
EXPLOITING SYMMETRY WHEN

MODEL-CHECKING SOFTWARE

(EXTENDED ABSTRACT)

Patrice Godefroid

Bell Laboratories, Lucent Technologies

263 Shuman Boulevard

Naperville, IL 60566, USA

email: god@bell-labs.com

AbstractWe study how to exploit symmetry induced by identical processes or

data structures when systematically exploring the state spaces of concur-

rent software applications such as implementations of communication pro-

tocols. Existing model-checking symmetry reduction methods are based

on equivalence classes of states, and assume that every system state can

easily be encoded by a unique string of bits. When dealing with processes

described by software programs written in full-
edged programming lan-

guages such as C, C++ or Java, this assumption is not valid anymore.

Indeed, the state of each process is determined by the values of all the

memory locations that can be accessed by the process and in
uence its be-

havior (including activation records associated to procedure calls). This

amount of information is typically far too large and complex to be e�-

ciently computed at each step of a state-space exploration.

We develop in this paper a simple theory based on equivalence classes of

sequences of transitions for representing symmetries in a system. We then

present a state-space exploration algorithm for exploiting symmetries on

transitions which does not rely on explicit encodings of system states.

This algorithm can be used to dynamically prune the state spaces of

implementations of concurrent reactive software systems in a reliable way.

Keywords: software testing, model checking, state-explosion problem, sym-

metry, partial-order methods.

1 INTRODUCTION

Systematic state-space exploration, also often referred to as \model checking",

is an e�ective method for checking the correctness of concurrent reactive sys-

tems. State-space exploration tools for software systems have traditionally been

restricted to the exploration of the state space of an abstract description of the

system, speci�ed in a modeling language (e.g., [15, 5, 22]). Once a model of a

new software application has been thoroughly analyzed, it can also be used as

the core of the implementation of the application, as can be done with software

development environments for languages such as SDL [16] and VFSM [9].

VeriSoft [11] is a recent tool which extends the scope of systematic state-

space exploration to concurrent systems in which processes execute arbitrary

code written in general-purpose programming languages such as C or C++.

VeriSoft systematically explores the state space of a concurrent software ap-

plication by controlling and observing the execution of the actual code of all

its components. By broadening the scope of systematic state-space exploration

from modeling languages to programming languages, VeriSoft eliminates one

major obstacle to a wider use of these techniques, namely the need to build a

model of the software application to be analyzed. This new tool and approach

have been applied successfully for analyzing several software products devel-

oped in Lucent Technologies, such as telephone-switching applications and im-

plementations of network protocols (e.g., see [12]). Since VeriSoft can typically

generate, execute and evaluate thousands of tests per minute, it can quickly re-

veal behaviors that are virtually impossible to detect using conventional testing

techniques.

A key originality of VeriSoft is that it systematically explores state spaces

without storing any explicit encoding of intermediate states in memory. Indeed,

when dealing with processes described by software programs written in full-

edged programming languages such as C, C++ or Java, the fundamental

assumption used in traditional model-checking that every system state can

easily be encoded by a unique string of bits is not valid anymore. Since the state

of each process is determined by the values of all the memory locations that

can be accessed by the process and in
uence its behavior (including activation

records associated to procedure calls), computing unambiguous encodings of

system states and then saving these in memory is typically far too complex

and expensive to be performed at each step of a state-space exploration, even

for simple software applications.

We investigate in this paper how to exploit symmetry induced by identical

processes or data structures for verifying properties of a software application

without completely exploring its state space. Existing model-checking sym-

metry reduction methods [2, 8, 17] de�ne equivalence classes of system states

from symmetries in a (model of a) system. During state-space exploration, the

successors of a state need not be explored if the successors of an equivalent

\symmetric" state have already been explored. Unfortunately, detecting sym-

metric states requires nontrivial manipulations of state encodings which would

not be tractable in the context considered here.

We develop in this work an alternative approach that makes it possible to

exploit symmetries in a system without manipulating and comparing encodings

of its reachable states. This paper is organized as follows. In the next two sec-

tions, we brie
y recall the main principles of the framework introduced in [11]

and of existing symmetry reduction methods. In Section 4, we describe how to

transpose equivalence relations on states to equivalence relations on sequences

of transitions for representing symmetries in a system. We then study proper-

ties of the transposition. In Section 5, we discuss how to exploit symmetries on

transitions in practice. We then present in Section 6 a state-space exploration

algorithm that can avoid exploring symmetric parts of a state space without

using any explicit encoding of system states. This algorithm uses an original

combination of partial-order and symmetry methods. We illustrate our ideas

with a simple example in Section 7, and present our conclusions in Section 8.

2 BACKGROUND

We brie
y recall in this section the main ideas of the framework introduced

in [11]. We consider a concurrent system S composed of a �nite set of processes

and a �nite set of communication objects. Each process executes a sequence of

operations described in a sequential program written in a full-
edged program-

ming language such as C or C++. Such sequential programs are deterministic:

every execution of the program on the same input data performs the same se-

quence of operations. We assume that processes communicate with each other

by performing operations on communication objects, such as shared variables,

semaphores, and FIFO bu�ers. We assume that operations on communication

objects are executed atomically: namely, no process can execute an operation

on a given communication object while another process is currently doing so.

Operations on communication objects are called visible operations, while other

operations are by default called invisible. The execution of an operation is said

to be blocking if it cannot currently be completed; for example, waiting for the

reception of a message blocks until a message is received. We assume that only

visible operations may be blocking.

A concurrent system is said to be in a global state when the next operation

to be executed by every process in the system is a visible operation. Every

process in the system is always expected to eventually attempt execution of a

visible operation. (If a process does not attempt to perform a visible operation

within a given amount of time, an error can be reported at run time.) This

assumption implies that initially, after the creation of all the processes of the

system, the system can reach a �rst and unique global state s

0

, called the initial

global state of the system. A process transition is one visible operation followed

by a �nite sequence of invisible operations performed by a single process and

ending just before a visible operation. The state space of the concurrent system

is then de�ned as the global states that are reachable from the initial global

state s

0

, and of the transitions that are possible between these.

It has been proved [11] that deadlocks and assertion violations of a concurrent

system that satis�es the above assumptions can be detected by exploring global

states only. Deadlocks are states where the execution of the next operation of

every process in the system is blocking. Assertions can be speci�ed by the user

with the special operation \VS assert". This operation can be used in the code

of any process, and is considered visible. It takes as its argument a boolean

expression that can test and compare the value of variables local to the process.

When \VS assert(expression)" is executed, the expression is evaluated. If the

expression evaluates to false, the assertion is said to be violated.

VeriSoft is a tool for systematically exploring the state space of a concurrent

system as de�ned above. Systematic state-space exploration is performed by

controlling and observing the execution of all the visible operations of all the

concurrent processes of the system. The execution of the system processes is

controlled by an external process, called the scheduler. This process observes

the visible operations performed by processes inside the system, and can sus-

pend their execution. By resuming the execution of (the next visible operation

of) one selected system process in a global state, the scheduler can explore one

transition between two global states in the state space of the concurrent sys-

tem. By reinitializing the system, the scheduler can explore alternative paths

in the state space. There are exactly two sources of nondeterminism in the

concurrent systems we consider here: concurrency and \VS toss" operations.

VS toss is a special operation which simulates nondeterminism and is conve-

nient for modeling the environment in which an open system operates and for

specifying test drivers. Since the VeriSoft scheduler has complete control over

nondeterminism, it can always reproduce any scenario leading to an error found

during a state-space search.

Since the states of programs can be very complex (because of pointers, dy-

namic memory allocation, large data structures of various shapes, recursion,

etc.), the VeriSoft scheduler does not attempt to compute any representation

for the reachable states of the system being analyzed, and hence performs a

systematic state-space exploration without storing any intermediate states in

memory. It is shown in [11] that the key to make this approach tractable is to

use a new search algorithm built upon existing state-space pruning techniques

known as partial-order methods [10]. For �nite acyclic state spaces, this search

algorithm is guaranteed to terminate and can be used for detecting deadlocks

and assertion violations without incurring the risk of any incompleteness in the

veri�cation results. In practice, VeriSoft can be used for systematically and

e�ciently testing the correctness of any concurrent system, whether or not its

state space is acyclic. Indeed, it can always guarantee, from a given initial

state, complete coverage of the state space up to some depth.

3 SYMMETRY ON STATES

The state space of a concurrent system as de�ned in the previous section can

be represented by a transition system. Given a nonempty �nite set P of atomic

propositions, we de�ne a transition system as a tuple M = (S;L;R; s

0

) where

� S is a set of global states,

� L : S ! 2

P

is an interpretation function that associates with each state

the set of atomic propositions that are true in the state,

� R � S � S is a set of transitions,

� s

0

is the initial global state.

A transition t = (s; s

0

) is said to be enabled in state s. The set of enabled

transitions in a state s is denoted by enabled(s). We write s

t

! s

0

to mean that

the execution of the transition t leads from the global state s to the global state

s

0

, while s

w

) s

0

means that the execution of the �nite sequence w of transitions

leads from s to s

0

. If s

w

) s

0

, s

0

is said to be reachable from s.

We now recall the main principles of symmetry-based reduction methods [2,

8, 17]. The basic idea is that symmetries in the system induce an equivalence

relation on states of the state space of the system. While performing model-

checking, one can discard a state s if one has already explored an equivalent

state s

0

. Precisely, we have the following.

A permutation � on a set S is a bijection of S into itself. Let Perm(S) be

the group of all permutations of S [13].

De�nition 1 Given a transition system M = (S;L;R; s

0

), a subgroup G of

Perm(S) is called a symmetry group of M if for all permutations � in G,

� (s

1

; s

2

) 2 R i� (�(s

1

); �(s

2

)) 2 R, and

� L(s) = L(�(s)).

The symmetry group G de�nes an equivalence relation � on S as follows:

s

1

� s

2

if 9� 2 G : s

2

= �(s

1

). The equivalence class [s] = f�(s)j� 2 Gg of s

under � is called the orbit of s under G.

De�nition 2 Given a transition system M = (S;L;R; s

0

) and a symmetry

group G of M , a quotient transition system for M modulo G is a transition

system M

[s]

= (S

0

; L

0

; R

0

; s

0

0

) where

� S

0

= f[s]js 2 Sg,

� L

0

: S

0

! 2

P

is such that 8s 2 S : L

0

([s]) = L(s),

� R

0

= f([s]; [s

0

])j(s; s

0

) 2 Rg,

� s

0

0

= [s

0

].

Since s � s

0

implies L(s) = L(s

0

), atomic propositions do not distinguish

equivalent states. It is then easy to prove that s

0

and [s

0

] are bisimilar.

De�nition 3 Let M

1

= (S

1

; L

1

; R

1

; s

1

0

) and M

2

= (S

2

; L

2

; R

2

; s

2

0

) be tran-

sitions systems. A binary relation B � S

1

� S

2

is a bisimulation relation if

(s

1

; s

2

) 2 B implies:

� L

1

(s

1

) = L

2

(s

2

),

� if (s

1

; s

0

1

) 2 R

1

, then there is some s

0

2

2 S

2

such that (s

2

; s

0

2

) 2 R

2

and

(s

0

1

; s

0

2

) 2 B, and

� if (s

2

; s

0

2

) 2 R

2

, then there is some s

0

1

2 S

1

such that (s

1

; s

0

1

) 2 R

1

and

(s

0

1

; s

0

2

) 2 B.

Two states s

1

and s

2

are bisimilar, denoted s

1

� s

2

, if they are related by some

bisimulation relation.

Theorem 1 LetM = (S;L;R; s

0

) be a transition system andM

[s]

= (S

0

; L

0

; R

0

; s

0

0

)

be a quotient transition system for M modulo a symmetry group G of M . Then,

we have s

0

� s

0

0

.

It is well-known [14] that bisimilar states cannot be distinguished by formu-

las of propositional modal �xpoint logic [24], also known as the propositional

�-calculus [19]. Therefore, the quotient transition system M

[s]

can be used in-

stead of the full transition system M for model-checking formulas of this logic

or of any of its fragments, such as linear-time temporal logic (LTL) [20] and

computation-tree logic (CTL) [3].

In practice, the quotient transition system of a system is usually generated

on-the-
y using a canonicalization function �. This function maps each state

s into a unique representative �(s) of the equivalence class [s]. Whenever a

state s is visited during state-space exploration, the value �(s) is saved in

memory, usually in a hash-table [17]. This type of search can also be done

\symbolically", for instance using Binary Decision Diagrams [1] for representing

sets of states [2]. When a state s

0

equivalent to s is visited later during the

search, the search does not explore successors of s

0

. Various schemes have

been proposed for e�ciently implementing canonicalization functions [17]. The

complexity of this problem is discussed in [4].

4 SYMMETRY ON TRANSITIONS

Storing states in memory in one form (hash-table) or another (BDDs) and us-

ing canonicalization functions assumes that every system state can easily be

encoded by a unique string of bits. When dealing with processes described

by arbitrary programs written in full-
edged programming languages, this as-

sumption is clearly not valid anymore.

Of course, nothing prevents us from systematically searching the state space

of a concurrent system without storing any intermediate states in memory, as

is done in VeriSoft. This is called a state-less search in [11]. In the context of

a state-less search, a state is identi�ed only by the sequence of transitions that

were executed from the initial state s

0

in order to reach that state. In other

words, the sequence of transitions that leads to a state from s

0

can be viewed

as a \representation" of that state. Obviously, this representation is not unique

since many di�erent paths from s

0

may lead to a same state.

We now discuss how symmetry can be exploited for pruning state spaces in

conjunction with a state-less search. We start by transposing the equivalence

relation on states de�ned in the previous section to an equivalence relation on

transitions.

De�nition 4 Let t = (s; s

0

) denote a transition of a transition system M , and

let � denote a permutation of a symmetry group G of M . We write �(t) to

denote the transition (�(s); �(s

0

)). We then de�ne the relation � on transitions

as follows: t � t

0

if 9� 2 G : t

0

= �(t).

Lemma 1 The relation � on transitions is an equivalence relation.

We can also extend the de�nition of � on transitions to sequences of transitions

as follows.

De�nition 5 Let w = t

1

t

2

: : : t

n

denote a nonempty sequence of transitions of

a transition system M , and let � denote a permutation of a symmetry group G

of M . We write �(w) to denote the sequence of transitions �(t

1

)�(t

2

) : : : �(t

n

).

We then de�ne the relation � on nonempty sequences of transitions as follows:

w � w

0

if 9� 2 G : w

0

= �(w).

Lemma 2 The relation � on sequences of transitions is an equivalence rela-

tion.

As before, we denote by [t] the equivalence class [t] = f�(t)j� 2 Gg of t under

�, while [w] denotes the equivalence class [w] = f�(w)j� 2 Gg of w under �.

We de�ne a quotient transition system based on an equivalence relation on

sequences of transitions as follows.

De�nition 6 Given a transition system M = (S;L;R; s

0

) and a symmetry

group G of M , a quotient transition system for M modulo G de�ned with

an equivalence relation � on sequences of transitions is a transition system

M

[w]

= (S

0

; L

0

; R

0

; s

0

0

) where

� S

0

= f[w]js

0

w

) s in Mg,

� L

0

: S

0

! 2

P

is such that L

0

([w]) = L(s) with s

0

w

) s in M ,

� R

0

= f([w]; [wt])js

0

w

) s in M and t = (s; s

0

) 2 Rg,

� s

0

0

= � (the empty word).

We now show that the initial states of M and M

[w]

are bisimilar.

Theorem 2 LetM = (S;L;R; s

0

) be a transition system andM

[w]

= (S

0

; L

0

; R

0

; s

0

0

)

be a quotient transition system for M modulo a symmetry group G of M as

de�ned in De�nition 6. Then, s

0

� s

0

0

.

Proof: Proofs of lemmas and theorems are omitted in this extended abstract.

Since the initial states ofM andM

[w]

are bisimilar,M

[w]

can be used for model-

checking temporal properties such as those discussed in the previous section.

From the previous theorem and Theorem 1, we immediately obtain by tran-

sitivity that the initial states of M

[w]

and M

[s]

are also bisimilar. We now

compare the sizes of both types of quotient transition systems.

It is easy to prove that equivalent sequences of transitions from the initial

state s

0

always lead to equivalent states.

Lemma 3 Let M = (S;L;R; s

0

) be a transition system and let � be a permu-

tation of a symmetry group G of M . For any sequences w and w

0

of transitions

such that s

0

w

) s and s

0

w

0

) s

0

, w

0

= �(w) implies s

0

= �(s).

Since each equivalence class [w] of sequences of transitions from s

0

can be

mapped to the equivalence class [s] of states such that s

0

w

) s, it is easy to see

from De�nitions 6 and 2 that M

[w]

will always contain at least as many states

and transitions as M

[s]

. Hence M

[w]

cannot be smaller than M

[s]

.

In contrast with Lemma 3, it is possible to prove that equivalent states s

and �(s) can be reached from s

0

by equivalent sequences of transitions only if

s

0

= �(s

0

), i.e., s

0

is symmetric with respect to permutation � in G.

Lemma 4 Let M = (S;L;R; s

0

) be a transition system and let G be a sym-

metry group of M . If s

0

= �(s

0

) with � 2 G, then for any states s and s

0

such

that s

0

= �(s), s

0

w

) s implies s

0

�(w)

) s

0

.

Putting it all together, we now state the exact condition required for M

[w]

and M

[s]

to be identical. () denotes logical implication.)

Theorem 3 Let M = (S;L;R; s

0

) be a transition system. Let M

[w]

and M

[s]

be quotient transition systems for M modulo a symmetry group G of M as

de�ned in De�nition 6 and De�nition 2 respectively. Then M

[w]

and M

[s]

are

identical if and only if the two following conditions are satis�ed in M :

1. 8s 2 S : (s

0

w

) s ^ s

0

w

0

) s)) (9� 2 G : w

0

= �(w)):

2. 8� 2 G : (s

0

w

) s ^ s

0

w

0

) �(s))) (9�

0

2 G : s

0

= �

0

(s

0

) ^ �(s) = �

0

(s)).

M

[w]

and M

[s]

are identical when there is a one-to-one correspondence be-

tween equivalence classes on states and equivalence classes on sequences of

transitions. This is the case for instance when the state space is isomorphic to

a tree and j[s

0

]j = 1 (i.e., the initial state is symmetric with respect to every

permutation in G).

In summary, exploring exactly one sequence w of transitions per equivalence

class [w] is su�cient to visit at least once every equivalence class of states

[s] and transitions [t] in a transition system. If exactly one sequence w per

equivalence class [w] is explored, redundant visits of a same equivalence class

of states or transitions are due only to the exploration of multiple paths that

are not equivalent with respect to �. In practice, such redundant visits are

usually unavoidable with a state-less search since multiple unequivalent paths

may very well lead to the same state or to equivalent states.

5 EXPLOITING SYMMETRY ON

TRANSITIONS

In order to exploit the ideas presented in the previous section, we need a prac-

tical way to determine when transitions (elements of R) are symmetric without

computing and comparing explicit encodings of the states they originate from

or lead to. We propose to use a labeling function for representing actions per-

formed during the execution of transitions, in conjunction with permutation

functions on actions for modeling symmetries in the system.

Precisely, we �rst extend the de�nition of transition systems to allow labels

on transitions.

De�nition 7 A labeled transition system (LTS) M = (S;L;R; s

0

;�; `) is a

transition system (S;L;R; s

0

) extended with a set � of actions, and a labeling

function ` : R! �.

The action of a transition t, denoted `(t), identi�es the visible operation

executed during the transition. This identi�er includes the type of visible op-

eration (system call) executed, values of parameters if any, and the identity of

the process executing the operation. By construction, we guarantee that, for

any action a in � and any state s in S, there is at most one transition labeled

with a from s. Therefore, any transition from a given state can be uniquely

identi�ed by its label. Note that the following results also hold for transitions

(pairs of states) labeled with more than one label, as long as these labels satisfy

the previous assumption.

Symmetries in the system can then be modeled by permutation functions �

�

on actions (elements of �). Speci�cally, a function �

�

on actions is associated

with each permutation in G as follows.

De�nition 8 Let M = (S;L;R; s

0

;�; `) be a LTS and let � be a permutation

of a symmetry group G of M . A partial function �

�

: � ! � on actions is a

valid permutation function on actions for permutation � in G i� the following

property holds for all actions a in �:

� if �

�

(a) is de�ned, then 8t = (s; s

0

) 2 R : `(t) = a) `(�(t)) = �

�

(a).

By de�nition, �

�

(a) is unique when it is de�ned.

In practice, the user can declare symmetries in a system by providing values

of permutation functions �

�

on actions. Standard classes of permutations can

be pre-packaged in order to facilitate this step. For instance, various classes of

process symmetries can easily be speci�ed using simple manipulation functions

on process indices (such as swapping, circular rotation, etc.) which can be

applied uniformly to any action name, independently of the type of operation

executed. An example of function �

�

on actions is given in Section 7.

Of course, declaring symmetries to the veri�cation system has to be done

with care since the validity of the veri�cation results relies on the validity of

these assumptions. Conservative approximations that are su�cient for identi-

fying symmetric transitions but may miss other symmetries can be used.

The following rule exploits symmetries on actions in order to prune transi-

tions during state-space exploration.

De�nition 9 (Pruning Rule) In any state s reached during state-space ex-

ploration, for any pair of transitions t and t

0

enabled in s such that

9� 2 G : `(t

0

) = �

�

(`(t)) ^ s = �(s);

explore only one of these two transitions from state s.

The correctness of this rule is based on the following theorem.

Theorem 4 Let s be a state of a LTS M = (S;L;�; R; s

0

) and let G be a

symmetry group on M . If t and t

0

are transitions in enabled(s) such that

9� 2 G : `(t

0

) = �

�

(`(t)) ^ s = �(s), then t

0

= �(t).

From Theorem 2 of the previous section, we already know that exploring (se-

quences of) transitions that are equivalent with respect to � is unnecessary in

order to verify properties as those considered in Section 3. When the condition

stated in De�nition 9 is satis�ed, we have t � t

0

by Theorem 4, and it is thus

su�cient to explore only one of these transitions.

In order to implement the rule above, we need a practical way to check

whether a reachable state s satis�es the condition s = �(s) without using any

explicit encoding of s. We now discuss how this can be done assuming we know

that s

0

= �(s

0

).

Let s be a state reachable from s

0

by a nonempty sequence w = t

1

t

2

: : : t

n

of transitions. Assuming s

0

= �(s

0

), s = �(s) can be proved by showing that

s

0

�(w)

) s. If for all 1 � i � n, `(t

i

) = �

�

(`(t

i

)), then t

i

= �(t

i

) for all t

i

in w, and s = �(s). Otherwise, let t

i

= (s

i�1

; s

i

) denote the �rst transition

along w such that `(t

i

) 6= �

�

(`(t

i

)), and let t

0

i

= �(t

i

). Since t

i

is the �rst such

transition in w and since s

0

= �(s

0

), we know that s

i�1

= �(s

i�1

). Therefore,

t

0

i

is enabled in s

i�1

and labeled by �

�

(`(t

i

)), but was not explored because of

the pruning rule de�ned above. In other words, the exploration of �(w) stopped

in s

i�1

. Checking that �(w) leads from s

0

to s may thus seem problematic.

Fortunately, there is a way to check whether �(w) leads to s without using

any explicit encoding for s or without even executing �(w) in the �rst place: if

w and �(w) are di�erent interleavings of a same partial ordering of transitions,

then they are guaranteed to lead to a same state, and hence s = �(s). In the

next section, we use partial-order methods to solve this problem and complete

our algorithm.

6 COMBINING SYMMETRY AND

PARTIAL-ORDER REDUCTIONS

Partial-order methods [10] denote another family of algorithms for tackling the

state explosion problem which limits the e�ciency and applicability of veri�ca-

tion by state-space exploration. The basic idea behind partial-order methods

is that many paths in the state space of a concurrent system correspond simply

to di�erent execution orders of the same process transitions (de�ned in Sec-

tion 2). If process transitions are \independent", for instance because they

are executed by noninteracting processes, then changing their execution order

will not modify their combined e�ect. This notion of independency between

process transitions and its complementary notion, the notion of dependency,

can be formalized by the following de�nition (adapted from [18]).

De�nition 10 Let T be the set of process transitions of the system and D �

T �T be a binary, re
exive, and symmetric relation. The relation D is a valid

dependency relation for the system i� for all t

1

; t

2

2 T , (t

1

; t

2

) 62 D (t

1

and t

2

are independent) implies that the two following properties hold for all global

states s in the state space of the system:

1. if t

1

is enabled in s and s

t

1

! s

0

, then t

2

is enabled in s i� t

2

is enabled

in s

0

(independent process transitions can neither disable nor enable each

other); and

2. if t

1

and t

2

are enabled in s, then there is a unique state s

0

such that

s

t

1

t

2

) s

0

and s

t

2

t

1

) s

0

(commutativity of enabled independent process

transitions).

This de�nition characterizes the properties of possible \valid" dependency re-

lations for the process transitions of a given system. In practice, it is possible

to give easily checkable syntactic conditions that are su�cient for process tran-

sitions to be independent. In a concurrent system as de�ned in Section 2,

dependency can arise between transitions of di�erent processes that access the

same communication objects. We refer the reader to [10] for a detailed presen-

tation of this topic.

Following the work of Mazurkiewicz [21], one can use the notion of inde-

pendent process transitions to de�ne an equivalence relation on sequences of

process transitions: two sequences of process transitions are equivalent if they

can be obtained from each other by successively permuting adjacent indepen-

dent process transitions. Thus, given a valid dependency relation, sequences of

process transitions can be grouped into equivalence classes which Mazurkiewicz

calls traces. By construction, all the sequences of process transitions of a

Mazurkiewicz trace executed from a given state all lead to the same �nal state

(e.g., see Theorem 3.10 in [10]).

Thanks to this property and assuming we know s

0

= �(s

0

), we can check

whether s

0

�(w)

) s by checking whether w and �(w) (computed by applying �

�

successively to the labels of the transitions in w) can be obtained from each

other by successively permuting adjacent independent process transitions. In

the worst-case, this can be done in time O(jP jjwj) where jP j is the number of

processes in the system and jwj is the length of w. Since the purpose of the

approach developed in this work is to make possible the systematic analysis of

all executions of a concurrent system up to some depth, w is usually short (e.g.,

1 Initialize: Stack is empty;

2 Search() f

3 DFS(;);

4 g

5 DFS(set: Sleep) f

6 T = Persistent Set()nSleep;

7 T = Sym(T;Stack);

8 while T 6= ; do f

9 take t out of T ;

10 push (t) onto Stack;

11 Execute(t);

12 DFS(ft

0

2 Sleep j t

0

and t are independentg);

13 pop t from Stack;

14 Undo(t);

15 Sleep = Sleep[ftg;

16 g;

17 g

Figure 1: State-less search using symmetry and partial-order reductions

less than a few hundred process transitions), and the computation is fast. If the

result of this check shows that w and �(w) belong to the same Mazurkiewicz

trace, we can safely conclude that s = �(s). Otherwise, we have to assume by

default that s 6= �(s). This prevents the pruning of any transition in s using

permutation �.

Putting it all together, we can now present in Figure 1 a complete algorithm

for performing a state-less search using symmetry and partial-order reductions.

This algorithm is an extension of the algorithm of [11]. The only di�erence is

the addition of line 7. This algorithm performs a selective depth-�rst search

(DFS) in the state space of a concurrent system and uses two partial-order

reduction techniques: persistent sets and sleep sets. A detailed presentation of

these algorithmic techniques can be found in [10, 11]. The data structure Stack

contains the sequence of process transitions that leads from the initial global

state s

0

to the current global state being explored. A set Sleep is associated

with each global state reached during the search, i.e., with each call to the

procedure DFS. The sleep set associated with a global state s is a set of process

transitions that are enabled in s but will not be explored from s. The sleep set

associated with the initial global state s

0

is the empty set. Each time a new

global state s is encountered during the search, a call to DFS is executed. The

sleep set that has to be associated with s is passed as argument. The rules for

computing the sleep set of a new state are given in lines 12 and 15.

In lines 6 and 7, a new set of process transitions is selected to be explored

from s in two steps. Persistent Set() returns a persistent set in the current

global state s that is nonempty if there exist process transitions enabled in s.

In line 7, symmetric process transitions are eliminated using the new function

Sym described in details below. In line 11, a process transition t is executed

from s. The procedure Execute(t) returns after a new global state has been

reached by the concurrent system. Then all the process transitions of Sleep

that are independent with t are passed into the sleep set associated to that

new global state (line 12). Once the search from that new state (and hence the

corresponding call to DFS) is completed, the exploration of the other process

transitions selected to be explored from s may proceed. The concurrent system

is then brought back to the global state s in line 14. (This can be done by

reinitializing the system and reexecuting the sequence of process transitions in

Stack, for instance.) Next, process transition t, i.e., the last process transition

explored from s, is added to Sleep in line 15. Note that this algorithm does

not compute, store or manipulate any explicit state encoding.

The originality of the algorithm of Figure 1 is thus the use of the function

Sym in line 7. The function Sym checks whether any process transition of its

�rst argument T can be pruned using the rule of De�nition 9. It takes as argu-

ments a subset T of the set of enabled process transitions in s and the sequence

of process transitions formed by the current depth-�rst search Stack. When

the function Sym �nds a permutation � such that `(t

0

) = �

�

(`(t)) with t and

t

0

in T , it then checks whether s = �(s) by examining the current path Stack

of process transitions being explored and its symmetric image �(Stack) follow-

ing the procedure described earlier in this section. The function Sym �nally

returns a subset (not necessarily proper) of its argument T which determines

the process transitions to be explored from the current state s.

When both symmetry and partial-order reduction methods are applied, the

properties preserved by their combination is the intersection of the properties

preserved by each type of reduction alone. Since the algorithm of [11] preserves

deadlocks and assertion violations, let us now discuss how the use of symmetry

reductions a�ects this speci�c class of properties. By de�nition of a symmetry

group, if a global state s is a deadlock, so are all the states s

0

in [s]. Thus,

exploring at least one state per equivalence class [s] using symmetry reductions

is su�cient to detect a deadlock in the system. In contrast, the detection of an

assertion violation using symmetry methods is guaranteed only for assertions

that are violated in all the states of an equivalence class [s]. Let us call such

assertions \symmetry-preserving assertions". For instance, any assertion that

does not distinguish a process from any other is symmetry-preserving under

any process symmetry.

Formally, the correctness of the algorithm of Figure 1 is established by the

following theorem.

Theorem 5 Consider a concurrent system as de�ned in Section 2, and assume

its state space is �nite and acyclic. Then, if there exist deadlocks in the state

space of the system, the algorithm of Figure 1 will visit at least one of them.

Moreover, if there exists a global state in the state space of the system where a

symmetry-preserving assertion is violated, then there exists a global state visited

by the algorithm of Figure 1 where the same assertion is violated.

/* phil.c : dining philosophers (version without loops) */

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#define N 2

philosopher(i)

int i;

{

printf("philosopher %d thinks\n",i);

semwait(i); /* take left fork */

semwait((i+1)%N); /* take right fork */

printf("philosopher %d eats\n",i);

semsignal(i); /* release left fork */

semsignal((i+1)%N); /* release right fork */

exit(0);

}

main()

{

int semid, i, pid;

semid = semget(IPC_PRIVATE,N,0600);

for(i=0;i<N;i++)

semsetval(i,1);

for(i=0;i<(N-1);i++) {

if((pid=fork()) == 0)

philosopher(i);

};

philosopher(i);

}

Figure 2: A simple example of concurrent C program

7 EXAMPLE

In this section we illustrate our ideas with a simple example. Consider the

concurrent C program shown in Figure 2. This program represents a concurrent

system composed of two processes. It describes the behavior of these processes

as well as the initialization of the system. This example is inspired by the well-

known dining-philosophers problem, with two philosophers. The two processes

communicate by executing the visible operations semwait and semsignal on

two semaphores that are identi�ed by the integers 0 and 1 respectively. The

s0 deadlock deadlock

semwait(0)P1 semwait(1)P2

semwait(0)P1semwait(1)P2
semsignal(1)P1

semsignal(0)P2

semsignal(0)P2 semsignal(0)P1semwait(1)P1semwait(0)P1semwait(0)P2 semsignal(1)P2

semsignal(1)P1 semsignal(1)P2semwait(0)P2semwait(1)P2semwait(1)P1 semsignal(0)P1

Figure 3: State space of the two-dining-philosophers system

value of both semaphores is initialized to 1 (with the operation semsetval). By

implementing these operations using actual UNIX semaphores, the program

above can be compiled and run on any UNIX machine. The operation exit is a

visible operation whose execution is always blocking.

The state space of this system is shown in Figure 3, where global transitions

are labeled with the visible operation of the corresponding process transition.

Since all the processes are deterministic, nondeterminism (i.e., branching) in

A

G

is caused only by concurrency.

The dining-philosophers system contains symmetry: swapping the states of

the two processes and semaphores yields an equivalent state. We can model this

symmetry by a permutation function �

�

on actions as de�ned in De�nition 8

1

:

� �

�

(semwait(x)

P1

) = semwait((x+ 1)%2)

P2

,

� �

�

(semwait(x)

P2

) = semwait((x+ 1)%2)

P1

,

� �

�

(semsignal(x)

P1

) = semsignal((x+ 1)%2)

P2

,

� �

�

(semsignal(x)

P2

) = semsignal((x+ 1)%2)

P1

,

� �

�

(exit(0)

P1

) = exit(0)

P2

, and

� �

�

(exit(0)

P2

) = exit(0)

P1

.

When using this permutation function with the state-space exploration algo-

rithm of Figure 1, the dotted transitions of Figure 3 are not explored thanks

to symmetry reductions. For this example, half of the transitions need not be

explored with the new algorithm, which is the maximum reduction one can

obtain with this type of process symmetry and two processes. Note that, for

this example, using partial-order reduction techniques (persistent sets and sleep

sets) alone would avoid exploring only one transition in the state space (the

transition whose label is underlined is pruned thanks to sleep sets).

Table 1 compares the number of transitions explored by a state-less search,

a state-less search using partial-order reductions (SL+PO) as described in [11],

1

The modulus binary operator % returns the remainder from the division of its �rst

argument by its second argument.

N State Space State Less SL+PO SL+PO+SYM

2 (18) 18 17 9

3 (123) 1,680 75 37

4 (708) 386,816 275 133

5 (3,765) ? 959 461

Table 1: Number or transitions explored

and a state-less search using partial-order reductions and symmetry reductions

(SL+PO+SYM) as described in Figure 1. Results are given for the previous

program with various numbers N of processes. The numbers between paren-

theses in the column entitled \State Space" (column 2) give the total number of

transitions in the state space. The run time of the three algorithms considered

is proportional to the number of explored transitions.

One clearly sees from the numbers of transitions explored by a simple state-

less search (column 3) that the run-time cost of not storing visited states in

memory is very high. However, this cost can be dramatically reduced by using

partial-order reduction techniques (column 4), as extensively discussed in [11].

Moreover, the use of symmetry reductions yields additional substantial reduc-

tions (column 5). For this example, the number of explored transitions is

reduced roughly by a factor of 2 when exploiting symmetry.

Note that the maximum theoretical symmetry reduction with this type of

process symmetry is by a factor of N , where N is the number of processes in

the system, since the size of each equivalence class of states and transitions is

at most N . In contrast, partial-order reductions reduce the number of explored

transitions of a state-less search by a factor much greater than N for N > 2 in

this example. Therefore, a state-less search using symmetry reductions alone

(i.e., without partial-order reductions) could not yield such a huge reduction.

8 CONCLUSIONS

We have developed a simple framework for exploiting symmetry in a software

application in order to safely avoid exploring parts of its state space when

searching for deadlocks and assertion violations. Our framework is based on

equivalence classes of sequences of transitions instead of the traditional equiv-

alence classes of states. We then presented a state-space exploration algorithm

for exploiting symmetries on transitions which does not rely on explicit encod-

ings of system states. This algorithm combines both symmetry and partial-

order reduction methods in an original way. It can be used to systematically

and e�ciently explore the state spaces of implementations of concurrent reac-

tive software systems.

Note that it has been known for some time that symmetry and partial-

order reduction methods are essentially orthogonal, and hence compatible and

complementary. The combination of state-based symmetry reductions with

partial-order reductions was already suggested and studied in [23, 6, 7].

ACKNOWLEGMENTS

I wish to thank Ramin Hojati, Norris Ip, Lalita Jagadeesan, Denis Leroy and

Prasad Sistla for interesting discussions on combining partial-order and sym-

metry methods. I am also thankful to Glenn Bruns and the anonymous referees

for helpful comments on this paper.

References

[1] R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Computing Surveys, 24(3):293{318, 1992.

[2] E. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic

model checking. In Proc. 5th Conference on Computer Aided Veri�ca-

tion, volume 697 of Lecture Notes in Computer Science, pages 450{462,

Elounda, June 1993. Springer-Verlag.

[3] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization

Skeletons using Branching-Time Temporal Logic. In D. Kozen, editor,

Proceedings of the Workshop on Logic of Programs, Yorktown Heights,

volume 131 of Lecture Notes in Computer Science, pages 52{71. Springer-

Verlag, 1981.

[4] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry Reduc-

tions in Model Checking. In Proc. 10th Conference on Computer Aided

Veri�cation, volume 1427 of Lecture Notes in Computer Science, pages

147{158, Vancouver, June/July 1998. Springer-Verlag.

[5] R. Cleaveland, J. Parrow, and B. Ste�en. The concurrency workbench:

A semantics based tool for the veri�cation of concurrent systems. ACM

Transactions on Programming Languages and Systems, 1(15):36{72, 1993.

[6] S. Duri, U. Buy, R. Devarapalli, and S. M. Shatz. Application and Experi-

mental Evaluation of State Space Reduction Methods for Deadlock Analy-

sis in Ada. ACM Transactions on Software Engineering and Methodology,

3(4):340{380, October 1994.

[7] E. A. Emerson, S. Jha, and D. Peled. Combining Partial Order and Sym-

metry Reductions. In Proceedings of the Third International Workshop

on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS'97), volume 1217 of Lecture Notes in Computer Science, pages

19{34, Twente, April 1997. Springer-Verlag.

[8] E. A. Emerson and A. P. Sistla. Symmetry and model checking. In Proc.

5th Conference on Computer Aided Veri�cation, volume 697 of Lecture

Notes in Computer Science, pages 463{478, Elounda, June 1993. Springer-

Verlag.

[9] A. R. Flora-Holmquist and M. Staskauskas. Formal validation of virtual

�nite state machines. In Proc. Workshop on Industrial-Strength Formal

Speci�cation Techniques (WIFT'95), pages 122{129, Boca Raton, April

1995.

[10] P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent

Systems { An Approach to the State-Explosion Problem, volume 1032 of

Lecture Notes in Computer Science. Springer-Verlag, January 1996.

[11] P. Godefroid. Model Checking for Programming Languages using VeriSoft.

In Proceedings of the 24th ACM Symposium on Principles of Programming

Languages, pages 174{186, Paris, January 1997.

[12] P. Godefroid, R. S. Hanmer, and L. J. Jagadeesan. Model Checking With-

out a Model: An Analysis of the Heart-Beat Monitor of a Telephone Switch

using VeriSoft. In Proceedings of ACM SIGSOFT ISSTA'98 (International

Symposium on Software Testing and Analysis), pages 124{133, Clearwater

Beach, March 1998.

[13] J. A. Green. Sets and Groups { A First Course in Algebra. Routledge and

Kegan Paul, 1965.

[14] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-

currency. Journal of the ACM, 32(1):137{161, 1985.

[15] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice

Hall, 1991.

[16] G. J. Holzmann and J. Patti. Validating sdl speci�cations: An experi-

ment. In Proc. 9th IFIP WG 6.1 International Symposium on Protocol

Speci�cation, Testing, and Veri�cation. North-Holland, 1989.

[17] C. N. Ip and D. L. Dill. Better veri�cation through symmetry. In D. Ag-

new, L. Claesen, and R. Camposano, editors, Proceedings of the 1993 Con-

ference on Computer Hardware Description Languages and their Applica-

tions, April 1993.

[18] S. Katz and D. Peled. De�ning conditional independence using collapses.

Theoretical Computer Science, 101:337{359, 1992.

[19] D. Kozen. Results on the Propositional Mu-Calculus. Theoretical Com-

puter Science, 27:333{354, 1983.

[20] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Speci�cation. Springer-Verlag, 1992.

[21] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relation-

ships to Other Models of Concurrency, Advances in Petri Nets 1986, Part

II; Proceedings of an Advanced Course, volume 255 of Lecture Notes in

Computer Science, pages 279{324. Springer-Verlag, 1986.

[22] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.

[23] A. Valmari. Stubborn sets for of colored petri nets. In Proceedings of the

12th International Conference on Apllications and Theory of Petri Nets,

pages 102{121, Gjern, 1991.

[24] M.Y. Vardi. Why is modal logic so robustly decidable? In Proceedings of

DIMACS Workshop on Descriptive Complexity and Finite Models. AMS,

1997.

