Statically Validating Must Summaries for
Incremental Compositional Dynamic Test Generation

Patrice Godefroitl Shuvendu K. Lahiti, and Cindy Rubio-Gonzaléz

1 Microsoft Research, Redmond, WA, USA
2 University of Wisconsin, Madison, WI, USA

Abstract. Compositional dynamic test generation can achieve sigmifiscal-

ability by memoizing symbolic execution sub-paths as testrearies. In this
paper, we formulate the problem of statically validatinghbplic test summaries
against code changes. Summaries that can be proved stllgahg a static anal-
ysis of a new program version do not need to be retested ommaed dynam-
ically. In the presence of small code changes, increméytedin considerably
speed up regression testing since static checking is musdpein than dynamic
checking and testing. We provide several checks rangimg fiple syntactic
ones to ones that use a theorem prover. We present prelinérperimental re-
sults comparing these approaches on three large Windowviisatpgms.

1 Introduction

Whitebox fuzzing [15] is a promising new form of securitytieg based on dynamic
test generation [5, 14]. Dynamic test generation consitsiing a program while
simultaneously executing the program symbolically in orlegather constraints on
inputs from conditional statements encountered alongxbewion. Those constraints
are then systematically negated and solved with a constsalwer, generating new
test inputs to exercise fiierent execution paths of the program. Over the last couple of
years, whitebox fuzzing has extended the scope of dynamstigeneration from unit
testing to whole-program security testing, thanks to nesknéues for handling very
long execution traces (with billions of instructions). metprocess, whitebox fuzzers
have found many new security vulnerabilities ffiem overflows) in Windows [15] and
Linux [21] applications, including codecs, image viewensl anedia players. Notably,
our whitebox fuzzer SAGE found roughly one thirdalf the bugs discovered by file
fuzzing during the development of Microsoft's Windows 7 [12ince 2008, SAGE has
been continually running on average 0@achines automatically “fuzzing” hundreds
of applications in a dedicated security testing lab. Thigesents the largest computa-
tional usage ever for any Satisfiability Modulo Theories (§Molver [27], according
to the authors of the Z3 SMT solver [8].

Despite these successes, several challenges remain, surtreasing code cov-
erage and bug finding, while reducing computational costkeA promising idea is
compositionality the search process can be made compositional by memoiging s
bolic execution sub-paths as test summaries which areaiel@iduring the search, re-
sulting in a search algorithm that can be exponentiallyefatstan a non-compositional

one [11]. By construction, symbolic test summaries are ‘thsismmaries guarantee-
ing the existence of some program executions and hencel fieefiroving existential
reachability properties (such as the existence of an irgadihg to the execution of

a specific program branch or bug). They dualize traditionzdy” summaries used in
static program analysis for provinmiversalproperties (such as the absence of specific
types of bugs for all program paths). We are currently bngdda general infrastructure
to generate, store and re-use symbolic test summariesrfe farts of the Windows
operating system.

In this context, an important problem is the maintenancestf summaries as the
code under test slowly evolves. Recomputing test summayieamically from scratch
for every program version sounds wasteful, as new versiomgraquent and much
of the code has typically not changed. Insteatienever possibjét could bemuch
cheaperto staticallycheck whether previously-computed symbolic test sumraaie
still valid for the new version of the code. The formalizatiand study of this problem
is the motivation for this paper.

We introduce thenust-summary checking problem

Given aset S of symbolic test summaries for a program Progarav version
Prog of Prog, which summariesin S are still valid must summaoe®fog ?

We also consider the more general problem of checking whetharbitrary se of
summaries are valid must summaries for an arbitrary prodtesg.

We present three algorithms withfidirent precision to statically check which old
test summaries are still valid for a new program versionstfFive present an algo-
rithm (in Section 3) based on a simple impact analysis of agges on the static
control-flow and call graphs of the program; this algoritrem edentify local code paths
that have not changed and for which old summaries are thersfidl valid. Second,
we present (in Section 4) a more precise predicate-semsgifined algorithm using
verification-condition generation and automated theorsswipg. Third, we present an
algorithm (in Section 5) for checking the validity of a synlibdest summary against
a program regardless of program changes, by checking whibth@rgpostconditions
captured in the old summary still hold on the new program. Weuss the strengths and
weaknesses of each solution, and present preliminary iexpetal results with sample
test summaries generated for three large Windows appitatlhese experiments con-
firm that hundreds of summaries can be validated statiqaltyinutes, while validating
those dynamically can require hours or days.

2 Background and Problem Definition

2.1 Background: Compositional Symbolic Execution

We assume we are given a sequential progPaog with input parameters. Dynamic

test generation [14] consists of running the progiarg both concretely and sym-
bolically, in order to collect symbolic constraints on inpobtained from predicates in
branch statements along the execution. For each executbmpi.e., a sequence of
statements executed by the programath constraint,, is constructed that character-
izes the input values for which the program executes alartgach variable appearing

int is_positive(int x) ({
if (x > 0) return 1;
return 0;
1
int g(int x, int y) {
if ((x > 0)&&Chash(y) > 10))
return 1;
return 0;

}
Fig. 1. Example.

#define N 100
void P(int s[N]) { // N inputs
int i, cnt = 0;
for (i = 0; i < N; i++)
cnt = cnt + is_positive(s[i]);
if (cnt == 3) error(Q); // (¥)
return;

in ¢, is thus a program input. Each constraint is expressed in soeoey T decided by
a constraint solver (for instance, including linear arigtio, bit-vector operations, etc.).
A constraint solver is an automated theorem prover whioh @dgurns a satisfying as-
signment for all variables appearing in constraints it caove satisfiable. All program
paths can be enumerated by a search algorithm that explibfassaible branches at
conditional statements. The pathsfor which ¢, is satisfiable ardeasibleand are
the only ones that can be executed by the actual programdadvhe solutions te,,
characterize exactly the inputs that drive the programutjnav. Assuming that the
constraint solver used to check the satisfiability of alhiafas¢,, is sound and com-
plete, this use of symbolic execution for programs with éilyitmnany paths amounts to
program verification.

Systematically testing and symbolically executalbfeasible program paths does
not scale to large programs. Indeed, the number of feasétlesgan be exponential in
the program size, or even infinite in the presence of loops witbounded number of
iterations. Thigpath explosiorfl1] can be alleviated by performing symbolic execution
compositionallyj2, 11].

Let us assume the prograPnog consists of a set of functions. In the rest of this sec-
tion, we use the generic term fafinctionto denote any part of the progra@nog whose
observed behaviors are summarized; any program fragmantbe treated as “func-
tions” as will be discussed later. To simplify the presdntgtwe assume the functions
in Prog do not perform recursive calls, and that all the executidnBrog terminate.
These assumptions do not prev@mnbg from having infinitely many executions paths
if it contains a loop whose number of iterations depends omesonbounded input.

In compositional symbolic execution, a function summaryfor a functionf is
defined as a logic formula over constraints expressed inryhiEo¢; can be derived
by successive iterations and defined asjunctionof formulasg,, of the formey, =
prey, A posty,, wherew; denotes an intraprocedural path insiderey, is a conjunc-
tion of constraints on the inputs ¢f andposty, is a conjunction of constraints on the
outputs off. An input to a functionf is any value that can be read lbywhile an out-
put of f is any value written byf. ¢y, can be computed automatically from the path
constraint for the intraprocedural path [2, 11].

For instance, given the functiars_positive in Figure 1, a summary; for this
function can be

¢r=(xX>0Aret=1)v (x<0Aret=0)

whereret denotes the value returned by the function.

Symbolic variables are associated with function inpute(¥ in the example) and
function outputs (likeet in the example), in addition to whole-program inputs. Inesrd
to generate a new test to cover a new brabéh some functionall the previously
known summaries can be used to generate a forghwl@presenting symbolically all
the paths known so far during the search. By constructiof, [§yimbolic variables
corresponding to function inputs and outputs are all boungki and the remaining
free variables correspond exclusively to whole-prograpuia (since only those can be
controlled for test generation).

For instance, for the prograbin Figure 1, a formulap to generate a test covering
the then branch (*) given the above summagyfor functionis_positive can be

(reto+rety +...+rety_g = 3) A /\ ((di] >0Aret =1) v (di] < 0Aret =0))

0<i<N

whereret; denotes the return value of thh call to functioni s_positive. Eventhough
programp has 2'+! feasible whole-program paths, compositional test geieraan
cover “symbolically” all those paths in at most 4 test inpustests to cover both
branches in functiois_positive plus 2 tests to cover both branches of the condi-
tional statement (*). Compositionality avoids an exporemumber of tests and calls
to the constraint solver, at the cost of using more complaxfdas with more disjunc-
tions.

2.2 Problem Definition: Must Summary Checking

In practice, symbolic execution of large programs is bouniokt imprecise due to com-
plex program statements (pointer manipulations, floagiom# operations, etc.) and
calls to operating-system and library functions that anel i@ reason about symbol-
ically with good enough precision at a reasonable cost. \Biremprecise symbolic
execution is not possible during dynamic test generation¢iete values can be used
to simplify constraints and carry on with a simplified, parsymbolic execution [14].
The resulting path constraints are themder-approximateand summaries becomaust
summaries.

For example, consider the functigrin Figure 1 and assume the functibash (y)
is a complex or unknown function for which no constraint imgeated. Assume we
observe at runtime that whenis invoked withy = 45, the value ohash(45) is 987.
The summary for this execution of functigrcan then be

(x>0Ay=45Aret=1)

Here, symbolic variablg is constrained to be equal to the concrete value 45 observed
along the run because the expresdiash{y) cannot be symbolically represented. This
summary is a must summary since all value pakg/) that satisfy its precondition
define executions af that satisfy the postconditiaet = 1. However, this set is a subset

of all value pairs that satisfy this postcondition assunihere exists some other value

of y different from 45 such thdtashy) > 10. For test generation purposes, we safely
under-approximate this perfect but unknown input set wlith $maller precondition

X > 0 Ay = 45. A must summary can thus be viewed as an abstract withesse#

execution. Must summaries are useful for bug finding andgeseration, and dualize
may summaries for proving correctness, i.e., the absenioegs.

We denote a must summary by a quadryfgeP, lg, @ wherelp andlqg are arbitrary
program locationsP is a summary precondition holding Ip, andQ is a summary
postcondition holding ig. Ip andlg can be anywhere in the program: for instance, they
can be the entry and exit points of a function (as in the prevexamples) or block,
or two program points where consecutive symbolic condisaire injected in the path
constraint during symbolic execution, possibly iffeiient functions. In what follows,
we call a summaryntraproceduralif its locations(lp, Iq) are in a same functiofh and
the functionf did not return betweelp to Ilg when the summary was generated (i.e., no
instruction from a function callind higher in the call stack was executed fré¢grto Iq
when the summary was generated). We will only consider pntreedural summaries
in the remainder of this paper, unless otherwise specified.

Formally, must summaries are defined as follows.

Definition 1. A must summar§lp, P, Ig, Q for a program Prog implies that, for every
program state satisfying P at Ip in Prog, there exists an aken that visits Iq and
satisfies Q at Iq.

A must summary is calledalid for a progranProgif it satisfies Definition 1. We define
themust-summary checking problems follows.

Definition 2. (Must-summary checkingiven a valid must summanyp, P, Ig, Q for
a progranProgand a new versioRrog of Prog, is(Ip, P, Iq, @ still valid for Prog'?

We also consider later in Section 5 the more general probleohecking whether
an arbitrary must summary iglid for an arbitrary progranProg. These problems
are diferent from themust summary inferenggnerationproblem discussed in prior
work [2,11,16].

We present three fierent algorithms for statically checking which old must sum
maries are still valid for a new program version. These dtlgars can be used in isola-
tion or in a pipeline, one after another, in successive “plRasf analysis.

3 Phase 1: Static Change Impact Analysis

The first “Phase 1" algorithm is based on a simple impact amslyf code changes in
the static control-flow and call graphs of the program.

A sufficient condition to prove that an old must summépy P, Ig, Q generated as
described in Section 2.1 is still valid in a new program amss thatall the instruc-
tions that were executed in the original program path taletwéenlp andlq when the
summary was generated remain unchanged in the new progetording all unique
instructions executed between each glairIq) would be expensive for large programs
as many instructions (possibly in other functions) can lexated.

Instead, we caonver-approximatehis set by statically finding all program instruc-
tions thatmaybe executed oall paths fronlp toIg: this solution requires no additional
storage of runtime-executed instructions but is less peedf no instruction in this
larger set has changed between the old and new programgymanyasy for(lp, 1q) can

then be safely reused for the new program version; otheywiséave to conservatively
declare the summary as potentially invalid since a modifistriiction might be on the
original path taken fronp to Iqg when the summary was generated.

To determine whether a specific instruction in the old progimunchanged in the
new program, we rely on an existing lightweight syntacticf"glike tool which can
(conservatively) identify instructions that have been ified, deleted or added between
two program versions by comparing their abstract syntaestre

Precisely, an instructionof a programProg is defined asnodifiedin another pro-
gram versiorProg if i is changed or deleted Prog or if its ordered set of immediate
successor instructions changed betwBeog and Prog. For instance, swapping the
then and else branches of a conditional jump instructiondifies” the instruction.
However, the definition is local as it does not involve nonviediate successors.

Program instructions that are not modified can be mappedsprogram versions.
Conversely, if an instruction cannot be mapped across progersions, it is considered
as “deleted” and thereforaodified Similarly, a program function is defined asdified
if it contains either a modified instruction, or a call to a rifigd function, or a call to
an unknown function (e.g., a function outside the prograhia@ugh a function pointer
which we conservatively assume may have been modified). thatehis definition is
transitive, unlike the definition of modified instruction.

Given those definitions, we can soundly infer valid sumnsaniging the following
rule.

An intraprocedural summary froip to Ig inside a same functiofis valid if,
in the control-flow graph fof, no instruction betweelp andlq is modified or
is a call to a modified function.

The correctness of this rule is immediate for intraprocatismmmaries (as defined in
Section 2.2) since, if the condition stated in the rule holdsknow that all instructions
betweerlp andlg are unchanged across program versions.

Implementing this rule requires building the control-flovagh of every function
containing an old intraprocedural summary and the calllyfapthe entire program in
order to transitively determine which functions are modifidote that the precision of
the rule above could be improved by considering interpracaccontrol-flow graphs
(merging together multiple intraprocedural control-flomghs), at the cost of building
larger graphs.

4 Phase 2: Predicate-Sensitive Change Impact Analysis

Consider the summarp, x> 0 Ay < 10, Ig, w = 0) for the code fragment shown on
the left of Figure 2. Assume the instructions marked with “DIGIED” have been
modified in the new version. Since some instructions on scattesgfromlp to Iq have
been modified, the Phase 1 analysis will invalidate the sumribowever, notice that
the set of executions that start from a state satisfying0 A y < 10 atlp and reachq
has not changed.

In this section, we present a second change impact anaRk&se 2” that exploits
the predicate® and Q in a summarxlp, P, Ig, Q to perform a more refined analy-
sis. The basic idea is simple: instead of considering allptns betweeltp andlq,

lp: if (x > ®) { 1p: i.f.(x <0

if (y == 10) .
w++; // MODIFIED lfr(i' ;.0)
else = 1;
w=0; else {
| else { r - 0; //MODIFIED to r = 4;

w = 1; // MODIFIED }

}

) 1g: ...

1g: ...
Fig. 2. Motivating examples for Phase 2 (left) and Phase 3 (right).

we only consider those that also satigtyin Ip and Q in Ig. We now describe how
to perform such a predicate-sensitive change impact aralgig static verification-
condition generation and theorem proving. We start withagpam transformation for
checking that all executions satisfyiigin Ip that reacHq and satisfyQ in Iq are not
modified fromlp tolq.

Given an intraprocedural summap, P, Iq, @ for a function f, we modify the
body of f in the old code as follows. LeEntry denote the location at the beginning
of f, i.e., just before the first instruction executedfinWe use an auxiliary Boolean
variablemodified, and insert the following code at the lab&stry, Ip, Iq and at all
labels¢ corresponding to anodifiedinstruction or a call to a modified function (just
before the instruction at that location).

Entry: goto Ip;
Ip : assume P; modified := false;
Ig : assert (Q = -modified);
¢ : modified := true;

The assume statemeadsume P atlp is a blocking instruction [4], which acts as a
no-op if control reaches the statement in a state satistyiagredicatd®, and blocks
the execution otherwise. The assertiofgathecks that if an execution reachgsvhere
it satisfiesQ via Ip where it satisfied?, it does not execute anyodifiedinstruction
betweerlp andlqg.

Theorem 1. Given an intraprocedural must summatg, P, Ig, Q valid for a function

f in an old program Prog, if the assertion at Ig holds in thetinsnented old program
for all possible inputs for f, thekip, P, Ig, Q@ is a valid must summary for the new
program Prod.

Proof. The assertion alig ensures thaall executions in the old prograrfrog that
(1) reachlq and satisfyQ in Ig and (2) satisfyP atlp do not execute any instruction
that is marked amodifiedbetweenp andlg. This set of executions is possibly over-
approximated by consideringl possible inputs forf, i.e., ignoring specific calling
contexts forf andlp in Prog. Since all the instructions executed frdmto Iq during
those executions are preserved in the new prodramg’, all those executiond/ from

Ip to Iq are still possible in the new program. Moreover, sikipe P, 1g, Q is a must
summary for the old prograrRrog, we know that for every state satisfyingP in
Ip, there exists an executiom from s that reachedq and satisfieQ in Iq in Prog.
This executiorw is included in the sedV preserved froniProgto Prog'. Therefore, by
Definition 1,{Ip, P, Iq, Q is a valid must summary fdProg'. O

The reader might wonder the reason for performing the abusteuimentation on
the old prograniProg instead of on the new prograRrog. Consider the case of a state
that satisfied? atlp from which there is an execution that reackes Prog, but from
which no execution reachégin Prog'. In this case, the must summaltg, P, Iq, Q is
invalid for Prog. Yet applying the above program transformatiorPtamg would not
necessarily trigger an assertion violatiorigasincelq may no longer be reachable in
Prog'.

To validate must summaries statically, one can use ang stsgertion checking tool
to check that the assertion in the instrumented program doefail for all possible
function inputs. In this work, we use Boogie [3], a verificaticondition (VC) based
program verifier to check the absence of assertion failM€sbased program verifiers
create a logic formula from a program with assertions withftillowing guarantee: if
the logic formula is valid, then the assertion does not fadmy execution. The validity
of the logic formula is checked using a theorem prover, tgibica SMT solver. For
loop-free and call-free programs, the logic formula is gated by computing variants
of weakest liberal preconditior(svlp) [9]. Procedure calls can be handled by assigning
non-deterministic values to the return variable and albflobals that can be potentially
modified during the execution of the callee. Similarly, ls@an be handled by assigning
non-deterministic values to all the variables that can bdifieal during the execution of
the loop. Although procedure postconditions and loop ilaves can be used to recover
the loss of precision due to the use of non-determinism far-approximating side
effects of function calls and loop iterations, we use the défaastcondition and loop
invarianttrue for our analysis to keep the analysis automated and simple.

5 Phase 3: Must Summary Validity Checking

Consider the code fragment shown on the right of Figure 2 svtiher instruction marked
“MODIFIED” is modified in the new code. Consider the summdpy x < 0, Iq, r > 0).
Since themodifiedinstruction is along a path betwegmandlg, even when restricted
under the conditiorP at Ip, neither Phase 1 nor Phase 2 will validate the summary.
However, note that the change does nid¢et the validity of the must summary: all
executions satisfying < 0 atlp still reachlg and satisfyr > 0 in the new code, which
means the must summary is still valid. In this section, wecdies a third algorithm
dubbed “Phase 3" for statically checking the validity of agnsummarylp, P, Ig, @
against some cod@dependently of code changes

In the rest of this section, we assume that the programs wudsideration are (i)
terminating i.e., every execution eventually terminates, andd@jnpletei.e., every
state has a successor state.

Given an intraprocedural summaip, P, Iq, @ for a function f, we perform the
following instrumentation on th@ew code. We denote bintry the location of the

first instruction inf, while Exit denotes any exit instruction i We use an auxiliary
Boolean variableeach_lg, and insert the following code at the lab&stry, Ip, Iq and
Exit.

Entry: reach_lq := false; goto Ip;
Ip: assume P;
Iq: assert (Q); reach_lq := true;
Exit: assert (reach_lq);

The variablereach_lq is set wherlq is visited in an execution, and initialized talse
at theEntry node. Theassume P blocks the executions that do not satifatIp. The
assertion atq checks that if an execution reachgsvia Ip, it satisfiesQ. Finally, the
assertion aExit checks thaall executions fronip have to go throughy.

Theorem 2. Given an intraprocedural must summatip, P, Iq, Q for a function f,
if the assertions hold in the instrumented program for alsgible inputs of f, then
(Ip, P, Ig, Q is a valid must summary for the program.

Proof. The assertion alg ensures thaéveryexecution that reachdg from a state
satisfyingP atlp, satisfieQ. This set of executions is possibly over-approximated by
consideringall possible inputs foif, i.e., ignoring specific calling contexts férand

Ip. Since we consider programs that are terminating and cdejphe assertion &xit

is checked for every execution (except those blockeddsyme P in Ip which do not
satisfy P), and ensures that every execution that satistieslp visits Ig. Thegoto Ip
ensures thdp is reached fronkntry, otherwise the two assertions could vacuously hold
if Ip was not reachable or through restricted calling contextdlenthanP. O

The assertions in the instrumented function can be checkied any df-the-shelf
assertion checker as described in Section 4. Our implerti@mtases VC generation
and a theorem prover to validate the summaries. Since lowmpgrocedure calls are
treated conservatively by assigning non-deterministicgesto modified variables, the
static validation is also approximate and may sometimdstdavalidate valid must
summaries.

Note that Phase 3 isotan instance of the Phase 2 algorithm when every statement
is marked as “modified”: Phase 3 checks tigsvprogram while Phase 2 checks tbld
program (see also the remark after Theorem 1).

Moreover, the precision of Phase 3 is incomparable to theigiom of Phase 2
(which refines Phase 1). Both Phase 1 and Phase 2 validatetssamary for the
new programassumingt was a must summary for the old program, whereas Phase 3
provides an absolute guarantee on the new program. At thieadtthis section, we
presented an example of a valid must summary that can betedithy Phase 3 but not
by Phase 2. Conversely, Phase 3 may falil to validate a sumduaryo the presence
of complex code betwedp andlg and imprecision in static assertion checking, while
Phase 1 or Phase 2 may be able to prove that the summaryahtilby detecting that
the complex code has not been modified.

6 Dealing with Partial Summaries

In practice, trackingll inputs and outputs of large program fragments can be prob-
lematic in the presence of large or complex heap-allocasgd dtructures or when
dealing with library or operating-system calls with po$gibnknown side fects. In
those cases, the constraiendQ can be approximate, i.e., onpartially defined P
constraints onlysomenputs, whileQ can capture onlgomeoutputs (side #ects). The
must summary is then callgzhrtial, and may be wrong in some other unknown call-
ing context. Constraints containing partial must sumnsariay generate test cases that
will not cover the expected program paths and branches. @iuelgence$14] can be
detected at runtime by comparing the expected program pigththre actual program
path being taken. In practice, divergences are often obddnvdynamic test genera-
tion, and partial summaries can still be useful to limit pexiplosion, even at the cost
of some divergences.

Consider the partial summatip, x > 0, Iq, ret = 1) for the function

int k(int x) {

Ip: if ((x > 0) && (vGlobal > 10)) return 1;
return 0;

1q: }

where the input value stored in the global variabt&obal is not captured in the
summary, perhaps because it does not depend on a wholeapraguut. If the value of
vGlobal is constant, the constraiiGlobal > 10) is always true and can safely be
skipped. Otherwise, the partial summary is imprecise: ¥ mawrong in some calling
contexts.

The validity of partial must summaries could be defined in akee manner to
reflect the fact that they capture only partial precondgidar instance as follows:

Definition 3. A partialmust summaryip, P, Iq, Q is valid for a program Prog if there
exists a predicate R on program variables, such that (i) Rsdas implyfalse, (ii) the
support of R is disjoint from the support of P, and (if)p, P A R, lg, Q is a must
summary for Prog.

SinceR is notfalse, the conditions (ii) and (iii) cannot be vacuously satisfigtbre-
over, since the supports BfandR are disjoint,R does not constrain the variablesin
yet requires that the partial must summary tracks a subgbedhputs (namely those
appearing irP) precisely.

In practice, it can be hard and expensive to determine whethaust summary is
partial or not. Fortunately, any partial must summary casdaadly validated using the
stronger Definition 1, which is equivalent to settiRdgo true in Definition 3. Phases 1,
2 and 3 are thus all sound for validating partial must sumesari

Validating partial summaries with Definition 3 or full sumnes for non-deterministic
programs with Definition 1 could be done more precisely wittaasertion checker that
can reason about alternating existential and universaitéigas, which is non-standard.
It would be interesting to develop such an assertion chaokeiture work.

! The support of an expression refers to the variables in theesgion.

7 Recomputing Invalidated Summaries

All the summaries declared valid by Phase 1, 2 or 3 are mapp#tetnew code and
can be reused. In contrast, all invalid summaries need t@t@mputed, for instance
using a breadth-first strategy in the graph formed by supsénggath constraints.
Consider the grap8 whose nodes are all the program locatigmandlg mentioned
in the old set of test summaries, and where there is an edgelfrdo Ig for each
summary. Note that, by construction [11], every ndglef a summary matches the
nodelp of the next summary in the whole-program path constraifgssfg is the last
conditional statement in the path constraintmis the first one, which we denote by
for “root”. By constructionG is a directed acyclic graph.
Consider any invalid summaryp, P, Ig, Q that is closest to the rootof G. Let
% denote the set of paths fromto Ip. By construction with a breadth-first strategy,
all summaries along all the paths#hare still valid for the new program version. To
recompute the summatip, P, Iq, Q for the new program, we call the constraint solver
with the formula

in order to generate a test to exercise condiffaat the program locatiolp (see Sec-
tion 2.1). Then, we run this test against the new programoe@nd generate a new
summary frondp to wherever it leads to (possibly a négvandQ). This process can be
repeated to recompute all invalidated summaries in a bnefadt manner irG.

8 Experimental Results

We now present preliminary results for validating intraggdural must summaries gen-
erated by our tool SAGE [15] for several benchmarks, with@ifoon understanding
the relative &ectiveness of the ffierent approaches.

8.1 Implementation

We have developed a prototype implementation for analyz8gbinaries, using two
existing tools: the Vulcan [10] library to statically anaé/Windows binaries, and the
Boogie [3] program verifier. We briefly describe the impleraion of the diferent
phases in this section.

Our tool takes as input the old program (DLLS), the set of sam@s generated
by SAGE for the old program, and the new version of the progia use Vulcan to
find differences between the two versions of the program, and prtgptuan inter-
procedurally. In this work, we focus on the validation of mssmmaries that are in-
traprocedural (SAGE classifies summaries as intraproeédunot at generation time).
Intraprocedural summaries that cannot be validated byePhase further examined by
the more precise Phases 2 and 3. For each of those, we canadywsanslate the x86
assembly code of the function containing the summary to etfomin the Boogie input
language, and use the Boogie verifier (which uses the Z3 SM/Egdo validate the

Functions with Changes Summaries

BenchmarkFunctions M{% M| IM|% IM| U|% U U |% IU|(Intraprocedural)
ANI 6978703 10% 3130 45% 234034% 5174 74% 286
GIF 13897712 5%|4370 31% 381427% 8827 64%) 288
JPEG 203571623 3%]|6150 30% 746337% 12184 60%) 517

Fig. 3. Benchmark characteristics.

summaries using the Phase 2 or Phase 3 checks. Finally, @duntps thdp andlq
locations of every validated summary from the old prograri&onew program.
Unfortunately, Boogie currently does not generate a VCaffimction under anal-
ysis has anrreducible control-flow graph [1], although the theory handles it [3]. A
function has an irreducible control-flow graph if there isuastructured loop with mul-
tiple entry points into the loop. Such an unstructured loap arise from two sources:
(i) x86 binaries often contain unstructurgdto statements, and (ii) we addgato Ip
statement in Phases 2 and 3 that might jump inside a loop. Brattucible graphs
appear in roughly 20% of the summaries considered in thisoseclTo circumvent
this implementation issue, we report experimental resolthose cases where such
loops are unrolled a constant number of times (four timekhogh we have manually
checked that many of these examples will be provable if wesh@gort for irreducible
graphs, we can treat those results to indicate the potaitRiiase 2 or Phase 3: if their
effectiveness is poor after unrolling, it can only be worse wuttunrolling.

8.2 Benchmarks

Table 3 describes the benchmarks used for our experimeertsowsider three image
parsers embedded in Windows: ANI, GIF and JPEG. For eachesktthwe ran SAGE
to generate a sample of summaries. The number of DLLs withhsannes for the three
benchmarks were 3 for ANI, 4 for GIF, and 8 for JPEG. Then, vtiarily picked a
newer version of each of these DLLs; these were between ahéhase years newer
than the original DLLs. The column “Functions” in Table 3 déss the total number
of functions present in the original DLLs. The columns makk®”, "IM”, "U” and
"IU” denote the number of functions that are “Modified”, “lmdctly Modified” (i.e.,
calling a modified function), “Unknown” (i.e., calling a fation in an unknown DLL
or through a function pointer) and “Indirectly Unknown” spectively. The table also
contains the percentage of such functions over the totabeuof functions. Finally, the
“Summaries” column denotes the number of summaries cledsifs intraprocedural.
For all three benchmarks, most summaries generated by SA&Rteaprocedural.

Although these benchmarks have a relatively small fracbbmodified functions
(between 3% — 10%), the fraction of functions that can ttaugdy call into these func-
tions can be fairly large (between 30% — 45%). The impact &homn functions is
even more significant, with most functions being marked UbrNote that any call to
a M, IM, U or IU function would be marked amodifiedin Phase 1 of our validation
algorithm (Section 3). Although we picked two versions oflebenchmark separated
by more than a year, we expect the most likely usage of ourttbke for program
versions separated only by a few weeks.

Benchmark# Summ Phase 1 Phase 2 Phase 3 All

| % time # | % |time| # | % [time| # | % |time
ANI 286 |167|58% 8m (3m)|244{85% 37m| 86 |30%|42m|256/90% 87m
GIF 288 [198/69%|12m (4m)264{92% 23m| 90 |31%)| 35m|274{95%| 70m

JPEG 517 |317/61% 18m (6m)487/94%) 31m| 173 33%|37m|501/97% 86m

Fig. 4. Different phases on all the intraprocedural summaries.

8.3 Results

The three tables (Fig. 4, Fig. 5 and Fig. 6) report the redadifectiveness of the ter-
ent phases on the previous benchmarks. Each table cortieinsiinber of intraproce-
dural summaries for each benchmark (“# Summ?”), the validatione by each of the
phases, and the overall validation. For each phase (andlfyere report the number of
summaries validated (“#"), the percentage of the total neinah summaries validated
(“%") and the time (in minutes) taken for the validation. Timae reported for Phase 1
includes the time taken for generating thedifiedinstructions interprocedurally, and
mapping the old summaries to the new code; the fraction o 8pent solely on vali-
dating the summaries is shown in parenthesis. The failupedee a summary valid in
Phase 2 or Phase 3 could be the result of a counterexampémutrl00 seconds per
summary), or some internal analysis errors in Boogie.

Figure 4 reports thefiect of passinall the intraprocedural summaries indepen-
dently to all the three phases. First, note that the totalberrof summaries validated is
quite significant, between 90% and 97%. Phase 1 can valigatebn 58%—69% of the
summaries, Phase 2 between 85%—-94% and Phase 3 between336%ce Phase 1
is simpler, it can validate the summaries the fastest amboadhree approaches. The
results also indicate that Phase 2 has the potential toatalgignificantly more sum-
maries than Phase 1 or Phase 3. After a preliminary analjsiseaccounterexamples
for Phase 3, its imprecision seems often due to the paytialimust summaries (see
Section 6): many must summaries do not capture enough edmtston states to enable
their validation using Phase 3.

To understand the overlap between the summaries validgteddh phase, we re-
port the results of the three phases in a “pipeline” fashidmgre the summaries vali-
dated by an earlier phase are not considered in the lategsstigall the configurations,
Phase 1 was allowed to go first because it generates infameagquired for running
Phase 2 and Phase 3, and because it is the most scalableesritodmvolve a program
verifier. The invalid summaries from Phase 1 are passed ¢itfirhase 2 first (Figure 5)
or to Phase 3 first (Figure 6).

The results indicate that the configuration of running PHagellowed by Phase 2
and then Phase 3 is the fastest. The overall runtime in Figigeoughly half than the
overall runtime in Figure 4. Note that the number of addiéilsummaries validated by
Phase 3 beyond Phases 1 and 2 is only 1%—-4%.

On average from Figure 5, it takes about (43 min divided by @@maries) 10
secs to statically validate one summary for ANI, 6 secs fdf &hd 5 secs for JPEG.
In contrast, the average time needed by SAGE to dynamicalgompute a summary

Benchmark# Summ Phase 1 Phase 2 Phase 3 All

| % |time| # | % |[time| #| % [time| # | % |time
ANI 286 |167|58%| 8m | 77 |27%|29m|12|4%| 6m |256/90%)43m
GIF 288 [19869%|12m| 73 |25%| 15m| 3 |1%| 1m [274/95% 28m
JPEG 517 |317/61%]|18m[179135%| 18m| 5 |1%| 5m [501/97% 41m

Fig. 5. Pipeline with Phase 1, Phase 2 and Phase 3.

Benchmarlk# Summ Phase 1 Phase 3 Phase 2 All
| % |time|#| % |time| # | % [time| # | % |time
ANI 286 |167|58%)| 8m |30[10%|12m| 59 |21%|27m|256/90% 47m|
GIF 288 1198/69%)|12m(25| 9% | 7m | 51 |18%]|12m|274{95% 31m|
JPEG 517 |317/61%)|18m|52|10%]|14m|13226%|14m|501|97% 46m|

Fig. 6. Pipeline with Phase 1, Phase 3, Phase 2.

from scratch is about 10 secs for ANI, 70 secs for GIF and 168 e JPEG. Statically
validating summaries is thus up to 20 times faster for theselbmarks.

9 Related Work

Compositionalmay staticprogram analysis has been amply discussed in the litera-
ture [25]. A compositional analysis always involves somerf@f summarization. In-
cremental program analysis is also an old idea [7, 24] thaglypicomplements com-
positionality. Any incremental analysis involves the usesome kind of “derivation
graph” capturing inference interdependencies betweemsrias during their compu-
tation, such as which lower-level summary was used to infacwhigher-level sum-
mary. While compositional interprocedural analysis ha® f@come mainstream in
industrial-strength static analysis tools (e.g., [19])ehhotherwise would not scale to
large programs, incremental algorithms are much less widsgd in practice. Indeed,
those algorithms are more complicated and often not reekdad as well-engineered
compositional static analysis tools can process millidgnges of code in only hours
on standard modern computers.

The purpose of our general line of research is to replicatestitcess of compo-
sitional static program analysis to the testing space. ncoatext, the summaries we
memoize (cache) are symbolic test must summaries [2, 11¢hwéie general input-
dependent pypostconditions of a-priori arbitrary code fragments, atilv are repre-
sented as logic formulas that are used by an SMT solver tg oatithe interprocedural
part of the analysis. Because test summaries need to bes@r@umpared to those
produced by standard static analysis) and are generatedycur expensive dynamic
symbolic execution of large whole programs, incrementadimore appealing for cost-
reduction in our context.

The algorithms presented in Sections 3 and 4 have the gdla@l of incremental
algorithms [24], while the graph formed by superposing pathstraints and used to

recompute invalidated summaries in Section 7 correspantlset “derivation graph”
used in traditional incremental compositional statictgsia algorithms. However, the
details of our algorithms are new due to the specific natutkefype of summaries we
consider.

The closest related work in the testing space are probabhniques forregres-
sion test selectiofe.g., see [17]) which typically analyze test coverage dathcode
changes to determine which tests in a given test suite nelbed te-executed to cover
newly modified code. The techniques we use in Phase 1 of oaritig are similar,
except we do not record coverage data for eachlpaindlqg as discussed at the begin-
ning of Section 3. There is a rich literature on techniquesfatic and dynamichange
impact analysigsee [26] for a summary). Our Phase 1 can be seen as a simaledas
of these techniques, aimed at validating a given must summrAtthough more sophis-
ticated static-analysis techniques (based on dataflowsiephave been proposed for
change impact analysis, we are not aware of any attempt teargeation-condition
generation and automated theorem proving techniquesHik®etused in Phase 2 and
Phase 3 for precise checking of the impact of a change. Thk evodifferential sym-
bolic executionDSE) [22] is the closest to our Phase 3 algorithm. Unlike D8& do
not summarize paths in the new program to compare those witrsries of the old
program; instead, we want to avoid recomputing new summasieeusing old ones as
much as possible. Whenever an old summiyP, Iq, Q becomes invalid and needs to
be recomputed, a data-flow-based impact analysis like thedmtussed in [23] could
refine the procedure described in Section 7 by identifyingtvepecific program paths
from Ip to Ig need to be re-executed symbolically. In our experimenes;yesummary
covers one or very few paths (of the old program), and thisrapation is not likely to
help much.

Must abstractionsre program abstractions geared towards finding errorsshwhi
dualize may abstractions geared towards proving corrsstfle3]. Reasoning about
must abstractions using logic constraint solvers has bespoped before [6,13, 16,18,
20], and are related to Phase 3 in our work.

10 Conclusions

In this work, we formulated the problem of statically valithg must summaries to
make compositional dynamic test generation more increahée described three ap-
proaches for validating must summaries, thalfediin their strengths and weaknesses.
We outlined the subtleties involved in using afi-the-shelf verification-condition-
based checker for validating must summaries, and the ingigzrtial predicates on
precision. We presented a preliminary evaluation of thegpeaaches on a set of repre-
sentative intraprocedural summaries generated fromwedt applications, and demon-
strated the fectiveness of static must summary checking. We plan to at@abur tool

on a larger set of summaries and benchmarks, investigatédealidate interprocedu-
ral summaries, and improve the precision of the path-deasihalysis.

AcknowledgementsWe thank the anonymous reviewers for their constructive-com
ments. The work of Cindy Rubio-Gonzalez was done mostlylewisiting Microsoft
Research. A preliminary version of this work appeared urdertitle “Incremental
Compositional Dynamic Test Generation” as MSR TechnicgdReMSR-TR-2010-
11, February 2010.

References

1. A. Aho, R. Sethi, and J. UllmanCompilers: Principles, Techniques and Taol&ddison-
Wesley, 1986.

2. S. Anand, P. Godefroid, and N. Tillmann. Demand-Drivem@ositional Symbolic Execu-
tion. In TACAS’2008volume 4963 oLNCS pages 367-381, 2008.

3. M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. Mnae Boogie: A modular
reusable verifier for object-oriented programs.FMCO '05, LNCS 4111, pages 364—-387,
2005.

4. M. Barnett and K. R. M. Leino. Weakest-precondition oftomstured programs. IRASTE
‘05, pages 82-87, 2005.

5. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. Rgen EXE: Automatically
Generating Inputs of Death. KCM CCS 2006.

6. S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: AeFalwApproach to Weakest
Preconditions. 1iPLDI’2009, 2009.

7. C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards.rdmental algorithms for
inter-procedural analysis of safety propertiesCIV, pages 449—461, 2005.

8. L. de Moura and N. Bjorner. Z3: Anficient SMT Solver. INTACAS '08 LNCS 4963,
pages 337-340, 2008.

9. E. W. Dijkstra. Guarded commands, nondeterminacy anmudbderivation of programs.
Communications of the ACM8:453—-457, 1975.

10. A. Edwards, A. Srivastava, and H. Vo. Vulcan: Binary sfanmation in a distributed envi-
ronment. Technical report, MSR-TR-2001-50, Microsoft &esh, 2001.

11. P. Godefroid. Compositional Dynamic Test GeneratioPOPL'2007 pages 47-54, 2007.

12. P. Godefroid. Software Model Checking Improving Seguoif a Billion Computers. In
SPIN’2009 page 1, 2009.

13. P. Godefroid, M. Huth, and R. Jagadeesan. Abstract@edModel Checking using Modal
Transition Systems. IEONCUR’2001 volume 2154 of. NCS pages 426—440, 2001.

14. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed é&utated Random Testing. In
PLDI'2005, pages 213-223, 2005.

15. P. Godefroid, M. Levin, and D. Molnar. Automated Whitelsuzz Testing. INDSS’2008
pages 151-166, 2008.

16. P. Godefroid, A. Nori, S. Rajamani, and S. Tetali. Conitpmsal May-Must Program Anal-
ysis: Unleashing The Power of Alternation. ROPL'201Q 2010.

17. T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G.tRRermel. An Empirical Study
of Regression Test Selection Techniqua<M Transactions on Software Engineering and
Methodology (TOSEML0(2):184-208, Apr. 2001.

18. A. Gurfinkel, O. Wei, and M. Chechik. Yasm: A Software Mb@hecker for Verification
and refutation. IfCAV'2006 volume 4144 of. NCS pages 170-174, 2006.

19. S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and duizege for Building System-
Specific Static Analyses. IRLDI'02, pages 69-82, 2002.

20. J. Hoenicke, K. R. M. Leino, A. Podelski, M. Schaf, and Te®V It's doomed; we can prove
it. In FM’2009, 2009.

21.

22.

23.

24.

25.

26.

27.

D. Molnar, X. C. Li, and D. Wagner. Dynamic test generatio find integer bugs in x86
binary linux programs. IfProc. of the 18th Usenix Security Symposi@@09.

S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareaffardéhtial symbolic execution.
In SIGSOFT FSEpages 226-237, 2008.

S. Person, G. Yang, N. Rungta, and S. Khurshid. Directeiémental Symbolic Execution.
In PLDI'2011, pages 504-515, 2011.

G. Ramalingam and T. Reps. A Categorized Bibliographynoremental Algorithms. In
POPL’'93 pages 502-510, 1993.

T. Reps, S. Horwitz, and M. Sagiv. Precise InterprocadDataflow Analysis via Graph
Reachability. InPOPL'95 pages 49-61, 1995.

R. A. Santelices, M. J. Harrold, and A. Orso. Precisetgdég runtime change interactions
for evolving software. INCST, pages 429-438, 2010.

Satisfiability = Modulo Theories Library (SMT-LIB). Avable at
http://goedel.cs.uiowa.edu/smtlib/.

