
The Power of QDDs

Bernard Boigelot, Patrice Godefroid, Bernard Willems and
Pierre Wolper

September 1997

Proceedings of the Fourth International Static AnalysisSymposium, Paris, September 1997.Lecture Notes
in Computer Science, Springer-Verlag.

Copyright 1997 Springer-Verlag Berlin Heidelberg. This work is subject to copyright. All rights are
reserved, whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German
Copyright Law.

The Power of QDDs

(Extended Abstract)

Bernard Boigelot

1?

, Patrice Godefroid

2

, Bernard Willems

1

and Pierre Wolper

1

1

Universit�e de Li�ege

Institut Monte�ore, B28

B-4000 Li�ege Sart-Tilman, Belgium

fboigelot,willems,pwg@montefiore.ulg.ac.be

2

Bell Laboratories

Lucent Technologies

1000 E. Warrenville Road

Naperville, IL 60566, U.S.A.

god@bell-labs.com

Abstract. Queue-content Decision Diagrams (QDDs) are �nite-auto-

maton based data structures for representing (possibly in�nite) sets of

contents of a �nite collection of unbounded FIFO queues. Their intended

use is to serve as a symbolic representation of the possible queue contents

that can occur in the state space of a protocol modeled by �nite-state

machines communicating through unbounded queues. This is done with

the help of a loop-�rst search, a state-space exploration technique that

attempts whenever possible to compute symbolically the e�ect of re-

peatedly executing a loop any number of times, making it possible to

analyze protocols with in�nite state spaces though without the guaran-

tee of termination. This paper �rst solves a key problem concerning the

use of QDDs in this context: it precisely characterizes when, and shows

how, the operations required by a loop-�rst search can be applied to

QDDs. Then, it addresses the problem of exploiting QDDs and loop-�rst

searches to broaden the range of properties that can be checked from

simple state reachability to temporal logic. Finally, a su�cient criterion

for the termination of a loop-�rst search using QDDs is given.

1 Introduction

Finite-state machines that communicate by exchanging messages via unbounded

FIFO queues are a popular model for representing and reasoning about commu-

nication protocols. This model is also used to de�ne the semantics of standard-

ized protocol speci�cation languages such as SDL and Estelle (e.g., see [Tur93]).

Indeed, unbounded queues provide a useful abstraction that simpli�es the se-

mantics of speci�cation languages, and frees the protocol designer from imple-

mentation details related to bu�ering policies and limitations. In contrast, while

?

\Aspirant" (Research Assistant) for the National Fund for Scienti�c Research (Bel-

gium). The work of this author was done partly while visiting Bell Laboratories.

unboundedness can simplify the modeling of protocols, it seems to complicate

their veri�cation. Indeed, it is well known that most interesting veri�cation prob-

lems, such as deadlock detection, are undecidable for this class of systems [BZ83]

since one unbounded queue is su�cient to simulate the tape of a Turing machine.

Recently [BG96], it has been argued that this contradiction might not be

inherent: in practice, most veri�cation problems may very well turn out to be

decidable for a subclass containing most \real" protocols. After all, protocols

are not designed randomly, precise design principles are used to enforce some

\regularity" in their temporal behavior. Moreover, by using appropriate veri�ca-

tion techniques for dealing with in�nite state spaces, one might actually be able

to verify properties of such systems more e�ciently than verifying properties of

systems with �nite but very large state spaces.

This observation motivated the development in [BG96] of a new veri�cation

framework for communication protocols modeled by �nite-state machines com-

municating via unbounded queues. Speci�cally, an algorithm is presented for

constructing a �nite and exact representation of the state space of such a set

of communicating �nite-state machines, even if this state space is in�nite. The

algorithm performs a loop-�rst search in the state space of the protocol being

analyzed. A loop-�rst search is a search technique that attempts to explore �rst

the results of successive executions of loops in the protocol description (code).

This is done by using meta-transitions: given a loop that appears in the proto-

col description, a meta-transition is a transition that generates all global states

that can be reached after repeated executions of the body of the loop. A new

data structure named Queue-content Decision Diagram (QDD) is introduced for

representing (possibly in�nite) sets of contents for a �nite collection of queues.

From this symbolic representation, it is then straightforward to verify properties

of the protocol, such as the absence of deadlocks, whether or not the number of

messages stored in a queue is bounded, and the reachability of local and global

states. Of course, given an arbitrary protocol, this algorithm may not terminate

its search, due to the general undecidability result recalled above. However, in

practice, properties of several simple communication protocols with in�nite state

spaces have been veri�ed successfully with this method [BG96].

In this paper, we build upon this work, and extend these previous results in

several ways. First, we very signi�cantly extend the class of meta-transitions that

can be handled in the context of QDDs. Indeed, in [BG96], algorithms are only

given for three simple, but frequent, types of meta-transitions. Here we precisely

characterize the class of meta-transitions that preserve representability by QDDs

and give a generic algorithm for computing the e�ect of any representability-

preserving meta-transition. For systems with one queue, we show that the iter-

ation of any sequence of queue operations preserves the representability of sets

of queue contents. For systems with more than one queue, we show that repre-

sentability is preserved by the iteration of a sequence of operations if and only

if this sequence of operations does not have more than one projection that is

\counting" messages in a sense we make precise later.

Thereafter, we turn to the problem of extending the class of properties that

can be checked from simple state reachability to temporal properties. We show

how by using the technique of [VW86], the model checking [CES86] of linear-

time temporal logic formulas [MP92] can be done with the help of QDDs. Ba-

sically, we reduce the model-checking problem to the nonemptiness of B�uchi

automata [B�uc62] with queues, for which QDDs can be used to obtain a partial

decision procedure. Finally, we give an algorithmic criterion that is su�cient for

ensuring the termination of a loop-�rst search in an in�nite state space.

2 Protocols, QDDs and Loop-First Searches

Our goal is to explore the state space of protocols modeled by a �nite set M of

�nite-state machines that communicate with each other by sending and receiving

messages via a �nite set Q of unbounded FIFO queues, modeling communication

channels. The direct technique for generating the state space of such a system

would be to start in the initial state and explore all possible transitions. Of

course, since the message queues are unbounded, this search will a priori not

terminate. So, we proceed di�erently. We �rst eliminate concurrency from the

system without computing the e�ect of the operations on queues, i.e., we com-

pute the global control state space of the system. We thus obtain a �nite-state

machine with queues. This is the structure to which we then apply the techniques

that are the subject of this paper.

Formally, we thus start with protocols described by tuples of the form P =

(C; c

0

; A;Q;M; T) where

{ C is a �nite set of control states,

{ c

0

2 C is an initial control state,

{ A is a �nite set of local actions (those not involving the queues),

{ Q is a �nite set of queues,

{ M is a �nite set of messages partitioned in as many sets M

i

as there are

queues q

i

2 Q (assuming that each queue uses a set of di�erent messages is

convenient and not restrictive),

{ T � C � Op � C where Op = A [fq

i

!m j q

i

2 Q and m 2 M

i

g [fq

i

?m j

q

i

2 Q and m 2 M

i

g is a �nite set of transitions. A transition of the form

c

1

�

! c

2

(� 2 A) represents a change of the control state from c

1

to c

2

without

any change to the content of the queues; a transition of the form c

1

q

i

!m

! c

2

represents a change of the control state from c

1

to c

2

while appending the

message m to the end of the queue q

i

; and a transition of the form c

1

q

i

?m

! c

2

represents a change of the control state from c

1

to c

2

while removing the

message m from the head of the queue q

i

.

A global state of such a protocol is composed of a control state and a queue

content. A queue content associates with each queue q

i

a sequence of mes-

sages from M

i

. Formally, a global state , or simply a state, of a protocol P =

(C; c

0

; A;Q;M; T) with jQj = n is an element of the set S = C�M

�

1

�� � ��M

�

n

,

i.e. is of the form = (c; w(1); w(2); : : : ; w(n)) where, for 1 � j � n, w(j) 2M

�

j

.

The initial global state of the system is

0

= (c

0

; ", : : :, "), i.e., we assume that

all queues are initially empty (" represents the empty word).

We can then de�ne the global transition relation of a protocol P = (C; c

0

;

A;Q;M; T). It is the set G of triples (; a;

0

), where and

0

are global states

and a 2 A [f�g, de�ned as follows (we write

a

!

G

0

to denote the fact that

(; a;

0

) 2 G):

{ if c

1

q

i

!m

�! c

2

2 T , then (c

1

; w(1); w(2); : : : ; w(i); : : : ; w(n))

�

!

G

(c

2

; w(1);

w(2); : : : ; w(i)m; : : : ; w(n)) (the control state changes from c

1

to c

2

and m

is appended to the content of queue q

i

);

{ if c

1

q

i

?m

�! c

2

2 T , then (c

1

; w(1); w(2); : : :;mw

0

(i); : : : ; w(n))

�

!

G

(c

2

; w(1);

w(2); : : : ; w

0

(i); : : : ; w(n)) (the control state changes from c

1

to c

2

and m is

removed from the head of queue q

i

);

{ if c

1

a

! c

2

2 T , then (c

1

; w(1); w(2); : : :; w(n))

a

!

G

(c

2

; w(1); w(2); : : : ; w(n))

(the control state changes from c

1

to c

2

, the queue content is unchanged).

A global state

0

is said to be reachable from another global state if there

exists a sequence of global transitions

i�1

a

i

!

G

i

, 1 � i � k, such that =

0

a

1

!

G

1

� � �

k�1

a

k

!

G

k

=

0

. The global state space of a system is the (possibly

in�nite) set of all states that are reachable from the initial global state

0

.

The approach we use to explore, in a �nite amount of time, the in�nite state

space of a protocol with unbounded queues is based on the two following tools:

{ A �nite representation for potentially in�nite sets of possible queue contents,

and

{ A technique for generating a potentially in�nite set of reachable states in

one step.

A solution to the �rst of these problems, the Queue-content Decision Diagram

(QDD), was introduced in [BG96], and a solution to the second one, the loop-�rst

search, was introduced in [BW94, BG96]. Let us describe them.

For a protocol P = (C; c

0

; A;Q;M; T), a set of queue contents is a set of

vectors (w(1); : : : ; w(n)) where, for 1 � i � n, w(i) 2M

�

i

. The idea of QDDs is

to represent a queue content by the concatenation of the corresponding queue

contents taken in an arbitrary but �xed order, and to represent a set of queue

contents by a �nite automaton accepting the concatenated form representations

of its elements. Note that since we have assumed that di�erent queues use dis-

tinct alphabet messages, concatenating queue contents leads to a nonambiguous

representation of queue contents.

A �nite-state automaton on �nite words is a tuple A = (S;�;�; S

0

; F),

where S is a �nite set of states, � is an alphabet (�nite set of symbols), � �

S �� � S is a transition relation, S

0

� S is a set of initial states, and F � S is

a set of accepting states. A transition (s; a; s

0

) is said to be labeled by a. A �nite

sequence (word) w = a

1

a

2

: : :a

k

of symbols in � is accepted by the automaton

A if there exists a sequence of states � = s

0

: : : s

k

such that 81 � i � k :

(s

i�1

; a

i

; s

i

) 2 �, s

0

2 S

0

, and s

k

2 F . The set of words accepted by A is called

the language accepted by A, and is denoted by L(A). Let us de�ne the projection

wj

M

i

of a word w on a subset M

i

of the alphabet on which w is de�ned as the

subsequence of w obtained by removing all symbols in w that are not in M

i

. We

can now de�ne QDDs

3

.

De�nition1. Given a protocol P = (C; c

0

; A;Q;M; T) with jQj = n and an

ordering q

1

; : : : ; q

n

of the elements of Q, a QDD for P is a �nite-state automaton

A = (S;M;�; S

0

; F) on �nite words such that

8w 2 L(A) : w = wj

M

1

wj

M

2

: : :wj

M

n

:

It is clear that, the alphabets of queues being disjoint, a word w accepted by

a QDD represents a unique queue content, namely the content of q

i

is wj

M

i

. A

QDD A thus indeed represents a set of queue contents, those corresponding to

the words in L(A). It is natural to ask the following two questions. Does the set

of queue contents representable by a QDD depend on the order chosen for the

queues, and what is a characterization of the sets of queue contents representable

by QDDs? We answer these questions in terms of recognizable languages of word

vectors.

De�nition2. A subset of

Q

1�i�n

M

�

i

, is recognizable if it is a �nite union of

Cartesian products of regular languages, i.e., if it is of the form

[

1�j�k

Y

1�i�n

L

ij

;

where each L

ij

is a regular subset of M

�

i

.

The expressive power of QDDs is independent of the order chosen for concate-

nating the queue contents and coincides exactly with the recognizable languages.

Theorem3. Independently of the order chosen for concatenating queue con-

tents, the languages of queue contents representable by QDDs coincide exactly

with the recognizable languages.

Proof sketch Let A = (S;M;�; S

0

; F) be a QDD. By de�nition, for every

w 2 L(A), we have w = wj

M

1

wj

M

2

: : :wj

M

n

. We de�ne the automata A

i

=

(S;M

i

;�

i

; S

i

; F

i

), 1 � i � n, as follows:

{ �

i

= � \ (S �M

i

� S), 1 � i � n,

{ F

i

is the set of states in S that are reachable from an initial state in S

0

by

reading only symbols in M

1

[M

2

[� � � [M

i

,

{ S

i

= S

0

if i = 1, and S

i

= F

i�1

if i > 1.

3

The de�nition of QDDs that appears in [BG96] has been extended here to non-

deterministic automata with sets of initial states, for the sake of generality.

Given n + 1 states s

1

2 S

1

; s

2

2 S

2

; : : : s

n

2 S

n

; s

n+1

2 F

n

\ F , de�ne the

automaton A

s

1

;:::;s

n+1

as the product A

0

1

� : : :� A

0

n

where A

0

i

is a copy of the

automaton A

i

with only s

i

as initial state and s

i+1

as �nal state. The language

accepted by A

s

1

;:::;s

n+1

is a product of regular subsets of all the sets M

�

i

. Since

L(A) is the (�nite) union of all the possible L(A

s

1

;:::;s

n+1

), L(A) is recognizable.

The other direction of the theorem is immediate since regular languages are

closed under concatenation and �nite union. ut

To exploit QDDs for exploring the state space of a protocol, one groups

together global states with the same control component and one represents the

corresponding set of queue contents by a QDD. Of course, if the queue contents

represented by the QDDs are extended by one element at a time, the QDDs

will always only represent �nite sets and thus will be of very limited usefulness.

What is needed is a technique for generating a whole set of reachable states in

one step. This is the purpose of the meta-transitions introduced in [BW94].

Given a control state c of a protocol and a loop (cycle) ` = c

op

1

! � � �

op

k

! c in the

control graph from c to c, a meta-transition for ` is a transition (c

op

1

! � � �

op

k

! c)

�

,

which we denote by c

(op

1

;:::;op

k

)

�

�! c, that generates all the global states that can

be reached after repeated executions of the sequence of transitions composing `.

For example, in a system with one queue, executing the meta-transition c

(q!m)

�

! c

from the state (c; ") generates the set of states f(c;m

k

) j k � 0g.

Using QDDs and meta-transitions added to the set T of transitions of the

protocol, the classical enumerative state-space exploration algorithm can be

rewritten in such a way that it works with sets of global states, i.e., pairs of

the form (control state, QDD), rather than with individual states. Initially, the

search starts from an initial global state. At each step during the search, when-

ever meta-transitions are executable, they are explored �rst, which is a heuristic

aimed at generating many reachable states as quickly as possible. This is why

such a search is called a loop-�rst search. The search terminates if the repre-

sentation of the set of reachable states stabilizes. This happens when, for every

control state, every new deducible queue content is included in the current set

of queue contents associated with that control state. At this moment, the �nal

set of pairs (control state, QDD) represents exactly the set of reachable states of

the protocol being analyzed.

So, the problem we are left with is the following. Given a set of global states

represented by a pair (c;A), where c is a control state and A a QDD, and given

a meta-transition, compute the QDD A

0

representing the set of queue contents

that can be reached by executing this meta-transition from (c;A). In [BG96],

this problem was solved for three particular types of meta-transitions : repeat-

edly sending messages on a queue ((q

i

!m

1

; : : : ; q

i

!m

k

)

�

), repeatedly receiving

messages from a queue ((q

i

?m

1

; : : : ; q

i

?m

k

)

�

), and repeatedly receiving a se-

quence of messages from a queue q

i

followed by sending another sequence of

messages on another queue q

j

, i 6= j, ((q

i

?m

1

; : : : ; q

i

?m

k

i

; q

j

!m

0

1

; : : : ; q

j

!m

0

k

j

)

�

).

In the next section, we extend this result by characterizing precisely the set

of meta-transitions that preserve recognizability (and hence representability by

QDDs) and by providing a generic algorithm for computing the e�ect of the

execution of any meta-transition in this class.

3 Operations on QDDs

In this section, we establish results about computing the image of a QDD un-

der the repeated execution of a sequence of queue operations. The following

notations are used. If op

1

; op

2

; : : : ; op

p

are queue operations (q

i

!m or q

i

?m),

then � = op

1

; op

2

; : : : ; op

p

is a sequence of operations. The e�ect of a se-

quence of operations � = op

1

; op

2

; : : : ; op

p

on a queue content w is �(w) =

op

p

(� � �op

2

(op

1

(w)) � � �). The e�ect of a sequence of operations � on a language

L of queue contents is �(L) = f�(w) j w 2 Lg. The e�ect of the Kleene closure

�

�

of such a sequence is de�ned as

�

�

(L) =

[

k�0

�

k

(L):

If � is a sequence of operations, then the number of queue operations compos-

ing � is denoted j�j. We denote by �

!

(resp. �

?

) the subsequence of � consisting

of all the send (resp. receive) operations. Finally, we write �(�) to represent

the word obtained from � by extracting the message symbols from the queue

operations, i.e. replacing each q

i

!m and q

i

?m by m.

3.1 Systems with one FIFO Queue

If the system being analyzed has only one FIFO queue q, then the QDDs used for

its state-space exploration by a loop-�rst search are nothing but ordinary �nite

automata on �nite words over the message alphabet of q. It then follows that the

notions of recognizable and regular languages of queue contents are equivalent.

Our �rst result states that in this particular case, the Kleene closure of every

sequence of elementary queue operations preserves the regularity of languages

of queue contents. Precisely, we have the following theorem.

Theorem4. Let q be a FIFO queue, M be the message alphabet of q, and � be a

sequence of queue operations on q. For every regular language of queue contents

L � M

�

, the languages �(L) and �

�

(L) are regular.

Proof sketch The proof is constructive and works with a QDD representation

of L. The algorithm embodying the construction can be found in the full version

of this paper [BGWW97]. ut

In a system with one queue, we can thus exploit the meta-transitions corre-

sponding to the repetition of any arbitrary sequence of queue operations.

3.2 Systems with more than one FIFO Queue

In this case, one cannot hope to obtain a result similar to Theorem 4, since iter-

ating simple sequences like q

1

!m

1

; q

2

!m

2

can trivially generate non-recognizable

languages. (For instance, if � denotes this sequence, then we have �

�

(f"g) =

fm

k

1

m

k

2

j k 2 Ng.) For this class of systems, the �rst step is thus to charac-

terize precisely the sequences of operations whose Kleene closure preserves the

recognizability of languages of queue contents (and therefore the possibility of

representing them by QDDs). Our characterization is based on the following

notion.

De�nition 5 Let �

i

be a sequence of operations concerning only one queue q

i

,

and �

i

be the message alphabet of q

i

. The sequence �

i

is counting if and only if

it satis�es one of the following conditions:

1. j�

i

j > 1 and j�

i

!

j > 0,

2. j�

i

j = 1 and j�

i

!

j > j�

i

?

j.

Intuitively, a sequence � of operations that satis�es the previous de�nition is

called \counting" since in that case, there are languages L for which the number

k of applications of such a sequence � on L can be determined by examining the

language �

k

(L), for any k � 0 (which implies that �

k

(L) 6= �

`

(L); 8k 6= `).

Let � be a sequence of operations, and q

i

be a FIFO queue. The projection

�j

i

of � on q

i

is de�ned as the subsequence obtained by deleting from � the

operations on queues other than q

i

. The following result states that a sequence

always preserves the recognizability of languages of queue contents if and only

if at most one of its projections is counting.

Theorem6. Consider a protocol with n > 0 FIFO queues. A sequence of oper-

ations � is such that �

�

(L) is recognizable for every recognizable language L of

queue contents if and only if there do not exist 1 � i < j � n, such that �j

i

and

�j

j

are counting sequences.

Proof sketch The proof of the su�cient condition is constructive and the cor-

responding algorithm is described in terms of QDDs. See [BGWW97].

In a loop-�rst search, the e�ect of any meta-transition satisfying Theorem 6

can thus be computed and represented by a QDD.

4 Properties

In [BG96], only state reachability properties are considered. These properties can

be decided on the sole basis of the exact representation of the set of reachable

states produced by a loop-�rst search (when it terminates). Here, we investi-

gate whether more elaborate properties can be checked with a loop-�rst search

and QDDs. Speci�cally, we discuss the veri�cation of temporal properties. One

might argue that checking such properties, expressed for instance as linear-time

temporal logic formulas, is problematic using our approach. Indeed, a loop-�rst

search using QDDs computes a representation of the set of reachable states, not

of the transitions between these. This contrasts with the approach of Quemener

and J�eron [QJ95, QJ96], which produces a graph grammar representing jointly

the set of reachable states and the transition relation between these states. In

this section, we show that representing symbolically the transition relation is

not required. More precisely, we show that temporal properties can be veri�ed

using QDDs.

The idea is the following. Let P = (C; c

0

; A;Q;�; T) be a protocol as de�ned

in Section 2. Furthermore, assume we are given a labeling function � : C !

2

P

associating to each control state in C a �nite set of atomic propositions in

P, and a property � � (2

P

)

!

de�ned by a linear-time temporal logic (LTL)

formula [MP92], or by a B�uchi automaton [B�uc62]. The problem is to check if

every run of P from the initial con�guration (c

0

; "; : : : ; ") satis�es � with respect

to �. To do this, using the required constructions from [VW94, SVW87, Saf88],

we build a B�uchi automaton B

�

that accepts the complement of �, and we

compute the product B

P;�

= P � B

�

. The result is a protocol enhanced by a

set of accepting states, which is de�ned as the Cartesian product of the control

states of P by the accepting states of B

�

. We call such a machine a B�uchi

automaton with queues (as it is indeed a B�uchi automaton whose transitions

may be labeled by queue operations). The property � is satis�ed by every run

of P if and only if the set of accepting runs of B

P;�

is empty. In other words,

we have reduced the model-checking problem for !-regular properties to testing

the emptiness of the language accepted by a B�uchi automaton with queues.

This last problem is undecidable, since LTL model-checking is undecidable

for protocols as de�ned in Section 2 [AJ94]. Nonetheless, a partial decision pro-

cedure can be obtained as follows. Let B be a B�uchi automaton with queues.

An accepting run of B is a run containing an in�nite number of occurrences of

some accepting control state c

i

(remember that there is a �nite number of such

states), the queue contents at each visit to this state being allowed to vary. Since

it is impossible to check all the runs of B, our partial decision procedure will

only search for runs containing an in�nite number of occurrences of c

i

produced

by the in�nite execution of a sequence of transitions forming a cycle from c

i

to

c

i

. This amounts to performing a reachability analysis (determining the reach-

able accepting states) followed by a cycle analysis (determining the in�nitely

iterable sequences of transitions). The former can be done by a loop-�rst search,

and the latter by testing the cycles corresponding to meta-transitions for in�nite

iterability. This check is possible thanks to the following result.

Theorem7. Let � be any sequence of queue operations, and let ITERABLE(�)

denote the set of all the queue contents w from which � can be in�nitely executed,

i.e., such that �

k

(fwg) is non-empty for every k � 0. Then ITERABLE(�) is

recognizable. Moreover, there exists an algorithm for computing a QDD repre-

senting ITERABLE(�), given �.

Proof sketch The algorithm is presented in detail in the full version of this

paper [BGWW97]. Intuitively, this algorithm is based on the observation that a

sequence � of queue operations can be in�nitely iterated if and only if all the

sequences �j

i

of operations can be in�nitely iterated. Therefore, the set of queue

contents from which � can be in�nitely iterated is the Cartesian product of the

sets of queue contents for which each �j

i

can be in�nitely iterated. ut

During a loop-�rst search in a B�uchi automaton with queues, whenever an

accepting control state is reached, the algorithm de�ned in the previous theorem

can be used to test whether this control state can be visited in�nitely often by

repeatedly executing a sequence of operations forming a cycle in that state. Of

course, the technique we have just described can fail to detect nonemptiness

of the B�uchi automaton with queues. In veri�cation terms, this means that we

could fail to detect that the protocol does not satisfy the property. So, what

we propose here is not a veri�cation algorithm, but a powerful technique for

detecting errors in a protocol, which is often considered to be the most valuable

role of model checking. Furthermore, in the next section we show that, under

some additional conditions, we can obtain a stronger result.

5 Termination

There is no necessary and su�cient criterion for characterizing the class of com-

munication protocols for which a loop-�rst search with QDDs terminates. Indeed,

it is easy to reduce the halting problem for �nite-state machines communicating

via unbounded queues (and hence the halting problem for Turing machines) to

the decidability of termination for loop-�rst searches with QDDs.

However su�cient conditions can be obtained. Indeed, we now present an

algorithmic criterion on a protocol that is su�cient for guaranteeing the termi-

nation of a loop-�rst search in the state space of that protocol, provided that

the search is performed in a breadth-�rst order. The criterion is based on the

following de�nition.

De�nition8. Let �

1

and �

2

be two sequences of elementary queue operations.

The sequence �

1

precedes favorably �

2

, which we note �

1

/ �

2

, if and only if

for every recognizable language L of queue contents, we have (�

2

;�

1

)(L) �

(�

1

;�

2

)(L).

In other words, if �

1

/ �

2

, then the sequence �

1

;�

2

always generates at least

all the states generated by the sequence �

2

;�

1

.

In what follows, a simple cycle is a cycle that does not contain any occurrence

of another cycle. Precisely, it is a sequence of transitions

c = c

1

op

1

! c

2

op

2

! c

3

op

3

! � � � c

k

= c

such that for all 1 � i 6= j < k, c

i

6= c

j

. Following the usual de�nition, a subset

of the nodes of a graph is a strongly connected component if for every nodes n

and n

0

in the subset, there exists a directed path from n to n

0

. We are now ready

to state the su�cient termination criterion.

Theorem9. Let P = (C; c

0

; A;Q;�; T) be a protocol such that :

{ For each simple cycle c

i

�

! c

i

in the control graph of P , the meta-transition

c

i

�

�

! c

i

is in T . (This requires that �

�

preserves the recognizability of lan-

guages of queue contents.)

{ For each meta-transition c

i

�

�

! c

i

and transition c

j

�

0

! c

k

in T such that c

i

, c

j

and c

k

belong to the same strongly connected component of the control graph

(C; T) of P , and c

j

�

0

! c

k

is part of

� a simple cycle c

i

�

00

! c

i

such that �

00

6= �, or

� a simple cycle that does not visit c

i

,

we have � / �

0

.

A loop-�rst search of P performed in a breadth-�rst order terminates.

Proof sketch The idea is to show that every reachable global state is reachable

by an exploration path whose length is bounded by a function of the number of

transitions and meta-transitions in P . The details of the proof are given in the

full version of this paper [BGWW97]. ut

The criterion can be algorithmically decided thanks to the following result.

Theorem10. There exists an algorithm for deciding if two sequences �

1

and

�

2

of queue operations are such that �

1

/ �

2

.

Proof See [BGWW97]. ut

The su�cient termination criterion can also be applied to the model-checking

method presented in the previous section.

Theorem11. Testing the emptiness of a B�uchi automaton with queues that

satis�es the criterion of Theorem 9 is decidable.

Proof sketch The central part of the proof is to show that when it satis�es

the conditions of Theorem 9, a B�uchi automaton with queues has an accepting

computation that visits an accepting state in�nitely often by only repeatedly

executing a simple cycle. ut

Though the conditions of Theorem 9 might seem di�cult to ful�ll, there are

common practical situations under which they are immediately satis�ed. For

instance, if all strongly connected components of the control graph consist of a

single cycle whose iteration preserves the recognizability of queue contents.

6 Example

Consider the communication protocol composed of the two state machines shown

in Figure 1, and of the unbounded FIFO queues q

in

, q

out

, and q

temp

.

The consumer state machine takes as input from q

in

a sequence of messages

m

0

and m

1

and, when it escapes falling into a deadlock, produces as output on

q

out

a sequence of messages m

2

whose length is equal to the smallest of n

0

and

n

1

, where n

0

(resp. n

1

) is the number of messages m

0

(resp. m

1

) received from

q

in

. This state machine uses internally the queue q

temp

for storing intermediate

results. The producer state machine sends on q

in

a sequence of messages m

0

followed by a sequence of messages m

1

.

q

in

?m

1

_

q

temp

?m

0

1

q

in

!m

1

1 2

3

��

producer

q

in

!m

0

q

in

?m

1

; q

temp

!m

0

1

1

2

3

q

out

!m

2

consumer

q

in

?m

0

; q

temp

!m

0

0

q

temp

?m

0

0

q

in

?m

0

_

Fig. 1. Example of communication protocol.

(1; 1; m

�

0

; "; (m

0

0

)

�

)

(1; 2; m

�

0

m

�

1

; "; (m

0

0

)

�

)

(1; 2; m

�

1

;m

2

m

�

2

; (m

0

0

)

�

(m

0

1

)

�

)

(1; 3; m

�

0

m

�

1

; "; (m

0

0

)

�

)

(1; 3; m

�

1

;m

2

m

�

2

; (m

0

0

)

�

(m

0

1

)

�

)

(2; 2; m

�

1

;m

�

2

; (m

0

0

)

�

(m

0

1

)

�

)

(2; 3; m

�

1

;m

�

2

; (m

0

0

)

�

(m

0

1

)

�

)

(3; 2; m

�

1

;m

�

2

; (m

0

0

)

�

(m

0

1

)

�

)

(3; 3; m

�

1

;m

�

2

; (m

0

0

)

�

(m

0

1

)

�

)

Fig. 2. Reachable states of the example protocol.

Precisely, the protocol is the tuple (C; c

0

; A;Q;M; T), where C = C

consumer

�

C

producer

, C

consumer

= C

producer

= f1; 2; 3g, c

0

= (1; 1), A = ;, Q = fq

in

; q

out

; q

temp

g,

M = M

q

in

[M

q

out

[M

q

temp

, M

q

in

= fm

0

;m

1

g, M

q

out

= fm

2

g, M

q

temp

=

fm

0

0

;m

0

1

g, and T contains the transitions of the form ((c

1

; c

0

1

); op; (c

2

; c

0

2

)), where

either c

1

= c

2

and (c

0

1

; op; c

0

2

) is a transition in the consumer state machine, or

c

0

1

= c

0

2

and (c

1

; op; c

2

) is a transition in the producer state machine.

For this example, every simple cycle in the control graph satis�es the condi-

tion stated in Theorem 6, and thus can be associated with a meta-transition. A

loop-�rst search performed with those meta-transitions terminates. The set of

reachable states obtained at the end of the loop-�rst search is given in Figure 2,

as a �nite union of tuples of the form (c

consumer

; c

producer

; E

in

; E

out

; E

temp

), where

(c

consumer

; c

producer

) are control states, and E

in

, E

out

and E

temp

regular expressions

denoting the corresponding sets of reachable queue contents.

It is worth emphasizing that the search would not stop if meta-transitions

like (1; 2)

(q

in

?m

1

;q

temp

?m

0

0

;q

out

!m

2

)

�

�! (1; 2) were not added to the system. This was

not possible with the algorithms presented in [BG96], which could not compute

the e�ect of such meta-transitions.

7 Conclusions and Comparison with Other Work

The analysis of �nite-state machines communicating through unbounded FIFO

queues is a problem that has been studied for many years. However, our QDD

and loop-�rst search approach is quite di�erent from most earlier attempts to

solve this problem. Indeed, rather than trying to �nd a cute but maybe useless

subproblem that is decidable, we rely (except in cases satisfying the conditions

of Theorem 9) on a \best e�ort" approach. From a theoretical point of view, this

might seem unsatisfactory, but from a practical point of view, this is not at all

troublesome. Indeed, what matters is that the QDD based loop-�rst search does

often terminate. Having no guarantee of success is no more problematic than

knowing that a theoretically terminating �nite-state search might fail due to the

excessive resources that it can require. Another advantage of our method is that

it operates very much like a traditional state-space search. This makes it feasible

to incorporate it into a state-space search veri�cation tools such as SPIN [Hol91]

and, furthermore, to combine it with other search e�ciency enhancing techniques

such as partial-order methods [Val92, Pel94, God96] or techniques for handling

other unbounded data types such as integers [BW94].

From a more abstract point of view, the use we make of QDDs has forced us

to develop a new set of algorithms operating on �nite automata. These result

illustrates the power of �nite automata as a representation and hence the power

of QDDs. In fact, as a formalism for representing sets of state during a state-

space search, �nite automata (and hence QDDs) have all the required properties.

They have a simple semantics, are easy to manipulate and are closed under all

the usual operations. Note that more expressive representations such as rational

relations [Pac87] or context-free grammars [LP81] could not be used as a more

powerful substitute for QDDs since language inclusion is not decidable for these

formalisms. Actually, we view �nite-automata representations of state sets as a

cornerstone within the set of techniques usable for exploring in�nite state spaces.

A possible extension of our work would be to broaden the set of basic op-

erations, i.e., the set formed by the two operations \send" and \receive", that

can be performed on queues. For instance, extending this basic set with another

operation \non-deterministic send" q!(m

1

orm

2

), which (non-deterministically)

appends either a message m

1

or a message m

2

at the tail of a queue q, makes

it possible to construct languages such as (m

1

[m

2

)

�

, that are representable by

QDDs but could not be generated otherwise.

In [QJ96], another semi-algorithm for the veri�cation of communicating �-

nite-state machines is introduced. This semi-algorithm may generate a graph

grammar that represents jointly the set of reachable states and the transition

relation of an in�nite state space. Since transitions are preserved with this rep-

resentation, it is then possible (when the semi-algorithm terminates) to check

temporal properties such as CTL formulas [QJ95]. In contrast, our QDDs are

simpler than the graph grammars of Quemener and J�eron, while still su�cient

to check LTL formulas as discussed in Section 4. Since our semi-algorithm at-

tempts to preserve less information in the symbolic representation it produces

than the one of [QJ95] and [QJ96], one might expect it to terminate more often.

Interesting future work is to formally validate this claim. Due to the lack of

experimental data, it is not known how the two methods compare in practice.

In [FM96], a framework closely related to the one introduced in [BG96] is

proposed. Instead of QDDs, a speci�c class of regular expressions, called \well-

parenthesized regular expressions", are used for representing languages of queue

contents. Such expressions are generated during a search in an (in�nite) state

space whenever a sequence of operations that can be in�nitely repeated is de-

tected using a criterion presented in [Jer91]. The semi-algorithm of [FM96] may

or may not return an exact symbolic representation when it terminates. In con-

trast, the method that we have discussed here always returns an exact symbolic

representation of the set of reachable states when it terminates. Moreover, \well-

parenthesized" regular expressions are strictly less expressive than QDDs. Also,

the set of operations considered in [FM96] is strictly contained in the set of

operations we can deal with using the results of Section 3.

In [GL96], it is shown how QDDs can be combined with BDDs to improve the

e�ciency of classical BDD-based symbolic model-checking methods for verifying

properties of communication protocols with large �nite state spaces.

Finally note that our approach di�er from abstract interpretation [CC77]

since we have discussed techniques for representing and computing exactly the

in�nite set of reachable states of a communication protocol. Of course, approxi-

mations could also be introduced in our framework in order to force the termi-

nation of the search.

References

[AJ94] P. A. Abdulla and B. Jonsson. Undecidable veri�cation problems for programs

with unreliable channels. In Proc. ICALP-94, volume 820 of Lecture Notes in

Computer Science, pages 316{327. Springer-Verlag, 1994.

[BG96] B. Boigelot and P. Godefroid. Symbolic veri�cation of communication proto-

cols with in�nite state spaces using QDDs. In Proc. 8th Conference on Com-

puter Aided Veri�cation, volume 1102 of Lecture Notes in Computer Science,

pages 1{12, New Brunswick, August 1996. Springer-Verlag.

[BGWW97] B. Boigelot, P. Godefroid, B. Willems and P. Wolper. The Power of

QDDs. Full paper, available at

http://www.montefiore.ulg.ac.be/~boigelot/research/BGWW97.ps.

[B�uc62] J.R. B�uchi. On a decision method in restricted second order arithmetic. In

Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1{12, Stan-

ford, 1962. Stanford University Press.

[BW94] B. Boigelot and P. Wolper. Symbolic veri�cation with periodic sets. In Proc.

6th Conference on Computer Aided Veri�cation, volume 818 of Lecture Notes

in Computer Science, pages 55{67, Stanford, June 1994. Springer-Verlag.

[BZ83] D. Brand and P. Za�ropulo. On communicating �nite-state machines. Journal

of the ACM, 2(5):323{342, 1983.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation : A Uni�ed Lattice Model

for Static Analysis of Programs by Construction or Approximation of Fixpoints.

In Proc. 4th ACM Symposium on Principles of Programming Languages, 1977.

[CES86] E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic veri�cation of �nite-

state concurrent systems using temporal logic speci�cations. ACM Transac-

tions on Programming Languages and Systems, 8(2):244{263, January 1986.

[FM96] A. Finkel and O. Marc�e. Veri�cation of in�nite regular communicating au-

tomata. Technical report, LIFAC, Ecole Normale Sup�erieure de Cachan, April

1996.

[GL96] P. Godefroid and D. E. Long. Symbolic protocol veri�cation with Queue

BDDs. In Proceedings of the 11th IEEE Symposium on Logic in Computer

Science, pages 198{206, New Brunswick, July 1996.

[God96] P. Godefroid Partial-order methods for the veri�cation of concurrent systems

{ An approach to the state-explosion problem. In Volume 1032 of Lecture Notes

in Computer Science, Springer-Verlag, 1996.

[Hol91] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall

International Editions, 1991.

[Jer91] T. J�eron. Testing for unboundedness of FIFO channels. In Proc. STACS-91:

Symposium on Theoretical Aspects of Computer Science, volume 480 of Lecture

Notes in Computer Science, pages 322{333, Hamburg, 1991. Springer-Verlag.

[LP81] H. R. Lewis and C. H. Papadimitriou. Elements of the theory of computation.

Prentice Hall, 1981.

[MP92] Z. Manna and A. Pnueli. The Temporal logic of reactive and concurrent sys-

tems: Speci�cation. Springer-Verlag, 1992.

[Pac87] J. K. Pachl. Protocol description and analysis based on a state transition

model with channel expressions. In Proc. 7th IFIP WG 6.1 International

Symposium on Protocol Speci�cation, Testing, and Veri�cation. North-Holland,

1987.

[Pel94] D. Peled. Combining partial order reductions with on-the-y model-checking.

In Computer Aided Veri�cation, Proc. 6th Int. Workshop, Stanford, California,

June 1994. Lecture Notes in Computer Science, Springer-Verlag.

[QJ95] Y.-M. Quemener and Th. J�eron. Model-checking of CTL on in�nite Kripke

structures de�ned by simple graph grammars. Research Report 2563, INRIA,

June 1995.

[QJ96] Y.-M. Quemener and Th. J�eron. Finitely representing in�nite reachability

graphs of CFSMs with graph grammars. Internal Publication 994, IRISA,

March 1996.

[Saf88] S. Safra. On the complexity of omega-automata. In Proceedings of the 29th

IEEE Symposium on Foundations of Computer Science, White Plains, October

1988.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for

B�uchi automata with applications to temporal logic. Theoretical Computer

Science, 49:217{237, 1987.

[Tur93] K. J. Turner et al. Using Formal Description Techniques { An Introduction to

Estelle, Lotos and SDL. Wiley, 1993.

[Val92] A. Valmari. A stubborn attack on state explosion. Formal Methods in System

Design, 1:297{322, 1992.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program veri�cation. In Proceedings of the First Symposium on Logic in Com-

puter Science, pages 322{331, Cambridge, June 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about in�nite computations. Informa-

tion and Computation, 115(1):1{37, November 1994.

