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Abstract. Symbolic veri�cation based on Binary Decision Diagrams (BDDs) has proven to be a

powerful technique for ensuring the correctness of digital hardware. In contrast, BDDs have not

caught on as widely for software veri�cation, partly because the data types used in software are

more complicated than those used in hardware. In this work, we propose an extension of BDDs for

dealing with dynamic data structures. Speci�cally, we focus on queues, since they are commonly

used in modeling communication protocols. We introduce Queue BDDs (QBDDs), which include

all the power of BDDs while also providing an e�cient representation of queue contents. Experi-

mental results show that QBDDs are well-suited for the veri�cation of communication protocols.
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1. Introduction

Binary Decision Diagrams (BDDs) [5] have proven to be a powerful tool for the

veri�cation of digital hardware [7, 25]. The level of abstraction provided by BDDs

closely matches that required for modeling hardware. In particular, the value in

a latch is often represented by a single bit, corresponding to one BDD variable.

For software veri�cation, BDDs have not been as popular. Part of the di�culty is

that the data types that must be manipulated for software veri�cation are more

complicated than those required for hardware. Variables with simple �nite do-

mains, such as �xed-width integers, can be encoded by a vector of booleans in a

straightforward manner, but other data types, such as lists, stacks, and queues, are

more awkward to deal with. Often, it is di�cult to estimate the maximum size

of such dynamic structures in order to determine a suitable encoding. Even if a

size bound is available, it may be both ine�cient and cumbersome to encode the

possible values directly.

In this work, we consider one of the most frequent types of software systems en-

countered in veri�cation: communication protocols. Protocols are hard to design

because they usually involve several concurrent processes, which may interact in

unexpected ways. Communication protocols are often modeled by a collection of

�nite state machines communicating by exchanging messages. Since the communi-

cation is asynchronous, message queues are used to provide bu�ering. In this paper,

we study symbolic representations for such systems. We show how to extend BDDs

with a natural mechanism for representing and reasoning about queue contents.

The resulting symbolic representation is called a Queue BDD, or QBDD for short.
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Other approaches to the state-explosion problem have been proposed. Examples

include abstraction [11, 9, 12, 18, 23] and compositional reasoning [1, 10, 19, 24].

Our approach is orthogonal to these methods, in that we try to concisely represent

the full state space of a given system. The system itself may be an abstracted

representation or only part of a larger system. Symmetry reductions [8, 14, 22] and

partial-order methods [17, 16, 28, 31] explore only parts of the full state space, while

still preserving properties of interest. These approaches generally use an explicit

representation of the state space. In contrast, our method explores the full space,

but uses a symbolic representation.

In the next section, we introduce and precisely de�ne QBDDs. (We assume

that the reader is already familiar with BDDs and the algorithms associated with

them.) In Section 3, we present algorithms for performing operations on QBDDs,

such as computing the e�ect of enqueueing and dequeueing an element on a queue,

and discuss their complexity. We then compare QBDDs with a standard BDD

representation for systems containing queues. A symbolic veri�cation system based

on QBDDs has been implemented, and results of experiments performed on several

existing communication protocols are reported in Section 5. The paper ends with

a comparison between our contributions and other related work.

2. Representing Sets of Queue Contents

The value of a queue is a sequence of messages over an alphabet M of possible

messages. If we assume that at any time the number of messages in the queue

is at most b, then we can represent a set of values of the queue with a BDD

involving bdlog

2

(jM j+1)e boolean variables. (We have jM j messages, plus a special

symbol � representing the absence of a message.) One obvious disadvantage of this

representation is that b must be known.

Another natural representation for a set of values for the queue is as a minimal

deterministic �nite automaton (DFA) over the alphabet M . The queue contents

in the set correspond to the strings accepted by the DFA. Note that if the set of

values is �nite, then the DFA is both �nite and acyclic. The DFA representation of

queue-contents is referred to as a Queue-content Decision Diagram (QDD) in [4].

Compared to the BDD representation above, the DFA representation is poten-

tially more concise for the following reason. Consider two sequences of messages w

1

and w

2

such that w

1

w is in the set of values for the queue i� w

2

w is also in the set.

In the BDD case, the common set of su�xes w that are possible after either w

1

or

w

2

will be represented using the same BDD nodes only if the lengths of w

1

and

w

2

are equal. Otherwise, the boolean variables encoding the su�xes after w

1

will

not be the same as the boolean variables encoding the su�xes after w

2

, and hence

these su�xes will be represented by di�erent BDD nodes. In contrast, this waste-

ful duplication can be avoided by using the DFA representation described above.

Whatever the lengths of w

1

and w

2

, the DFA representation will reach the same

state after reading either w

1

or w

2

, and the representation of the set of su�xes will

be unique. Another advantage of the DFA representation is that it does not depend

on any prede�ned knowledge of the bound b.
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Below, we introduce a new symbolic representation, called Queue BDD (QBDD),

which combines the DFA representation (for the queues in a system) with the BDD

representation (for the non-queue parts). The combined representation consists of

a sequence of layers. Each layer is either a DFA (representing a queue) or a BDD

(representing some non-queue variables). Each layer is joined to the one below it

with arcs linking its \accepting" states to the \initial" states of the next one. (For

a BDD, the accepting state is the 1 terminal, while the initial state is the root.)

The combined representation accepts the encoding of a state of the protocol being

veri�ed if the values of the variables for that encoding de�ne a path from the initial

state of the �rst layer to an accepting state of the last layer.

Because queues are often used to pass the values of process variables from one

process to another, it is convenient to avoid explicitly translating BDD variable

values into queue messages. This can be done by encoding the messages in the

DFA layers using BDD variables. For example, suppose that a queue is used to

pass messages containing the value of the variable v 2 f0; 1; 2; 3g, and that v is

encoded with two BDD variables, v

1

and v

2

. If we represent the messages in the

queue using two BDD variables q

1

and q

2

with the same encoding used for v, then

enqueueing the value of v will basically involve copying the values of v

1

and v

2

into

q

1

and q

2

respectively. Similarly, dequeueing a message into v would just involve

copying q

1

and q

2

into v

1

and v

2

.

This idea brings us to a di�culty though. In a standard BDD, each variable can

only occur once along any path from the root to a leaf, while the queue will generally

contain multiple messages. Thus, in the previous example, to represent the entire

contents of the queue, we must either make multiple pairs of variables (one pair

per message in the queue), or we must relax this restriction. The former solution is

equivalent to the \standard BDD case" discussed at the start of this section, and

su�ers from the drawbacks mentioned there. Hence we choose the latter solution,

where successive occurrences of a queue variable represent successive messages in

the queue.

As in the standard BDD encoding mentioned earlier, we need codes for all the

possible messages in the queue, and one additional code � that represents \no

message", i.e., the end of the queue. To see why this is necessary, consider trying

to represent the set of queue-contents f�;m

1

m

2

g, where the queue is either empty

or contains two messages, m

1

followed by m

2

. From the initial node, there must

be a path for m

1

, as well as a path for the possibility that there is no �rst message.

The latter is represented by the special � value. This value corresponds to the

notion of reaching an accepting state in the DFA representation of a queue.

There is one subtlety when encoding the DFA. If we are not careful, the BDD

path compression rule can eliminate nodes so as to destroy the duplication of vari-

ables that is needed to distinguish successive messages in the queue. (The path

compression rule eliminates nodes whose successors are identical.) To avoid this

possibility, we encode the � value in a special way. We create a new BDD variable

q

�

, and assign the codes with q

�

= 1 to the value � and the codes with q

�

= 0 to the

other possible messages.
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We now de�ne QBDDs more precisely. For notational simplicity, we consider the

case where there is a single queue. The general case is a straightforward extension.

Consider a DAG whose non-leaf vertices are labeled with variables of two types:

ordinary (non-queue) boolean variables V , and (boolean) queue variables Q. The

leaves of the DAG are all either 0 or 1. Each non-leaf node has two outgoing edges,

a 0-edge and a 1-edge. There is one distinguished queue variable denoted q

�

. (In

the general case with several queues, each queue has a separate set Q of queue

variables and a separate distinguished queue variable \q

�

".)

We de�ne a semantic function � that takes as input valuations for the non-queue

and queue variables and produces as output either 0 or 1. The valuation for the

non-queue variables is given as a mapping �

V

:V ! f0; 1g. The valuation �

Q

for the queue variables is a bit more complicated, due to the need to represent

successive messages in the queue. The inputs to �

Q

are a variable in Q, and a

nonnegative integer. Conceptually, the integer will represent the position in the

queue. A sequence of messages of length l is represented as follows. For the q

�

variable, �

Q

(q

�

; i) = 0 for i < l, �

Q

(q

�

; l) = 1, and �

Q

(q

�

; i) is unde�ned for i > l.

For a queue variable q 6= q

�

, �

Q

(q; i) will be de�ned exactly when 1 � i � l.

Let n be a non-leaf node of the DAG, and let l(n) denote the variable labeling

n, s

0

(n) be the 0-successor of n, and s

1

(n) be the 1-successor of n. We now de�ne

�(n; �

V

; �

Q

; i). For conciseness, we will write �(n) when the last three arguments

are understood to be �

V

, �

Q

, and i.

1. �(0) = 0 and �(1) = 1.

2. For a non-leaf node n:

(A) If l(n) 2 V , then �(n) = �(s

0

(n)) when �

V

(l(n)) = 0, and �(n) =

�(s

1

(n)) when �

V

(l(n)) = 1.

(B) Suppose that l(n) is equal to q

�

. If �

Q

(q

�

; i) = 0, then de�ne �(n) =

�(s

0

(n); �

V

; �

Q

; i+1). If �

Q

(q

�

; i) = 1, then �(n) = �(s

1

(n); �

V

; �

Q

; i+1).

If �

Q

(q

�

; i) is unde�ned, then �(n) is unde�ned.

(C) Suppose l(n) = q 2 Q but q 6= q

�

. If �

Q

(q; i) = 0, then �(n) = �(s

0

(n)).

If �

Q

(q; i) = 1, then �(n) = �(s

1

(n)). If �

Q

(q; i) is unde�ned, then �(n) is

unde�ned.

Notice that �(n; �

V

; �

Q

; 0) is not always de�ned for an arbitrary DAG. Suppose

for example, that the DAG consists of one non-leaf node labeled with q 6= q

�

,

with leaves 0 and 1. The semantic function is not de�ned for this DAG when the

valuation �

Q

represents the empty queue, i.e., �

Q

(q

�

; 0) = 1, and �

Q

is unde�ned

otherwise.

We will call a DAGwith root node n an unordered unreducedQBDD if �(n; �

V

; �

Q

; 0)

is always de�ned, regardless of �

V

and �

Q

. (Intuitively, this means that �(n; �

V

; �

Q

; 0)

returns either 0 or 1 for any valuation, i.e., for the encoding of any possible state of

the protocol.) This de�nition imposes one ordering requirement on QBDDs imme-

diately. In particular, if a node involves a test on q

�

, then the sub-DAG pointed to

by the 1-successor of that node cannot contain nodes labeled with q

�

or with any
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other queue variables for that queue. (In the general case with several queues, the

semantic function � is de�ned with one valuation function �

Q

and integer i per

queue.)

In order to obtain a canonical form, we impose additional ordering and reduction

requirements in analogy to those for (reduced, ordered) BDDs. A linear ordering

for the non-queue variables V is �xed, just as in the BDD case. The queue variables

Q are also linearly ordered, with q

�

being �rst. A global ordering is constructed

by inserting the entire set Q into some position in the ordering for V . The only

di�erence from a complete global ordering is that any queue variable may be fol-

lowed by a test on q

�

(except for the constraint on the 1-successor of a q

�

node,

mentioned above). For notational simplicity, we de�ne the 0 and 1 terminals as the

last two elements in the ordering. We use the term \QBDD" to refer to a reduced

ordered QBDD, i.e., a QBDD that satis�es the above ordering requirements and

that is maximally reduced using the classical BDD reduction rules [5].

v1

qe qe

v2

q

1 0

qe

q

Figure 1. An example QBDD

An example QBDD is shown in Figure 1. In the �gure, dashed lines denote

0-successors and solid lines denote 1-successors. We can view this QBDD as rep-

resenting a state set over two boolean variables v

1

and v

2

, and one queue. If we
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write states as vectors with the v

1

value �rst, followed by the queue contents and

then the v

2

value, then the state set corresponding to the QBDD is

f(1; �; 1); (1; 11 : : : ; 1); (0; 11 : : : ; 1)g

where the latter two tuples denote classes of states where the queue contains two

1's followed by anything. (Hence, there are an in�nite number of states in the state

set represented by this QBDD.)

3. Operations on QBDDs

Many algorithms for BDD operations, such as conjunction and disjunction, have

counterparts for QBDDs. The di�erences between the corresponding QBDD and

BDD algorithms are minor. The only signi�cant change is that the QBDD al-

gorithm must be more careful when comparing the level of variables, due to the

repetition of variables that are in Q. New algorithms are needed for queue-speci�c

operations on QBDDs, such as enqueueing and dequeueing. We now consider these

new algorithms.

To simplify the discussion, we assume that all (non-queue) variables and expres-

sions in the protocol description have boolean values. The allowed message types

for the queue are also assumed to be boolean. In the presentation below, v will

represent a boolean non-queue variable, e will represent a boolean expression in-

volving non-queue variables, and q will be the (boolean) queue variable representing

a message in the queue. Top(f) denotes the top variable in the BDD or QBDD f ,

i.e., the label of the root node of f . IfThenElse(v; r

1

; r

0

) denotes a non-leaf node

n such that l(n) = v, s

1

(n) = r

1

, and s

0

(n) = r

0

.

Before presenting the enqueueing and dequeueing operations, we give two utility

routines that return QBDDs that represent queues containing a speci�ed element.

The �rst routine is shown in Figure 2. The routine takes as input the BDD for an

expression e. It returns the QBDD that evaluates to 1 when the queue contains ex-

actly one element whose value is e. The second routine, AtLeastOneElementQueue

(Figure 3), returns a QBDD that evaluates to 1 when the queue contains at least

one element, and the head element is e. (For clarity, the �gures do not show the

manipulation of the result cache which is used in all operations to avoid exponential

behavior. The manipulation is exactly analogous to that used in BDD routines.)

Now we consider the Dequeue algorithm. The algorithm takes as input a QBDD

f which represents a set of states S. If in some states, the queue is empty, we

mask out such states by conjoining with the QBDD IfThenElse(q

�

; 0; 1), which

represents all states where the queue contains at least one element. If in addition,

we wish to copy the element to be dequeued into a variable v, we �rst create

a \post-dequeue" value for v, which we denote by v

0

. We then conjoin f with

AtLeastOneElementQueue(IfThenElse(v

0

; 1; 0)), existentially quantify the variable

v, and rename v

0

back to v. This yields a QBDD representing the same states as

S, but with the value of v in each state equal to the value at the head of the queue

in that state.
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QBDD OneElementQueue(BDD e)

if Top(e) > q then

r

0

 IfThenElse(q

�

; :e; 0)

r

1

 IfThenElse(q

�

; e; 0)

return IfThenElse(q

�

; 0; IfThenElse(q; r

1

; r

0

))

else

r

0

 OneElementQueue(s

0

(e))

r

1

 OneElementQueue(s

1

(e))

return IfThenElse(Top(e); r

1

; r

0

)

endif

Figure 2. Routine for representing single-element queues

QBDD AtLeastOneElementQueue(BDD e)

if Top(e) > q then

return IfThenElse(q

�

; 0; IfThenElse(q; e; :e))

else

r

0

 AtLeastOneElementQueue(s

0

(e))

r

1

 AtLeastOneElementQueue(s

1

(e))

return IfThenElse(Top(e); r

1

; r

0

)

endif

Figure 3. Routine for representing queues with a speci�ed head
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After these preprocessing steps, the Dequeue algorithm (Figure 4) removes the

head element from the queue. This algorithm takes as input a QBDD f which

represents a set of states S, in all of which the queue has at least one element. The

return value is a QBDD representing the set of states resulting from removing the

head of the queue in each state of S. Note that the algorithm is very similar to

the method for existential quanti�cation in the case of standard BDDs. The two

operations also have the same complexity. In the general case where the contents

of the queue are encoded by k > 1 boolean variables, the worst-case complexity of

the algorithm is O(jf j

2

k

). But like existential quanti�cation, the algorithm almost

always behaves reasonably in practice.

QBDD Dequeue(QBDD f)

if f = 0 then

return f

else if Top(f) < q

�

then

r

0

 Dequeue(s

0

(f))

r

1

 Dequeue(s

1

(f))

return IfThenElse(Top(f); r

1

; r

0

)

else

| Top(f) must equal q

�

| s

1

(f) must equal 0

h s

0

(f)

if Top(h) = q then

return s

0

(h) _ s

1

(h)

else

return h

endif

endif

Figure 4. The Dequeue algorithm

We now consider the algorithm for enqueueing the value given by the expression

e. The algorithm takes as input a QBDD f , representing a �nite set of states, and

the QBDD h = OneElementQueue(e). (The in�nite set of states where a queue has

an arbitrary number of messages followed by a message e is not representable with

QBDDs.) The enqueue operation is slightly more complicated than those considered

previously because of the need to �nd the end position of the queue. The end of the

queue is indicated by following the 1-successor of a q

�

node. When we encounter

such a branch, the QBDD reached represents any remaining constraints on the non-

queue part of the state. We conjoin these constraints with h to add the element e

to the end of the queue. We then recursively enqueue e for the 0-successor of the

q

�

node, and union the two state sets. The algorithm is shown in Figure 5. In the

�gure, the notation f

x

denotes the cofactor of f with respect to the variable x. This

is equal to the result of setting x to 1 in f . If x = Top(f), then f

x

is just s

1

(f),
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and if x < Top(f), then f

x

is equal to f . (The case x > Top(f) never happens in

the algorithm.) Similarly, f

:x

denotes the result of setting x to 0 in f .

QBDD Enqueue(QBDD f , QBDD h)

| Initially h = OneElementQueue(e)

| Recur through f and h

if Top(f) < Top(h) then

x Top(f)

else

x Top(h)

endif

if x < q

�

then

r

0

 Enqueue(f

:x

; h

:x

)

r

1

 Enqueue(f

x

; h

x

)

return IfThenElse(x; r

1

; r

0

)

else

| We are at q

�

in h

| Recur through f

if Top(f) > q then

return IfThenElse(q

�

; 0; f)

else if Top(f) = q

�

then

r

0

 IfThenElse(q

�

; 0; Enqueue(s

0

(f); h))

r

1

 s

1

(f) ^ h

return r

0

_ r

1

(*)

else

| Top(f) is q

r

0

 Enqueue(s

0

(f); h)

r

1

 Enqueue(s

1

(f); h)

return IfThenElse(Top(f); r

1

; r

0

)

endif

endif

Figure 5. The Enqueue algorithm

The worst-case complexity of the Enqueue algorithm is O(jf jjhj). This hinges on

the fact that the disjunction performed on the line marked by (*) can be made a

constant-time operation. Both operands of the disjunction will have top variable

q

�

, with 1-successor 0. Traversing the 0-successor of r

0

, we may pass through q,

but we must eventually reach a node of the form IfThenElse(q

�

; 0; g

1

). Similarly,

if we traverse the 0-successor of r

1

, then (after perhaps a q) we reach a node of

the form IfThenElse(q

�

; g

2

; 0). Thus during the disjunction of r

0

and r

1

, we form

IfThenElse(q

�

; g

2

; g

1

), so we do not compute g

1

_ g

2

.

Other operations, such as testing if a queue is empty or (in the case of bounded

queues) full, can be done using logical operations. For example, testing for empti-

ness can be done by conjoining with the QBDD q

�

, representing the set of states

where the queue is empty.
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4. Comparison with BDDs

In this section, we compare QBDDs with a standard BDD representation for sys-

tems containing queues. First note that using the queue facilities in QBDDs con-

strains the representation of successive messages in the queue. To illustrate this,

consider a queue whose messages are 32-bit integers, and suppose that the queue

currently contains two messages, with the �rst message stored in the queue hav-

ing any value, and the second message being equal to the �rst. Representing this

constraint with a QBDD would require about 2

32

nodes, because the entire �rst

message is represented before any part of the second one. In contrast, the same

constraint has linear size if we use a BDD-style representation and we order the

variables so that the bits of the messages are interleaved. Thus, for some particular

queues, it may be better to use a traditional BDD-style representation rather than

the specialized form provided by the QBDDs. Since QBDDs subsume BDDs, we

can always use the BDD-style representation where appropriate. Thus, the size of

a QBDD need never be larger than the corresponding BDD representation of the

same constraint. (Another possibility for situations like the above in the QBDD

case is to split the single queue with 32-bit messages into 32 queues, each holding

1-bit messages. Each of these can be represented using the special queue facilities.

In this case, the constraint mentioned above has linear size. This representation

might be appropriate in situations where we need the interleaved ordering but have

no bound on queue size.)

Conversely, suppose that in the BDD ordering, the variables for each message in

the queue are together and that the group of variables for message m

i+1

follows the

group of variables for m

i

. This ordering corresponds closely to that used for queues

in QBDDs. With this ordering, there are cases where the QBDD representation

is strictly more concise than the BDD representation. With queues of size k, the

QBDD for a constraint may be up to k times smaller than the BDD. Consider

for example, sending k distinct messages to a queue that may lose messages. For

simplicity, we will number the messages 1 through k. In the QBDD case, the

representation of the set of possible queue states after the k messages have been

sent has size O(k). A picture of the QBDD representation of this constraint is

shown on the left side of Figure 6 for k = 4. For conciseness, only the nodes labeled

with q

�

are shown in the �gure. The q variables are indicated abstractly by the

labels on the arcs. For example, an arc label of 2 means that the q variables along

that arc encode message 2. The 1-successor of each q

�

node leads to the 1 leaf; these

successors are also not shown. Note that all of the arcs with the same label lead

to the same q

�

node. In contrast, the BDD for the same constraint has size O(k

2

),

because this type of sharing is not possible. The ith message in the queue must be

represented by the ith set of message variables. Hence, the ith set of variables will

be used to encode su�xes beginning with i, i+1, : : : , k. An abstracted view of the

BDD for k = 4 is shown on the right side of Figure 6. We also note that the BDD

can be no larger than k times the QBDD size. The example above demonstrates

the worst-case increase for BDDs. In the translation from a QBDD to a BDD, a

QBDD queue node which is reachable via m distinct paths, each passing through
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Figure 6. Representation of the contents of a lossy queue using QBBDs (left) and BDDs (right)

a di�erent number of q

�

nodes, will be duplicated m times. Thus, with queues of

length k, the maximum duplication for each node is k.

The BDD representation has one advantage when the enqueue and dequeue op-

erations are implemented in terms of relational products. In this case, the reverse

operations (e.g., getting all states where it is possible to do an enqueue operation

and wind up in a state in some given set), which are used in a variety of symbolic

state-space exploration methods, are simply a matter of doing relational products

with the converse relations. With QBDDs, special-purpose code is needed for the

reverse operations.

5. Experimental Results

We have implemented a symbolic veri�cation system based on QBDDs. The input

to the system is a program expressed in a guarded command language. The program

describes a network of processes that run asynchronously and that communicate by

exchanging messages. The veri�er represents the transition system and state space

using QBDDs. It checks invariants by doing a forward search using a modi�ed

breadth-�rst strategy [6]. The system could be extended to check other properties,

such as temporal logic formulas [13] or process equivalences [26].

We compare in this section the performance of a symbolic search using BDDs

and of a symbolic search using QBDDs for three examples of concurrent programs.

Experiments were performed on a Sun Sparc20 workstation with 196 Megabytes

of RAM. The variable orderings used in the BDD and QBDD cases are the same,
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Figure 7. Comparison of performance for the producer-consumer example

except of course that, in the QBDD case, queue variables are repeated rather than

duplicated. Nodes is the maximum number of BDD or QBDD nodes used during

the search for representing the set of reachable states in the corresponding symbolic

representation. Time (in seconds) is user time plus system time as reported by the

UNIX time command.

The �rst example we consider is a simple version of a producer-consumer sys-

tem [3]: a process (the producer) sends a �nite amount of data to a second process

(the consumer) via a (non-lossy) bounded FIFO queue of size QSZ. The producer

may send data when the queue is not full, while the consumer may receive data

when the queue is not empty. Figure 7 presents the results obtained with this

example. The search using QBDDs clearly outperform, both in time and memory,

the search done using BDDs.

Figure 8 presents results of experiments obtained with the alternating-bit proto-

col [2]. This protocol is modeled by two processes that communicate via two FIFO

queues of size QSZ that may lose messages. The behavior of the two processes is
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modeled as in [4]. Again, the results obtained using QBDDs outperform the results

obtained with BDDs, even though the increase in the number of nodes is linear in

both cases. The tremendous di�erence in run-time observed for large values of QSZ

is mainly due to the computations of results of queue operations, which were not

optimized for speed in the BDD case. With standard BDDs, queues of size QSZ

are represented by arrays of QSZ elements; enqueuing a message m is modeled by

setting the value of the �rst empty element of the array to m, while dequeueing

a message is modeled by copying the value of the �rst element of the array and

then shifting down by one position all the other elements of the array. In contrast,

QBDDs and their associated algorithms were designed to concisely represent the

contents of queues and to e�ciently compute queue operations.

Table 1 reports results of experiments performed with a more complex example

of protocol: the full-duplex sliding-window protocol described in pages 232{233

of [30]. This protocol is modeled in about 100 lines of code in the input guarded

command language for our tool. It consists of two processes communicating via
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Table 1. Comparison of performance for the sliding-

window protocol

Nodes Time

QSZ BDDs QBDDs BDDs QBDDs

3 207,629 183,057 4,080 2,280

6 356,581 282,053 11,160 5,640

9 { 375,850 { 10,140

two FIFO queues (one for each direction) of size QSZ that may lose messages. The

purpose of the protocol is to ensure that messages sent from the upper layer of

one side are delivered in the same order to the upper layer of the other side. The

results reported in Table 1 were obtained with a domain of sequence numbers (used

to number messages) of size 4 and with sliding-windows of size 2. These results

show that QBDDs outperform BDDs again, both in time and memory, although

the di�erence in performance is less impressive, due to the use of smaller values

for QSZ. For values of QSZ greater than 7, the symbolic search using BDDs could

not be completed (limited by space). With QBDDs, one can obtain a complete

correctness proof of the above protocol with values of QSZ up to 11 (limited by

space). An exhaustive depth-�rst search of the state space, as implemented in

SPIN [21], cannot be completed even for QSZ=3 (limited by space). Note that the

model of the sliding-window protocol of [30] used here is more accurate than the

model used for the experiments reported in [15], the latter model being mistakenly

oversimpli�ed.

Experiments performed with several other examples show similar improvements

when using QBDDs. Interestingly, the di�erence in performance between QBDDs

and BDDs is also signi�cant for protocols with perfect queues, i.e., when queues do

not lose messages. Finally note that, in the BDD case, interleaving queue variables

of di�erent queues in the variable ordering strongly deteriorates the performance

of the search for the examples considered here. In other words, it seems easy to do

worse and hard to do better with respect to the performance reported here for the

BDD case.

6. Conclusion and Comparison with Related Work

Much of the nondeterminism in communication protocols comes from the concur-

rency in the system combined with the imperfections and delays in the communi-

cation medium. Because protocols are often meant to cope with lost or reordered

messages, or transport delays, the model of the communication medium is highly

nondeterministic. As a result, the set of possible queue contents is usually very

large, which is one of the main causes of state explosion. Symbolic data structures

such as BDDs have proven e�ective for dealing with large state sets. QBDDs extend

this result by providing more concise and e�ective representations for the contents

of the queues in the system. They also solve the encoding problem for queues that

are unbounded or have unknown bounds. Since QBDDs include BDDs as a special
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case, they inherit the power of BDDs for representing and reasoning about large

state spaces.

QDDs [4] are another symbolic representation for sets of queue contents. QDDs

use general DFAs with arbitrary loops to represent queue contents, while QBDDs

are more restricted in the types of queue contents that they can capture. For exam-

ple, the set of states where a queue has an arbitrary number ofm

1

messages followed

by an m

2

message is representable with QDDs but not with QBDDs. QDDs can be

used to construct a �nite and exact representation of in�nite state spaces. However,

they do not include a symbolic representation for non-queue variables. In contrast,

QBDDs are mainly useful for large �nite state spaces (because of their limited ex-

pressiveness for in�nite sets). Interesting future work is to combine the strengths

of the two representations and the veri�cation algorithms that are associated with

them.

MONA [20] is a tool for manipulating expressions in monadic second-order logic.

The representation used internally for �nite-state machines in MONA is very sim-

ilar to the QBDD representation when appropriate formulas are given. However,

MONA provides no specialized operations for manipulating the representation.

In the context of BDDs, Minato et al. [27] have proposed variable shifters as

a means of sharing subgraphs whose indexes di�er only by a constant shift. For

example, given the variable ordering x

1

< x

2

< x

3

, the use of variable shifters

results in the functions x

1

x

2

and x

2

x

3

sharing the same subgraph. For representing

the contents of a single (�xed-size) queue, QBDDs and BDDs with variable shifters

would give essentially the same number of nodes. However, the variable shifter

representation provides no way to \undo" the shift, so in representing a constraint

involving both queue and non-queue variables, the additional sharing is lost (except

in the case of a queue which is ordered last).

MDDs [29] are symbolic data structures that include facilities for non-boolean

variables. Because the variables are restricted to �nite domains, MDDs su�er from

the same limitations as BDDs when trying to represent dynamic data structures.

In contrast, while we have focused on queues in this work, we believe that the ideas

behind QBDDs can be naturally extended to represent other common dynamic

structures such as lists, stacks, and trees.
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