets

and sleep sets similar to Algorithm 2. In order to prevent the state-less search from looping forever

in cycles of the state space being explored, the depth of the search is limited. When this maximum

depth is reached, the scheduler reinitializes the system in order to explore alternative paths in the

state space.

When a deadlock or an assertion violation is detected, the search is stopped, and a scenario

formed by all the transitions currently stored in Stack (see Figure 4) is exhibited to the user. An

interactive graphical simulator/debugger is also available for replaying scenarios and following their

executions at the instruction or procedure/function level (see Figure 7). Values of variables of each

process can be examined interactively. Using the VeriSoft simulator, the user can also explore any

path in the state space of the system with the same set of debugging tools.

It is thus assumed that there are exactly two sources of nondeterminism in the concurrent

systems considered here: concurrency and calls to the special visible operation VS toss used to

model nondeterminism as described in Section 2. When this assumption is satis�ed, the VeriSoft

scheduler has complete control over nondeterminism. It can thus reproduce any scenario leading

to an error found during a state-space search and can also guarantee, from a given initial state,

complete coverage of the state space up to some depth.

In addition to deadlocks and assertion violations, VeriSoft also checks for divergences and live-

locks. A \divergence" occurs when a process does not attempt to execute any visible operation

within a given (user-speci�ed) amount of time. Divergences may be caused by segmentation faults,

non-terminating loops, etc. A \livelock" occurs when the execution of the next visible operation

of some process is blocking during a sequence of more than a given (user-speci�ed) number of suc-

cessive states in the state space. Note that these de�nitions of divergence and livelock di�er from

the standard de�nitions for these notions, which correspond to liveness properties, i.e., properties

that can only be violated by in�nite sequences of operations or transitions [Lam77, MP92]. In

contrast, our notions of divergence and livelock can be violated by �nite sequences of operations or

transitions, and therefore are actually safety properties. Indeed, a state-less search cannot detect

cycles, and is thus restricted to the veri�cation of safety properties.

6 Applications

During the last �ve years, VeriSoft has been applied successfully for analyzing several software

products developed in Lucent Technologies. Some of these projects have been documented in pub-

lished papers. For instance, [GHJ98] describes the analysis of the \Heart-Beat Monitor" of a 4ESS

switch, a critical component of a telephone switch, while [CGP02] reports on the analysis of several

13

Figure 7: Screenshot of VeriSoft in interactive simulation mode

14

releases of the call-processing software running on Lucent's CDMA base-stations, a multi-billion

dollar product line. These projects range from so-called \white-box" unit testing of small critical

applications described by at most a few thousands of lines of code, as in the case of [GHJ98], to

\black-box" system testing of huge applications involving many concurrent components implemented

by millions of lines of code, as in the case of [CGP02]. In each case, signi�cant previously-unknown

bugs were revealed through the use of VeriSoft.

The fact that VeriSoft detected errors that escaped traditional testing is not surprising, consid-

ering the following factors:

� Complex concurrent reactive systems are notorious for exhibiting a very large number of

di�erent behaviors.

� Traditional testing is of limited help since test coverage is bound to be only a minute fraction

of all possible behaviors of the system.

� Systematic state-space exploration can expose previously unknown bugs by exercising the

system under test in enormously more possible ways.

A key strength of the VeriSoft approach compared to other types of model checking is that it is

extremely versatile: VeriSoft does not rely on any speci�c assumption about the code representing

the behavior of processes, which can be written in any language and does not even need to be

available.

3

Applying VeriSoft to a program written in a new language merely requires integrating

VeriSoft into a test environment for that language, as described later in this section.

A second key strength of the VeriSoft approach is that it is scalable, in the following sense: the

applicability of VeriSoft depends on the amount of nondeterminism in the system being analyzed,

not on the size of the code describing the application itself. Nondeterminism comes from either

concurrency or explicit nondeterminism introduced by the user using the special VS toss operation.

In the case of tens of concurrent processes, the amount of nondeterminism due to concurrency

in the system is typically too large for VeriSoft to be very e�ective. An alternative is then to

deliberately \hide" some system processes and communication objects from VeriSoft in order to

reduce the amount of nondeterminism visible to the tool and hence reduce the size of the state

space being explored. Since the user has the responsibility of declaring what operations are visible

to VeriSoft anyway, omitting some processes or communication objects is easy. For instance, an

entire communication switch can be be viewed as a huge black-box and multiple concurrent test-

drivers controlled by VeriSoft can simulate various sequences of external events occurring at di�erent

interfaces of the switch (simulating other switches, user tra�c and hardware failures, for example);

even though VeriSoft does not control the nondeterminism (if any) inside the black-box itself

with this approach, this can still be a very challenging test for the application. This type of

approximation is necessary for analyzing applications of the size and complexity of the CDMA call-

processing software [CGP02]. Obviously, if all the sources of nondeterminism are not under the

control of VeriSoft, completeness of veri�cation results and reproducibility of error traces cannot

be guaranteed anymore.

3

In this general discussion, the term VeriSoft is meant to denote both the current implementation of the tool and

the VeriSoft approach in general, eventhough the former is obviously more limited than the latter.

15

We now discuss other practical considerations associated with this approach to software model

checking.

Test automation. Using VeriSoft for testing the correctness of a software product requires test

automation, i.e., the ability to run and evaluate tests automatically. As testers know, de-

veloping a testing infrastructure that provides test automation can be in itself a signi�cant

e�ort. When test automation is already available, starting to take advantage of VeriSoft to

signi�cantly increase test coverage is usually easy since it may just involve modifying existing

test scripts into nondeterministic ones and/or running multiple test scripts in parallel under

the control of the VeriSoft scheduler.

Integration into testing environment. VeriSoft needs to be integrated into the execution en-

vironment of the system under test so that it can control at run-time the execution of system

processes. The primary task involved here is to declare which system calls of which processes

are to be intercepted by VeriSoft and viewed as visible operations. Minimally, visible oper-

ations may simply include operations such as VS toss and VS assert for \black-box" testing

of large applications. In the case of unit testing of applications containing only a handful of

processes, system calls related to communication can also be declared as visible by mapping

these to corresponding operations included in built-in VeriSoft libraries; for instance, sending

a message (using whatever protocol is used by the application) can be mapped to a VeriSoft

send to queue operation. Note that the actual system/protocol call need not be replaced by

send to queue, it can just be annotated with the occurrence of that event. Mapping system

calls related to communication to operations understood by VeriSoft can be tricky when com-

plicated and unusual communication objects are used. Instrumenting the execution itself can

be done by overriding system calls at compile/link time, or via a binary-code or OS-kernel

instrumentation, or through the use of wrap-up functions intercepting events going in and

out of the application being tested.

Test drivers. Like most model checkers, VeriSoft requires an executable representation of the

environment of the system being analyzed in order to drive its executions. Thanks to the

VS toss operation supported by VeriSoft, nondeterministic programs can be used as environ-

ment models (test drivers). Nondeterminism makes it possible to write very compact and

elegant programs for generating large numbers of sequences of input events (test scenarios).

Since the size of the state space depends on the amount of nondeterminism in the system,

VS toss should be used with care.

Specifying properties. Although VeriSoft can simply be used to detect standard errors such as

deadlocks and segmentation faults, it is preferable to specify application-speci�c properties by

means of assertions in test drivers in order to check the functional correctness of the software

application. Obviously, assertions previously inserted in the code itself by application devel-

opers can also be tested. Another possibility is to use tools (like Purify) that automatically

insert assertions to check for standard programming errors such as memory leaks.

State explosion. The main practical limitation of VeriSoft, and of model checking in general, is

the state-explosion problem: it is very easy for the user to de�ne a state space that is too

large to be explored exhaustively. State explosion can be controlled by limiting the amount

16

of nondeterminism visible to VeriSoft, as discussed above. However, hiding nondeterminism

due to concurrency inside the application being tested may result in errors being missed.

7 Comparison with Related Work

Essentially two approaches to software model checking have been proposed and are still actively

being investigated. The �rst approach is the one presented in the previous sections and originally

introduced in [God97]. The second approach consists of automatically extracting a model out of a

software application by statically analyzing its code and abstracting away details, applying tradi-

tional model checking to analyze this abstract model, and then mapping abstract counter-examples

(if any) back to the code. The investigation of this second approach can be traced back to early

attempts to analyze concurrent programs written in concurrent programming languages such as

Ada (e.g., [Tay83, LC91, MR93, Cor96]). Other relevant work includes static analyses geared

towards analyzing communication patterns in concurrent programs (e.g., [Col95, Cri95, Ven97]).

Recently, several e�orts have started aiming at providing model-checking tools based on source-code

abstraction for mainstream popular programming languages such as C and Java. For instance, Ban-

dera [CDH

+

00] can translate Java programs to the (�nite-state) input languages of existing model

checkers like SMV and SPIN, using user-guided abstraction, slicing and abstract interpretation

techniques. SLAM [BR01] can translate sequential C programs to \boolean programs", which are

essentially inter-procedural control-
ow graphs extended with boolean variables, using an iterative

automatic abstraction-re�nement process based on the use of predicate abstraction and a specialized

model-checking procedure. Feaver [HS99] can translate C programs into Promela, the input lan-

guage of the SPIN model checker, using user-speci�ed abstraction rules. Java PathFinder [VHBP00]

can perform model checking of multi-threaded Java programs using a blend of static and dynamic

program-analysis techniques. For the speci�c classes of concurrent programs that these tools can

handle, the use of abstraction techniques can produce a \conservative" model of a program that

preserves basic information about the execution and communication patterns taking place in the

system executing the program. Analyzing such a model using standard model-checking techniques

can then prove the absence of certain types of errors in the system, without ever executing the

program itself. In contrast, VeriSoft is based on the dynamic observation of the \actual" pro-

cesses of the concurrent system. This makes possible a much closer examination of the behaviors

of the system, and the detection of subtle implementation errors that would typically be missed

in practice using abstraction techniques, because either the abstraction does not preserve all the

details relevant to that particular error, or because it would be hidden in a multitude of higher-level

warnings. Moreover, VeriSoft does not rely on any speci�c assumption about the static structure

of the programs used to represent the behavior of processes, which can actually be written in any

language, or even be unavailable. In summary, the dynamic (VeriSoft) and static (abstraction-

based) approaches to software model checking inherit the well-known advantages and limitations

of, respectively, dynamic and static program analysis, and are therefore complementary.

The closest alternative to the type of software model checking developed in our work is perhaps

speci�cation-based testing frameworks for reactive programs (e.g., [YL91, DY94, Ric94, CRS96,

JPP

+

97]). Given a speci�cation of the input/output behavior of the system being tested repre-

17

sented by a �nite-state machine (or a product of �nite-state machines [FJJV96]) expressed in some

modeling language, these techniques and tools can automatically generate a set of test sequences

that cover the speci�cation according to various coverage criteria. In contrast, VeriSoft generates

test scenarios dynamically at run-time: state-space exploration is performed while the system is

executing, and the outcome of previous test sequences (i.e., paths in the state space) typically

in
uences the generation of following test sequences (by the use of partial-order reduction meth-

ods). Moreover, using VeriSoft does not require a speci�cation of the input/output behavior of the

system under test written in some speci�c FSM modeling language; instead, the environment of an

open system can be represented by one or several processes executing arbitrary code, and the joint

behavior of all these processes is then checked for \global" properties when exploring the resulting

state space, in the style of what is usually done with model checking.

Another related and complementary area of research concerns the design of debuggers for dis-

tributed and parallel programs (e.g., [CMN91]). These tools are used to monitor the execution of

concurrent processes running in their actual environment. Work in this area discuss techniques

for, among others, (1) instrumenting the execution of processes while minimizing the impact of the

instrumentation on the timing (scheduling) between the di�erent processes, (2) storing a minimum

amount of information for faithfully replaying (\roll-back") very long scenarios leading to errors,

and (3) obtaining a consistent representation of a state (\snapshot") of a distributed/concurrent

system. These problems are avoided with our approach since (1) all the sources of nondeterminism

are fully controlled by the VeriSoft scheduler, (2) the purpose of our approach is to make possible

the systematic analysis of short executions of a concurrent system, rather than analyzing very long

ones (e.g., containing millions of process transitions), and (3) our analysis is performed by examin-

ing only the global states of the concurrent system, which the scheduler can easily re-create. Note

that VeriSoft does not generally preserve quantitative properties (related to timing, performance,

etc.) of the whole concurrent system.

Other complementary work includes tools (like Purify) that automatically instrument code or

executable �les for monitoring program executions and detecting at run-time standard programming

and memory-management errors such as array out-of-bounds and memory leaks. Also, several tools

for monitoring at run-time the behavior of a reactive program and comparing this behavior against

an application-speci�c high-level speci�cation (typically a �nite-state automaton or a temporal-

logic formula) have recently been developed (e.g., [Dru00, HR01]). These tools can be used in

conjunction with VeriSoft in order to increase the likelihood of errors being detected.

We conclude this section by mentioning other work that either makes use of VeriSoft or was

directly inspired by it. [BG97] describes how to automatically synthesize a �nite-state machine that

simulates all the sequences of visible operations of a given process that were observed during a state-

space exploration performed by VeriSoft. [CGJ98] discusses algorithms for automatically closing

an open concurrent reactive C program with its most general environment, i.e., the environment

that can provide any input at any time to the program; the result is a nondeterministic closed (i.e.,

self-executable) program that can exhibit all the possible behaviors of the original program and

can be analyzed with VeriSoft. [God99] studies how to adapt model-checking symmetry reduction

methods to make these compatible with a state-less search, i.e., without relying on explicit encodings

of system states. [Sto00] discusses how to optimize a (state-less) search in the state space of a multi-

18

threaded program whose threads use locks to protect access to shared data structures. Applications

of VeriSoft to analyze programs speci�ed using domain-speci�c primitives implemented as Java

libraries are described in [GJJL00] and [GHJL00]. [GK02] discusses how to exploit heuristics using

genetic algorithms to guide a search towards error states in very large state spaces; this framework

has been implemented in conjunction with VeriSoft and evaluated with several examples of C

programs. [BFG02] presents an overview of a tool for automatically discovering and systematically

exploring Web-site execution paths; this tool includes VeriSoft as one of its components.

8 Conclusions

We have presented a new search technique for e�ciently exploring the state space of a concurrent

system composed of processes described by programs written in full-
edged programming languages

such as C or C++. For �nite acyclic state spaces, we showed that our algorithm can be used for

detecting deadlocks and assertion violations without incurring the risk of any incompleteness in the

veri�cation results. In practice, our algorithm can be used for systematically and e�ciently testing

the correctness of any concurrent system, whether its state space is acyclic or not. This algorithm is

built upon existing state-space pruning techniques known as partial-order methods [God96]. It ex-

tends the scope of veri�cation by state-space exploration from modeling languages to programming

languages.

This algorithm has been implemented in VeriSoft. Like a traditional model checker explores

the state space of a system modeled as the product of concurrent �nite-state components, VeriSoft

systematically explores the \product" of concurrent (Unix-like) processes by using a run-time sched-

uler for driving the entire application through the states and transitions of its state space. It thus

adapts model checking into a form of systematic testing that simulates the e�ect of model checking

while being applicable to concurrent processes executing arbitrary code.

Two features distinguish VeriSoft from every other \model checker" (i.e., systematic state-space

exploration tool) we are aware of: (1) VeriSoft is the �rst model checker that does not require

the use of any speci�c modeling or programming language; (2) VeriSoft is the �rst model checker

that does not compute and store representations of visited system states and performs a state-less

search instead.

Since made publicly available in 1999, VeriSoft has been licensed to hundreds of users in industry

and academia. Inside Lucent Technologies, it was applied successfully to analyze several software

products in various business units and application domains (switch maintenance, call processing,

network management, etc.). Because VeriSoft can automatically generate, execute and evaluate

thousands of tests per minute, it can quickly reveal behaviors that are virtually impossible to

detect using conventional testing techniques.

19

Acknowledgments

I wish to warmly thank all the persons | current and former Bell Labs colleagues, VeriSoft users

inside and outside Lucent Technologies, and fellow researchers | who contributed to this project

by their valuable comments and suggestions. I also thank Scott Stoller and Willem Visser for

encouraging me to write this paper, and the anonymous reviewers for helpful comments.

VeriSoft can be downloaded from http://www.bell-labs.com/projects/verisoft.

A previous version of this paper appeared in the proceeding of the 24th ACM Symposium on

Principles of Programming Languages (POPL'97) [God97].

References

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

[BCM

+

90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model

checking: 10

20

states and beyond. In Proceedings of the 5th Symposium on Logic in

Computer Science, pages 428{439, Philadelphia, June 1990.

[BFG02] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically Testing Dynamic

Web Sites. In Proceedings of WWW'2002 (11th International World Wide Web Con-

ference), Honolulu, May 2002.

[BG96] B. Boigelot and P. Godefroid. Model checking in practice: An analysis of the AC-

CESS.bus protocol using SPIN. In Proceedings of Formal Methods Europe'96, vol-

ume 1051 of Lecture Notes in Computer Science, pages 465{478, Oxford, March 1996.

Springer-Verlag.

[BG97] B. Boigelot and P. Godefroid. Automatic Synthesis of Speci�cations from the Dynamic

Observation of Reactive Programs. In Proceedings of the Third International Workshop

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'97),

volume 1217 of Lecture Notes in Computer Science, pages 321{333, Twente, April 1997.

Springer-Verlag.

[BR01] T. Ball and S. Rajamani. The SLAM Toolkit. In Proceedings of CAV'2001 (13th

Conference on Computer Aided Veri�cation), volume 2102 of Lecture Notes in Computer

Science, pages 260{264, Paris, July 2001. Springer-Verlag.

[Bry92] R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys, 24(3):293{318, 1992.

[CDH

+

00] J. C. Corbett, M. B. Dwyer, J. Hatcli�, S. Laubach, C. S. Pasareanu, Robby, and

H. Zheng. Bandera: Extracting Finite-State Models from Java Source Code. In Pro-

ceedings of the 22nd International Conference on Software Engineering, 2000.

20

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state con-

current systems using temporal logic speci�cations. ACM Transactions on Programming

Languages and Systems, 8(2):244{263, January 1986.

[CGH

+

93] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A.

Ness. Veri�cation of the Futurebus+ cache coherence protocol. In Proceedings of the

Eleventh International Symposium on Computer Hardware Description Languages and

Their Apllications. North-Holland, 1993.

[CGJ98] C. Colby, P. Godefroid, and L. J. Jagadeesan. Automatically Closing Open Reactive

Programs. In Proceedings of 1998 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 345{357, Montreal, June 1998. ACM Press.

[CGL92] E.M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In Pro-

ceedings of the 19th Annual ACM Symposium on Principles of Programming Languages,

January 1992.

[CGP02] S. Chandra, P. Godefroid, and C. Palm. Software Model Checking in Practice: An

Industrial Case Study. In Proceedings of ICSE'2002 (24th International Conference on

Software Engineering), pages 431{441, Orlando, May 2002. ACM.

[CMN91] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging parallel pro-

grams with
owback analysis. ACM Transactions on Programming Languages and

Systems, pages 491{530, October 1991.

[Col95] C. Colby. Analyzing the communication topology of concurrent programs. In Proceed-

ings of the Symposium on Partial Evaluation and Semantics-Based Program Manipula-

tion, pages 202{213, New York, NY, USA, June 1995. ACM Press.

[Cor96] J. C. Corbett. Constructing abstract models of concurrent real-time software. In Pro-

ceedings of ISSTA'96 (International Symposium on Software Testing and Analysis),

pages 250{260, San Diego, January 1996.

[CPS93] R. Cleaveland, J. Parrow, and B. Ste�en. The concurrency workbench: A semantics

based tool for the veri�cation of concurrent systems. ACM Transactions on Program-

ming Languages and Systems, 1(15):36{72, 1993.

[Cri95] R. Cridlig. Semantic analysis of shared-memory concurrent languages using abstract

model-checking. In Proceedings of the Symposium on Partial Evaluation and Semantics-

Based Program Manipulation, pages 214{225, New York, NY, USA, June 1995. ACM

Press.

[CRS96] J. Chang, D. Richardson, and S. Sankar. Structural Speci�cation-based Testing with

ADL. In Proceedings of ISSTA'96 (International Symposium on Software Testing and

Analysis), pages 62{70, San Diego, January 1996.

[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol veri�cation as a hard-

ware design aid. In 1992 IEEE International Conference on Computer Design: VLSI

21

in Computers and Processors, pages 522{525, Cambridge, MA, October 1992. IEEE

Computer Society.

[Dru00] D. Drusinsky. The Temporal Rover and the ATG Rover. In Proceedings of the 2000

SPIN Workshop, volume 1885 of Lecture Notes in Computer Science, pages 323{330.

Springer-Verlag, 2000.

[DY94] L.K. Dillon and Q. Yu. Oracles for checking temporal properties of concurrent systems.

Software Engineering Notes, 19(5):140{153, December 1994. Proceedings of the 2nd

ACM SIGSOFT Symposium on Foundations of Software Engineering.

[FGM

+

92] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and J. Sifakis. A

toolbox for the veri�cation of LOTOS programs. In Proc. of the 14th International

Conference on Software Engineering ICSE'14, Melbourne, Australia, May 1992. ACM.

[FHS95] A. R. Flora-Holmquist and M. Staskauskas. Formal validation of virtual �nite state

machines. In Proc. Workshop on Industrial-Strength Formal Speci�cation Techniques

(WIFT'95), pages 122{129, Boca Raton, April 1995.

[FJJV96] J.-C. Fernandez, C. Jard, Th. Jeron, and C. Viho. Using on-the-
y veri�cation tech-

niques for the generation of test suites. In Proc. 8th Conference on Computer Aided

Veri�cation, volume 1102 of Lecture Notes in Computer Science, New Brunswick, Au-

gust 1996. Springer-Verlag.

[GHJ98] P. Godefroid, R. S. Hanmer, and L. J. Jagadeesan. Model Checking Without a Model:

An Analysis of the Heart-Beat Monitor of a Telephone Switch using VeriSoft. In Pro-

ceedings of ACM SIGSOFT ISSTA'98 (International Symposium on Software Testing

and Analysis), pages 124{133, Clearwater Beach, March 1998.

[GHJL00] P. Godefroid, J. Herbsleb, L. Jagadeesan, and D. Li. Ensuring Privacy in Pres-

ence Awareness Systems: An Automated Veri�cation Approach. In Proceedings of

CSCW'2000 (ACM Conference on Computer Supported Cooperative Work), Philadel-

phia, December 2000.

[GHP95] P. Godefroid, G. J. Holzmann, and D. Pirottin. State-Space Caching Revisited. Formal

Methods in System Design, 7(3):1{15, November 1995.

[GJJL00] P. Godefroid, L. Jagadeesan, R. Jagadeesan, and K. Laufer. Automated Systematic

Testing for Constraint-Based Interactive Services. In Proceedings of FSE'2000 (8th

International Symposium on the Foundations of Software Engineering), pages 40{49,

San Diego, November 2000.

[GK02] P. Godefroid and S. Khurshid. Exploring Very Large State Spaces Using Genetic Al-

gorithms. In Proceedings of TACAS'2002 (8th Conference on Tools and Algorithms for

the Construction and Analysis of Systems), Grenoble, April 2002.

[God90] P. Godefroid. Using partial orders to improve automatic veri�cation methods. In

Proc. 2nd Workshop on Computer Aided Veri�cation, volume 531 of Lecture Notes

22

in Computer Science, pages 176{185, Rutgers, June 1990. Springer-Verlag. Extended

version in ACM/AMS DIMACS Series, volume 3, pages 321{340, 1991.

[God96] P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems { An

Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Computer

Science. Springer-Verlag, January 1996.

[God97] P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Pro-

ceedings of the 24th ACM Symposium on Principles of Programming Languages, pages

174{186, Paris, January 1997.

[God99] P. Godefroid. Exploiting Symmetry when Model-Checking Software. In Proceedings of

FORTE/PSTV'99 (Formal Description Techniques and Protocol Speci�cation, Testing

and Veri�cation), pages 257{275, Beijing, October 1999.

[GP93] P. Godefroid and D. Pirottin. Re�ning dependencies improves partial-order veri�cation

methods. In Proc. 5th Conference on Computer Aided Veri�cation, volume 697 of

Lecture Notes in Computer Science, pages 438{449, Elounda, June 1993. Springer-

Verlag.

[GW93] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cation of deadlock

freedom and safety properties. Formal Methods in System Design, 2(2):149{164, April

1993.

[HK90] Z. Har'El and R. P. Kurshan. Software for analytical development of communication

protocols. AT&T Technical Journal, 1990.

[Hol85] G. J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(12):2413{2434, 1985.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[HP89] G. J. Holzmann and J. Patti. Validating SDL Speci�cations: An Experiment. In

Proc. 9th IFIP WG 6.1 International Symposium on Protocol Speci�cation, Testing,

and Veri�cation. North-Holland, 1989.

[HR01] K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer. In Pro-

ceedings of RV'2001 (First Workshop on Runtime Veri�cation), volume 55 of Electronic

Notes in Theoretical Computer Science, Paris, July 2001.

[HS99] G. J. Holzmann and M. H. Smith. A Practical Method for Verifying Event-Driven

Software. In Proceedings of the 21st International Conference on Software Engineering,

pages 597{607, 1999.

[JJ91] C. Jard and Th. Jeron. Bounded-memory algorithms for veri�cation on-the-
y. In

Proc. 3rd Workshop on Computer Aided Veri�cation, volume 575 of Lecture Notes in

Computer Science, Aalborg, July 1991. Springer-Verlag.

23

[JPP

+

97] L. Jagadeesan, A. Porter, C. Puchol, J.C. Ramming, and L. Votta. Speci�cation-based

testing of reactive software: Tools and experiments. In Proceedings of the 19th IEEE

International Conference on Software Engineering, 1997.

[KP92] S. Katz and D. Peled. De�ning conditional independence using collapses. Theoretical

Computer Science, 101:337{359, 1992.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on

Software Engineering, SE-3(2):125{143, 1977.

[LC91] D. L. Long and L. A. Clarke. Data
ow analysis of concurrent systems that use the

rendezvous model of synchronization. In Proceedings of ACM Symposium on Testing,

Analysis, and veri�cation (TAV4), pages 21{35, Vancouver, October 1991.

[LP85] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programs satisfy

their linear speci�cation. In Proceedings of the Twelfth ACM Symposium on Principles

of Programming Languages, pages 97{107, New Orleans, January 1985.

[Maz86] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to

Other Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of

an Advanced Course, volume 255 of Lecture Notes in Computer Science, pages 279{324.

Springer-Verlag, 1986.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Speci�cation. Springer-Verlag, 1992.

[MR93] S. P. Masticola and B. G. Ryder. Non-concurrency analysis. In Proceedings of Fourth

ACM SIGPLAN Symposium on Principles & Practice of Parallel programming, pages

129{138, San Diego, May 1993.

[Ove81] W. T. Overman. Veri�cation of Concurrent Systems: Function and Timing. PhD thesis,

University of California Los Angeles, 1981.

[Pel93] D. Peled. All from one, one for all: on model checking using representatives. In Proc. 5th

Conference on Computer Aided Veri�cation, volume 697 of Lecture Notes in Computer

Science, pages 409{423, Elounda, June 1993. Springer-Verlag.

[QS81] J.P. Quielle and J. Sifakis. Speci�cation and veri�cation of concurrent systems in CE-

SAR. In Proc. 5th Int'l Symp. on Programming, volume 137 of Lecture Notes in Com-

puter Science, pages 337{351. Springer-Verlag, 1981.

[Ric94] D.J. Richardson. TAOS: Testing with analysis and oracle support. In Proceedings of

the 1994 International Symposium on Software Testing and Analysis, August 1994.

[Rud92] H. Rudin. Protocol development success stories: Part I. In Proc. 12th IFIP WG

6.1 International Symposium on Protocol Speci�cation, Testing, and Veri�cation, Lake

Buena Vista, Florida, June 1992. North-Holland.

24

[Sto00] S. D. Stoller. Model Checking Multi-Threaded Distributed Java Programs. In Proceed-

ings of SPIN'2000 (7th SPIN Workshop), volume 1885 of Lecture Notes in Computer

Science. Springer-Verlag, 2000.

[Tay83] R. N. Taylor. A general-purpose algorithm for analyzing concurrent programs. Com-

munications of the ACM, pages 362{376, May 1983.

[Val91] A. Valmari. Stubborn sets for reduced state space generation. In Advances in Petri

Nets 1990, volume 483 of Lecture Notes in Computer Science, pages 491{515. Springer-

Verlag, 1991.

[Ven97] A. Venet. Abstract interpretation of the �-calculus. In Mads Dam, editor, Analy-

sis and Veri�cation of Multiple-Agent Languages (Proceedings of the Fifth LOMAPS

Workshop), volume 1192 of Lecture Notes in Computer Science, pages 51{75. Springer-

Verlag, 1997.

[VHBP00] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In Proceed-

ings of ASE'2000 (15th International Conference on Automated Software Engineering),

Grenoble, September 2000.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

veri�cation. In Proceedings of the First Symposium on Logic in Computer Science,

pages 322{331, Cambridge, June 1986.

[YL91] M. Yannakakis and D. Lee. Testing Finite-State Machines. In Proceedings of the 23rd

Annual ACM Symposium on the Theory of Computing, pages 476{485, 1991.

25

A Correctness Proofs

Theorem 1 Consider a concurrent system as de�ned in Section 2, and let A

G

denote its state

space. Then, all the deadlocks that are reachable after the initialization of the system are global

states, and are therefore in A

G

. Moreover, if there exists a state reachable after the initialization

of the system where an assertion is violated, then there exists a global state in A

G

where the same

assertion is violated.

Proof:

By de�nition, a deadlock is a state where the execution of the next operation of every process

in the system is blocking. Since we assumed that only executions of visible operations may be

blocking, all deadlocks are global states.

Let s be a reachable state where an assertion a is violated. Let P

i

be the process containing

the assertion a. We know that the next operation to be executed by P

i

in s is the assertion a,

which is a visible operation. For every process P

j

other than P

i

, let o

j

denote the next visible

operation that process P

j

will eventually execute from s. Consider the global state s

0

where, for

all processes P

j

, j 6= i, the next operation to be executed by P

j

is the visible operation o

j

, and the

next operation of process P

i

is the assertion a. Clearly, the global state s

0

is reachable from state

s. Moreover, since only invisible operations may have been executed from s to s

0

, assertion a is

still violated in s

0

. (The execution of invisible operations in a process may not change the value of

any variable or data structure local to another process.) Finally, since s

0

is reachable from s which

is itself reachable after the initialization of the system, there exists a concurrent execution of the

system that reaches the global state s

0

after the initialization of the system. Any sequence w of

process transitions such that the sequence of visible operations in w can be observed during the

concurrent execution leading to s

0

de�nes a path from s

0

to s

0

in the global state space A

G

of the

system. Therefore, s

0

is in A

G

.

Let us now turn to the proof of Theorem 2. To establish this result, we use the notion of

Mazurkiewicz's traces [Maz86]. Traces are de�ned as equivalence classes of sequences of transitions.

Given a set T and a valid dependency relation D � T �T as de�ned in De�nition 1, two sequences

over T belong to the same trace with respect to D (are in the same equivalence class) if they can

be obtained from each other by successively exchanging adjacent transitions which are independent

according toD. For instance, if t

1

and t

2

are two transitions of T which are independent according to

D, the sequences t

1

t

2

and t

2

t

1

belong to the same trace. A trace is represented by one of its elements

enclosed within brackets and, when necessary, subscripted by the alphabet T and the dependency

relation. Thus the trace containing both t

1

t

2

and t

2

t

1

could be represented by [t

1

t

2

]

(T ;D)

. A trace

corresponds to a partial ordering of symbol occurrences and contains all linearizations of this partial

order. If two independent symbols occur next to each other in a sequence of a trace, the order of

their occurrence is irrelevant since they occur concurrently in the partial order corresponding to

that trace. Moreover, all sequences of transitions in a trace lead to the same state if executed from

the same starting state. The latter property is formalized as follows.

Theorem 3.10 of [God96] Let s be a state in A

G

. If s

w

1

) s

1

and s

w

2

) s

2

in A

G

, and if [w

1

] = [w

2

],

26

then s

1

= s

2

.

We will also make use of the two following lemmas from [God96]. These two lemmas state basic

properties of persistent sets.

Lemma 4.2 of [God96] Let s be a state in A

G

, and let d be a deadlock reachable from s in A

G

by a nonempty sequence w of transitions. For all w

i

2 [w], let t

i

denote the �rst transition of w

i

.

Let Persistent Set(s) be a nonempty persistent set in s. Then, at least one of the transitions t

i

is

in Persistent Set(s).

Lemma 6.8 of [God96] Let s be a state in A

G

, and let w be a nonempty sequence of transitions

from s in A

G

. For all w

i

2 [w] from s in A

G

, let t

i

denote the �rst transition of w

i

. Let Persis-

tent Set(s) be a nonempty persistent set in s. If none of the t

i

are in Persistent Set(s), then all

the transitions in Persistent Set(s) are independent with all the transitions in w.

To establish the correctness of Algorithm 2, we �rst prove the following lemma. Assume that

all that concerns sleep sets in Algorithm 2 is not implemented (or equivalently that the sleep set

associated with every global state reached during the search is empty). We now prove that, under

this assumption, if there exists a sequence of transitions in A

G

from s

0

to a deadlock or to a state

s where an assertion a is violated, then Algorithm 2 without using sleep sets will eventually visit

this deadlock or a state where the assertion a is violated, provided that A

G

is �nite and acyclic.

Lemma 1 Consider a concurrent system as de�ned in Section 2, and let A

G

denote its state space.

Assume A

G

is �nite and acyclic. Let A

R

be the state space explored by Algorithm 2 without using

sleep sets. Let s be a state in A

R

. Let d be a deadlock reachable from s in A

G

by a sequence w of

transitions. Then, d is also reachable from s in A

R

. Moreover, if s

0

is a state where an assertion a

is violated that is reachable from s in A

G

by a sequence w

0

of transitions, then there exists a state

(not necessarily s

0

) reachable from s in A

R

where the assertion a is violated.

Proof:

The proof proceeds by induction on the length of w and w

0

. For jwj = 0 and jw

0

j = 0, the result

is immediate. Now, assume the theorem holds for paths (sequences of transitions) of length n � 0

and let us prove that it holds for paths of length n+ 1.

Assume a deadlock d can be reached from s by a path w of length n+1 in A

G

. For all w

i

2 [w],

let t

i

denote the �rst transition of w

i

. By Theorem 3.10 of [God96], we know that, for all w

i

2 [w],

s

w

i

) d. Let Persistent Set(s) be the nonempty persistent set that is selected in s by Algorithm 2,

i.e., the set of transitions that are explored from s in A

R

. By Lemma 4.2 of [God96], we know

that at least one of the transitions t

i

is in Persistent Set(s). Since t

i

is in Persistent Set(s), it is

explored from state s, and thus a state is reached in A

R

from which a path of length n leads to the

deadlock d. This together with the inductive hypothesis proves the lemma for the deadlock case.

We now consider the case of an assertion violation. Assume that a state s

0

where an assertion

a is violated can be reached from s by a path w

0

of length n + 1 in A

G

. Let Persistent Set(s) be

the nonempty persistent set that is selected in s by Algorithm 2, i.e., the set of transitions that are

27

explored from s in A

R

. For all w

0

i

2 [w

0

], let t

0

i

denote the �rst transition of w

0

i

. By Theorem 3.10

of [God96], we know that, for all w

0

i

2 [w

0

], s

w

0

i

) s

0

. If at least one of the transitions t

0

i

is in

Persistent Set(s), it is explored from state s, and thus a state is reached in A

R

from which a path

of length n leads to s

0

.

Otherwise, by applying Lemma 6.8 of [God96] to s and w

0

, we know that all the transitions in

Persistent Set(s) are independent with all the transitions in w

0

. Consequently, for every state s

j

reached after executing one transition in Persistent Set(s) in A

R

, the sequence of transition w

0

is

still executable from s

j

in A

G

and leads to a state s

0

j

where the assertion a is violated (this follows

from De�nition 1). By applying the same reasoning to any state s

j

and since all the executions of

the system are �nite (since its state space is �nite and acyclic), one concludes that a transition t

0

i

is eventually executed from a successor state s

k

of s such that all the transitions from s to s

k

are

independent with all the transitions in w

0

. After the execution of t

0

i

from s

k

, a state s

l

is reached

in A

R

from which a path of length n in A

G

leads to a state where the assertion a is violated. This

together with the inductive hypothesis proves the lemma for the case of an assertion violation.

From Lemma 1 it is then immediate to conclude that a state-less search using only persistent

sets and started in the initial state of A

G

will detect all the deadlocks and assertion violations in

A

G

. We now show that the use of sleep sets as described in Algorithm 2 preserves this result.

Theorem 2 Consider a concurrent system as de�ned in Section 2, and let A

G

denote its state

space. Assume A

G

is �nite and acyclic. Then, all the deadlocks in A

G

are visited by Algorithm 2.

Moreover, if there exists a global state in A

G

where an assertion is violated, then there exists a

global state visited by Algorithm 2 where the same assertion is violated.

Proof:

Consider a deadlock d or a state s

0

where an assertion is violated that is reachable from the

initial global state s

0

. Imagine that we �x the order in which transitions selected in a given state

are explored and that we �rst run Algorithm 2 without sleep sets. Let A

R

be the state space

explored during this run. Assume that, for every state s in A

R

, the transitions explored from s are

sorted from left to right following the order in which they are explored: t

1

is to the left of t

2

if t

1

is explored before t

2

. Then, we run Algorithm 2 with sleep sets while still exploring transitions in

the same order. The important point is that the order used in both runs is the same, the exact

order used is irrelevant. By Lemma 1, we know that, if d is a deadlock, d is visited by Algorithm 2

without sleep sets, while if an assertion a is violated in s

0

, a state s

00

where the same assertion is

violated is visited by Algorithm 2 without sleep sets. We now prove that the leftmost path in A

R

leading to d or to a state where the assertion a is violated is still explored in the second run when

using Algorithm 2 with sleep sets.

Let p = s

0

t

0

! s

1

t

1

! s

2

: : : s

n�1

t

n�1

! s be this path. The only reason why it might not be fully

explored (i.e., until s is reached) by the algorithm using sleep sets is that some transition t

i

of p is

not taken because it is in the sleep set associated with s

i

. This means that t

i

has been added to

the sleep set associated with some previous state of the path p and then passed along p until s

i

.

Let us prove that this is impossible.

28

Assume that t

i

is in the sleep set associated with state s

i

, denoted s

i

:Sleep, during the explo-

ration of the path p. Hence, t

i

has been added to the sleep set associated with some previous state

s

j

, j < i, of the path p and passed in the sleep set associated with the successor states of s

j

along

the path p until s

i

. Formally, t

i

62 s

j

:Sleep when s

j

is visited along this path and t

i

2 s

k

:Sleep for

all states s

k

, j < k � i. This implies that t

i

has been explored before t

j

from s

j

since a transition

is introduced in the sleep set after it has been explored (line 14 of Algorithm 2). Moreover, all

transitions that occur between t

j

and t

i

in p, i.e., all t

k

such that j � k < i, are independent with

respect to t

i

. Indeed, if this was not the case, t

i

would not be in s

i

:Sleep since transitions that are

dependent with the transition taken are removed from the sleep set (line 11 of Algorithm 2).

Consequently, t

i

t

j

: : : t

i�1

(the sequence t

j

: : : t

i�1

t

i

where t

i

has been moved to the �rst position)

is in [t

j

: : : t

i�1

t

i

]. Thus, t

i

t

j

: : : t

i�1

and t

j

: : : t

i�1

t

i

are two interleavings of a single trace, and hence

lead to the same state: s

j

t

i

t

j

:::t

i�1

) s

i+1

. Since there is a path s

j

t

i

t

j

:::t

i�1

) s

i+1

from s

j

, and since t

i

is explored before t

j

in s

j

, the application of Lemma 1 to the state reached after the execution of

t

i

from s

j

implies that the path p is not the leftmost path in A

R

leading to d or to a state where

the assertion a is violated. A contradiction.

Finally, it is worth noticing that all the above results also hold when a valid conditional depen-

dency relation is used. Moreover, in that case, the above results hold without requiring the valid

conditional dependency relation to be weakly uniform [God96].

29

