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Abstract

Veri�cation by state-space exploration, also often re-

ferred to as \model checking", is an e�ective method

for analyzing the correctness of concurrent reactive sys-

tems (e.g., communication protocols). Unfortunately,

existing model-checking techniques are restricted to the

veri�cation of properties of models, i.e., abstractions, of

concurrent systems.

In this paper, we discuss how model checking can be

extended to deal directly with \actual" descriptions of

concurrent systems, e.g., implementations of communi-

cation protocols written in programming languages such

as C or C++. We then introduce a new search tech-

nique that is suitable for exploring the state spaces of

such systems. This algorithm has been implemented in

VeriSoft, a tool for systematically exploring the state

spaces of systems composed of several concurrent pro-

cesses executing arbitrary C code. As an example of

application, we describe how VeriSoft successfully dis-

covered an error in a 2500-line C program controlling

robots operating in an unpredictable environment.

1 Introduction

Concurrent systems are systems composed of elements

that can operate concurrently and communicate with

each other. Each component can be viewed as a reac-

tive system, i.e., a system that continuously interacts

with its environment. Concurrent reactive systems are

notably hard to design because their components may

interact in many unexpected ways. Traditional test-

ing techniques are of limited help since test coverage

is bound to be only a minute fraction of the possible

behaviors of the system.

State-space exploration is one of the most successful

strategies for analyzing the correctness of concurrent re-

active systems. It consists of exploring a directed graph,

called the state space, representing the combined behav-

ior of all concurrent components in a system. Such a

state space can be computed automatically from a de-

scription of the concurrent system speci�ed in a model-

ing language. Many properties of a model of a system

can be checked by exploring its state space: deadlocks,

dead code, violations of user-speci�ed assertions, etc.

Moreover, the range of properties that state-space ex-

ploration techniques can verify has been substantially

broadened during the last decade thanks to the develop-

ment of model-checking methods for various temporal

logics (e.g., [CES86, LP85, QS81, VW86]). In what fol-

lows, we will use the term \model checking" in a broad

sense, to denote any automatic state-space exploration

technique that can be used for veri�cation purposes.

1

Examples of tools that follow the above paradigm are

CAESAR [FGM

+

92], COSPAN [HK90], CWB [CPS93],

MURPHI [DDHY92], SMV [McM93], SPIN [Hol91], and

VFSMvalid [FHS95], among others. These tools di�er

by the modeling languages they use for representing sys-

tems and properties, and by the conformation criteria

according to which these representations are compared.

But all of them are based on state-space exploration

algorithms, in one form or another, for performing the

veri�cation itself.

The e�ectiveness of model checking for debugging

concurrent reactive systems is becoming increasingly

well-established. Several very complex concurrent sys-

tems have been modeled, and then analyzed using state-

1

Note that the term \model checking" is not due to the fact that

the correctness of a model, i.e., an abstraction, of a system is checked,

but rather refers to the fact that model checking checks whether all

the computations of a system are \models", in the classical logical

sense, of a temporal logic formula.



space exploration techniques. In many cases, these tech-

niques were able to reveal quite subtle design errors

(e.g., [Rud92, CGH

+

93, BG96]).

It is worth emphasizing that the practical interest of

these state-space exploration techniques (and of \veri-

�cation" in general) is mainly to �nd errors that would

be hard to detect and reproduce otherwise, and not

necessarily to prove the absence of errors. While math-

ematically proving that a model of a system conforms

to a speci�c set of properties does increase the con�-

dence that the actual system is \correct", it does not

provide a proof of this fact.

In this paper, we discuss how model checking can be

extended to deal directly with \actual" descriptions of

concurrent systems, e.g., implementations of communi-

cation protocols written in programming languages such

as C or C++. We show that existing search techniques

for state-space exploration are fundamentally limited

to the analysis of systems for which each state of the

system can be readily represented by a unique identi-

�er. We then introduce an e�cient search technique

that does not rely on this assumption. This search al-

gorithm can therefore be applied to systems composed

of several concurrent processes executing arbitrary code

written in full-
edged programming languages.

2 Concurrent Systems and Dynamic

Semantics

We consider a concurrent system composed of a �nite

set P of processes and a �nite set O of communication

objects. Each process P 2 P executes a sequence of

operations, that is described in a sequential program

written in a full-
edged programming language such as

C or C++. Such programs are deterministic: every ex-

ecution of the program on the same data performs the

same sequence of operations. We assume that processes

communicate with each other by performing operations

on communication objects. A communication object

O 2 O is de�ned by a pair (V;OP ), where V is the

set of all possible values for the object (its domain),

and OP is the set of operations that can be performed

on the object. Examples of communication objects are

shared variables, semaphores, and FIFO bu�ers. At

any time, at most one operation can be performed on a

given communication object (operations on a same com-

munication object are mutually exclusive). Operations

on communication objects are called visible operations,

while other operations are by default called invisible.

The execution of an operation is said to be blocking if it

cannot be completed. We assume that only executions

of visible operations may be blocking.

At any time, the concurrent system is said to be in

a state. The system is said to be in a global state when

the next operation to be executed by every process in

the system is a visible operation. Initially, after the

creation of all the processes of the system, we assume

that all the processes eventually executes a visible oper-

ation, and hence that the system may reach a �rst and

unique global state s

0

, called the initial global state of

the system. We de�ne a process transition, or transition

for short, as one visible operation followed by a �nite

sequence of invisible operations performed by a single

process. Let T denote the set of all transitions of the

system.

A transition is said to be disabled in a global state

s when the execution of its visible operation is block-

ing in s. Otherwise, the transition is said to be enabled

in s. A transition t that is enabled in a global state s

can be executed from s. Since the number of invisible

operations in a transition is �nite, the execution of an

enabled transition always terminates. When the exe-

cution of t from s is completed, the system reaches a

global state s

0

, called the successor of s by t.

2

We write

s

t

! s

0

to mean that the execution of the transition t

leads from the global state s to the global state s

0

, while

s

w

) s

0

means that the execution of the �nite sequence

w of transitions leads from s to s

0

. If s

w

) s

0

, s

0

is said

to be reachable from s.

We now de�ne a formal semantics for the concurrent

systems that satisfy our assumptions. A concurrent sys-

tem as de�ned here is a closed system: from its initial

global state, it can evolve and change its state by ex-

ecuting enabled transitions. Therefore, a very natural

way to describe the possible behaviors of such a system

is to consider its set of reachable global states and the

transitions that are possible between these.

Formally, the joint global behavior of all processes P

i

in a concurrent system can be represented by a transi-

tion system A

G

= (S;�; s

0

) such that

� S is the set of global states of the system,

� � � S � S is the transition relation de�ned as

follows:

(s; s

0

) 2 � i� 9t 2 T : s

t

! s

0

;

� s

0

is the initial global state of the system.

An element of � corresponds to the execution of a single

transition t 2 T of the system. The elements of �

will be referred to as global transitions. It is natural

to restrict A

G

to its global states and transitions that

are reachable from s

0

, since the other global states and

2

Operations on objects (and hence transitions) are deterministic:

the execution of a transition t in a state s leads to a unique successor

state.
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Figure 1: Global state space for the two-dining-philosophers system

transitions play no role in the behavior of the system.

In what follows, a \state in A

G

" denotes a state that

is reachable from s

0

. By de�nition, states in A

G

are

global. A

G

is called the global state space of the system.

Example 1 Consider the following concurrent C pro-

gram.

/* phil.c : dining philosophers (version without loops) */

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#define N 2

philosopher(i)

int i;

{

printf("philosopher %d thinks\n",i);

semwait(i); /* take left fork */

semwait((i+1)%N); /* take right fork */

printf("philosopher %d eats\n",i);

semsignal(i); /* release left fork */

semsignal((i+1)%N); /* release right fork */

exit(0);

}

main()

{

int semid, i, pid;

semid = semget(IPC_PRIVATE,N,0600);

for(i=0;i<N;i++)

semsetval(i,1);

for(i=0;i<(N-1);i++) {

if((pid=fork()) == 0)

philosopher(i);

};

philosopher(i);

}

This program represents a concurrent system com-

posed of two processes. It describes the behavior of

these processes as well as the initialization of the sys-

tem. This example is inspired by the well-known dining-

philosophers problem, with two philosophers. The two

processes communicate by executing the (visible) oper-

ations semwait and semsignal on two semaphores that

are identi�ed by the integers 0 and 1 respectively. The

value of both semaphores is initialized to 1 (with the op-

eration semsetval). By implementing these operations

using actual UNIX semaphores, the program above can

be compiled and run on any UNIX machine. The state

space A

G

of this system is shown in Figure 1, where

global transitions are labeled with the visible opera-

tion of the corresponding process transition. The op-

eration exit is a visible operation whose execution is al-

ways blocking. Since all the processes are deterministic,

nondeterminism in A

G

is caused only by concurrency.

Since we consider here closed concurrent systems,

the environment of one process is formed by the other

processes in the system. This implies that, in the case

of a single \open" reactive system, the environment in

which this system operates has to be represented, possi-

bly using other processes. In practice, a complete rep-

resentation of such an environment may not be avail-

able, or may be very complex. It is then convenient to

use a model, i.e., a simpli�ed representation, of the en-

vironment to simulate its external behavior. For this

purpose, we introduce a special operation \VS toss"

to express a valuable feature of modeling languages,

not found in programming languages: nondeterminism.

This operation takes as argument a positive integer n,

and returns an integer in [0; n]. The operation is visi-

ble and nondeterministic: the execution of a transition

starting with VS toss(n) may yield up to n + 1 di�er-

ent successor states, corresponding to di�erent values



returned by VS toss.

Which properties of a concurrent system is it possi-

ble to check by examining its state space A

G

as de�ned

above? Here, we focus mainly on two veri�cation prob-

lems (other properties will be discussed later in Sec-

tion 5): the detection of deadlocks, i.e., states where

the execution of the next operation of every process in

the system is blocking, and the detection of violations

of assertions speci�ed by the user with the special op-

eration \VS assert". This operation can be inserted

in the code of any process, and is considered visible. It

takes as its argument a boolean expression that can test

and compare the value of variables and data structures

local to the process. When \VS assert(expression)" is

executed, the expression is evaluated. If the expression

evaluates to false, the assertion is said to be violated.

The following theorem states that deadlocks and as-

sertion violations can be detected by exploring only the

global states of a concurrent system.

Theorem 1 Consider a concurrent system as de�ned

above, and let A

G

denote its state space. Then, all the

deadlocks that are reachable after the initialization of

the system are global states, and are therefore in A

G

.

Moreover, if there exists a state reachable after the ini-

tialization of the system where an assertion is violated,

then there exists a global state in A

G

where the same

assertion is violated.

Proof: See Appendix.

This theorem justi�es our choice for the \dynamic" se-

mantics described in this section.

In the next section, we discuss how to build a rep-

resentation of the state space of a concurrent system

as de�ned above. We brie
y review standard state-

space exploration techniques, and show why they are

not appropriate for exploring state spaces of concurrent

systems whose processes are described by arbitrary pro-

grams.

3 Existing State-Space Exploration Tech-

niques

In the case of models of concurrent systems, a state

space A

G

is usually computed by performing a search

of all the states that are reachable from the initial state

s

0

of the system. An algorithm for performing such a

search is shown in Figure 2. This algorithm recursively

explores all successor states of all states encountered

during the search, starting from the initial state, by

executing all enabled transitions in each state (lines 7{

8). The main data structures used are a Set to store the

states whose successors still have to be explored, and a

hash table H to store all the states that have already

1 Initialize:Set is empty; H is empty;

2 add s

0

to Set;

3 Loop: while Set 6= ; do f

4 take s out of Set;

5 if s is NOT already in H then f

6 enter s in H;

7 T = enabled(s);

8 for all t in T do f

9 s

0

= succ(s) after t;

10 add s

0

to Set;

11 g

12 g

13 g

Figure 2: Algorithm 1 { classical search

been visited during the search. The set of all transitions

enabled in a state s is denoted by enabled(s). The state

reached from a state s after the execution of a transition

t is denoted \succ(s) after t". It is easy to prove that, if

A

G

is �nite, all the states of A

G

are visited during the

search performed by the algorithm of Figure 2 [AHU74].

The order in which the search is performed (e.g., depth-

�rst, breadth-�rst, : : : ) depends on how the operations

\add" and \take" are implemented.

It is important to note that the algorithm of Fig-

ure 2 assumes that each state s can be represented by a

unique identi�er, that can be stored in the data struc-

tures Set and H during the search. Although other

search algorithms for modeling languages , such as sym-

bolic veri�cation methods [BCM

+

90, CGL92, McM93],

may use other types of data structures (e.g., Binary De-

cision Diagrams [Bry92]) for representing state spaces,

they all rely on the assumption that each state of the

system has a unique and manageable representation.

When dealing with processes described by arbitrary

programs written in full-
edged programming languages,

this assumption is not valid anymore. Indeed, the state

of each process is determined by the values of all the

memory locations that can be accessed by the process

and in
uence its behavior (including activation records

associated to procedure calls). This information is typ-

ically far too large and complex to be e�ciently and

unambiguously encoded by a string of bits, which could

then be saved in memory at each step of the state-space

exploration.

However, nothing prevents us from systematically

searching the state space of a concurrent system without

storing any intermediate states in memory. Let us call

such a search a state-less search. Of course, if the state

space A

G

contains cycles, a state-less search through

it will not terminate, even if A

G

is �nite. Even state-

less searches of \small" �nite acyclic state spaces (e.g.,



composed of only a few thousand states) may not termi-

nate in a reasonable amount of time. To illustrate this

phenomenon, let us consider the dining-philosophers ex-

ample again. (The state space of this system does not

contain any cycles.) The number of transitions explored

by a classical search (Algorithm 1) and by a state-less

search are compared in Figure 4, for various numbers

N of philosophers. The run-time of both algorithms

is proportional to the number of explored transitions.

One clearly sees that the state-less search is much slower

than the classical one. In the case of four philosophers,

the state-less search explores 386816 transitions, while

they are only 708 transitions in A

G

. While every tran-

sition of A

G

is executed exactly once during a classical

search, every transition of A

G

is executed on average

about 546 times during a state-less search! This tremen-

dous di�erence is due to the numerous re-explorations

of unstored parts of the state space during the state-less

search.

4 An E�cient State-Less Search Algorithm

The state-less search technique can be viewed as a par-

ticular case of state-space caching [Hol85, JJ91, GHP95],

a memory management technique for storing the states

encountered during a classical search performed in depth-

�rst order. State-space caching consists of storing all

the states of the current explored path plus as many

other states as possible given the remaining amount of

available memory. It thus creates a restricted cache

of selected states that have already been visited. This

method never tries to store more states than possible

in the cache. A state-less search corresponds to the ex-

treme case where the cache does not contain any state

at all.

State-space caching su�ers the same drawback as

the state-less search: multiple redundant explorations

of large unstored parts of the state space yield an un-

acceptable blow-up of the run-time. Indeed, almost all

states in the state space of concurrent systems are typ-

ically reached several times during the search. There

are two causes for this:

1. From the initial state, the exploration of any inter-

leaving of a single �nite partial ordering of transi-

tions of the system always leads to the same state.

This state will thus be visited several times be-

cause of all these interleavings.

2. From the initial state, explorations of di�erent �-

nite partial orderings of transitions may lead to

the same state.

In [GHP95], it is shown that most of the e�ects of

the �rst cause given above can be avoided when us-

ing a search algorithm based on the notion of sleep

sets [God90, GW93]. Such an algorithm dynamically

prunes the state space of a concurrent system without

incurring the risk of any incompleteness in the veri�-

cation results. Empirical results [GHP95, God96] show

that, in many cases, most of the states are visited only

once during a state-space exploration performed with

this search technique. This makes it possible not to

store most of the states previously visited during the

search without incurring much redundant exploration

of parts of the state space.

Sleep sets belong to a broader family of algorithms,

referred to as partial-order methods [God96], that were

developed to tackle the \state explosion" phenomenon

that limits the e�ciency and applicability of veri�cation

by state-space exploration. In [God96], it is shown that

sleep sets can be combined with another pruning tech-

nique based on the notion of persistent sets. Using both

techniques simultaneously preserves the bene�cial prop-

erties of sleep sets outlined in the previous paragraph

while substantially reducing the number of states and

transitions that have to be visited.

In this section, we present a new state-space explo-

ration algorithm that combines a state-less search with

the persistent-set and sleep-set techniques. Before turn-

ing to the presentation of this algorithm, we brie
y re-

call some basic principles of partial-order methods.

The basic idea behind partial-order methods that en-

ables them to check properties of A

G

without construct-

ing the whole of A

G

is the following: A

G

contains many

paths that correspond simply to di�erent execution or-

ders of the same process transitions. If these transitions

are \independent", for instance because they are exe-

cuted by noninteracting processes, then changing their

order will not modify their combined e�ect.

This notion of independency between transitions and

its complementary notion, the notion of dependency,

can be formalized by the following de�nition (adapted

from [KP92]).

De�nition 1 Let T be the set of system transitions

and D � T � T be a binary, re
exive, and symmetric

relation. The relation D is a valid dependency relation

for the system i� for all t

1

; t

2

2 T , (t

1

; t

2

) 62 D (t

1

and t

2

are independent) implies that the two following

properties hold for all global states s in the global state

space A

G

of the system:

1. if t

1

is enabled in s and s

t

1

! s

0

, then t

2

is enabled

in s i� t

2

is enabled in s

0

(independent transitions

can neither disable nor enable each other); and

2. if t

1

and t

2

are enabled in s, then there is a unique

state s

0

such that s

t

1

t

2

) s

0

and s

t

2

t

1

) s

0

(commuta-

tivity of enabled independent transitions).



This de�nition characterizes the properties of possible

\valid" dependency relations for the transitions of a

given system. In practice, it is possible to give eas-

ily checkable syntactic conditions that are su�cient for

transitions to be independent. In a concurrent sys-

tem as de�ned in Section 2, dependency can arise be-

tween transitions of di�erent processes that refer to the

same communication objects. For instance, two wait

operations on a binary semaphore are dependent when

they are enabled, while two signal operations on the

same non-binary semaphore are independent. Carefully

tracking dependencies between operations on communi-

cation objects is by no means a trivial task. We refer

the reader to [God96] for a detailed presentation of that

topic.

All partial-order algorithms follow the same basic

pattern: they operate as classical state-space searches

except that, at each state s reached during the search,

they compute a subset T of the set of transitions en-

abled at s, and explore only the transitions in T , the

other enabled transitions are not explored. Such a search

is called a selective search. It is easy to see that a se-

lective search through A

G

only reaches a subset (not

necessarily proper) of the states and transitions of A

G

.

Two main techniques for computing such sets T have

been proposed in the literature: the persistent-set and

sleep-set techniques. The �rst technique actually corre-

sponds to a whole family of algorithms [Ove81, Val91,

GP93, GW93, Pel93]. In [God96], it is shown that all

these algorithms compute \persistent sets". Intuitively,

a subset T of the set of transitions enabled in a state s of

A

G

is called persistent in s if all transitions not in T that

are enabled in s, or in a state reachable from s through

transitions not in T , are independent with all transi-

tions in T . In other words, whatever one does from s,

while remaining outside of T , does not interact with or

a�ect T . Formally, we have the following [GP93].

De�nition 2 A set T of transitions enabled in a state

s is persistent in s i�, for all nonempty sequences of

transitions

s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

from s in A

G

and including only transitions t

i

62 T ,

1 � i � n, t

n

is independent with all transitions in T .

Note that the set of all enabled transitions in a state s

is trivially persistent since nothing is reachable from s

by transitions that are not in this set. It is beyond the

scope of this paper to present algorithms for computing

persistent sets. In a nutshell, these algorithms infer the

persistent sets from the static structure of the system

1 Initialize: Stack is empty;

2 Search() f

3 DFS(;);

4 g

5 DFS(set: Sleep) f

6 T = Persistent Set()nSleep;

7 while T 6= ; do f

8 take t out of T ;

9 push (t) onto Stack;

10 Execute(t);

11 DFS(ft

0

2 Sleep j t

0

and t are independentg);

12 pop t from Stack;

13 Undo(t);

14 Sleep = Sleep [ ftg;

15 g;

16 g

Figure 3: Algorithm 2 { state-less depth-�rst search

using persistent sets and sleep sets

being veri�ed. They di�er by the type of information

about the system that they use. The aim of these al-

gorithms is to obtain the smallest possible nonempty

persistent sets. See [God96] for several such algorithms

and a comparison of their complexity.

The second technique for computing the set of tran-

sitions T to consider in a selective search is the sleep

set technique [God90, GW93]. This technique does not

exploit information about the static structure of the sys-

tem, but rather about the past of the search. Used in

conjunction with a persistent set algorithm, sleep sets

can further reduce the number of explored states and

transitions.

An algorithm that combines persistent sets and sleep

sets with a state-less search is shown in Figure 3. This

algorithm performs a selective depth-�rst search (DFS)

in the state space of a concurrent system. The data

structure Stack contains the sequence of transitions that

leads from the initial global state s

0

to the current

global state being explored. A set denoted by Sleep

is associated with each global state reached during the

search, i.e., with each call to the procedure DFS. The

sleep set associated with a global state s is a set of tran-

sitions that are enabled in s but will not be explored

from s. The sleep set associated with the initial global

state s

0

is the empty set. Each time a new global state

s is encountered during the search, a call to DFS is exe-

cuted. The sleep set that has to be associated with s is

passed as argument. In line 6, a new set of transitions

is selected to be explored from s. Persistent Set() re-

turns a persistent set in the current global state s that is

nonempty if there exist transitions enabled in s. Lines

11 and 14 describe how to compute the sleep sets as-
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Figure 4: Comparison of performances for the dining-philosophers system

sociated with the successor global states of s from the

value of its sleep set Sleep. In line 10, a transition t

is executed from s. The procedure Execute(t) returns

after a new global state has been reached by the con-

current system. Then all the transitions of Sleep that

are independent with t are passed into the sleep set as-

sociated to that new global state (line 11). Once the

search from that new state (and hence the correspond-

ing call to DFS) is completed, the exploration of the

other transitions selected to be explored from s may

proceed. The concurrent system is then brought back

to the global state s in line 13. (This can be done by

reinitializing the system and reexecuting the sequence

of transitions in Stack, for instance.) Next, transition

t, i.e., the last transition explored from s, is added to

Sleep in line 14.

The correctness of Algorithm 2 is established by the

following theorem.

Theorem 2 Consider a concurrent system as de�ned

in Section 2, and let A

G

denote its state space. Assume

A

G

is �nite and acyclic. Then, all the deadlocks in A

G

are visited by Algorithm 2. Moreover, if there exists a

global state in A

G

where an assertion is violated, then

there exists a global state visited by Algorithm 2 where

the same assertion is violated.

Proof: See Appendix.

In other words, deadlocks and assertion violations can

be detected using Algorithm 2. As discussed in the pre-

vious section, the termination of Algorithm 2 is garan-

teed only when the state space A

G

is �nite and does

not contain any cycles. Obviously, in practice, Algo-

rithm 2 is very useful for e�ciently exploring the state

space of any concurrent system, whether its state space

is acyclic or not.

Finally note that Algorithm 2 is di�erent from the

algorithms combining persistent sets and sleep sets that

appeared in [God96]. Indeed, with a state-less search,

di�erent sleep sets associated with the same global state

(corresponding to di�erent visits of that state via dif-

ferent paths from s

0

) cannot interfere with each other

during the search. Moreover, cycles cannot be detected

in the context of a state-less search, which makes the

use of the provisos discussed in [God96] impossible.

Results of experiments with Algorithm 2 for the di-

ning-philosophers example are presented in Figure 4.

Thanks to the use of persistent sets and sleep sets,

the run-time explosion of the state-less search is now

avoided. Moreover, they yield a signi�cant reduction

in the number of transitions that need be explored. Al-

though Algorithm 2 does not store any state in memory,

it explores fewer transitions than Algorithm 1!

5 VeriSoft

We have implemented a state-less search using persis-

tent sets and sleep sets in VeriSoft, a tool for systemat-

ically exploring the state space of systems composed of

several concurrent processes executing arbitrary C code.

Every process of the concurrent system to be analyzed

is mapped to a UNIX process. The execution of the

system processes is controlled by an external process,

called the scheduler. This process observes the visible

operations performed by processes inside the system,

and can suspend their execution. By resuming the exe-



cution of (the next visible operation of) one selected sys-

tem process in a global state, the scheduler can explore

one transition in the state space A

G

of the concurrent

system. The scheduler also contains an implementation

of a search algorithm similar to Algorithm 2. In or-

der to prevent the state-less search from getting lost in

cycles of the state space being explored, the depth of

the search is limited. When a deadlock or an assertion

violation is detected, the search is stopped, and a sce-

nario formed by all the transitions currently stored in

Stack is exhibited to the user. An interactive graphical

simulator/debugger is also available for following the

execution of the processes of the system.

In addition to deadlocks and assertion violations,

VeriSoft also checks for divergences and livelocks. A

\divergence" occurs when a process does not attempt

to execute any visible operation for more than a given

(user-speci�ed) amount of time, while a \livelock" oc-

curs when a process has no enabled transition during

a sequence of more than a given (user-speci�ed) num-

ber of successive global states. Note that these de�-

nitions of divergence and livelock di�er from the stan-

dard de�nitions for these notions, which correspond to

liveness properties, i.e., properties that can only be

violated by in�nite sequences of operations or transi-

tions [Lam77, MP92]. In contrast, our notions of diver-

gence and livelock can be violated by �nite sequences

of operations or transitions, and therefore are actually

safety properties. Indeed, a state-less search cannot de-

tect cycles, and is thus restricted to the veri�cation of

safety properties.

At the time of this writing, VeriSoft is being used

for analyzing the correctness of several examples of im-

plementations of communication protocols. As an ex-

ample of application, VeriSoft successfully discovered

an error in a 2500-line concurrent C program control-

ling robots operating in an unpredictable environment.

More precisely, this program represents a concurrent

system composed of six processes that communicate via

shared memory and semaphores. Two of the processes

control robots that collect objects randomly dropped

on a table by a third robot, represented by a third pro-

cess. The three other processes are used to simulate

the rest of the environment of the robots. Sometimes,

a strange behavior of the system can be observed: the

two robots that collect objects on the table suddently

stop moving.

3

As is often the case with concurrent sys-

tems, this phenomenon is extremely hard to reproduce,

and seems to occur spontaneously from time to time.

After exploring the state space of this system for a few

3

Actually, a seventh process is used to visualize on the screen the

position of all the objects and of the arms of the robots on the ta-

ble; this process does not in
uence the behavior of the other system

processes.

minutes, VeriSoft reported a scenario composed of 29

transitions (as de�ned in Section 2) that led to a diver-

gence. After replaying this scenario at the C level using

the VeriSoft simulator, it was easy to see that the prob-

lem was caused by an error in a \while" loop in the C

code for one of the processes, and to understand under

which circumstances the execution of that process was

trapped inside the loop. The divergence in that process

would then block the other processes of the system that

were waiting for it to proceed.

6 Conclusions and Comparison with

Related Work

We have presented a new search technique for e�ciently

exploring the state space of concurrent systems com-

posed of processes described by programs written in

full-
edged programming languages such as C or C++.

For �nite acyclic state spaces, we showed that our algo-

rithm can be used for detecting deadlocks and assertion

violations without incurring the risk of any incomplete-

ness in the veri�cation results. In practice, our algo-

rithm can be used for systematically and e�ciently test-

ing the correctness of any concurrent system, whether

its state space is acyclic or not. This algorithm is built

upon existing state-space pruning techniques known as

partial-order methods [God96]. It extends the scope of

veri�cation by state-space exploration from modeling

languages to programming languages.

Model checking is complementary to other approa-

ches to program analysis. For instance, static analy-

sis techniques (e.g., [CC77, MJ81, ASU86]) automati-

cally extract information about the dynamic behavior

of a sequential program by examining its text. Vari-

ants of these techniques have also been proposed for

the analysis of concurrent programs written in concur-

rent programming languages such as Ada (e.g., [Tay83,

LC91, MR93, Cor96]). For speci�c classes of concurrent

programs, these abstraction techniques can produce a

\conservative" model of the system that preserves basic

information about the communication patterns that can

take place in the system. Analyzing such a model us-

ing standard model-checking techniques can then prove

the absence of certain types of errors in the system. In

contrast, our approach is based on the dynamic oberva-

tion of the \actual" processes of the concurrent system.

This makes possible a much closer examination of the

behaviors of the system, and the detection of subtle

errors that would be missed by the above techniques.

Moreover, we do not rely on any speci�c assumption

about the static structure of the programs used to rep-

resent the behavior of processes, which can actually be

written in any language, or even be unavailable. Inter-



esting future work is to combine the strengths of both

the static and dynamic approaches.

Another related and complementary area of research

concerns the design of simulators and debuggers for dis-

tributed and parallel programs (e.g., [CMN91]). These

tools are used to monitor the execution of concurrent

processes running in their actual environment. Work

in this area discuss techniques for, among others, (1)

instrumenting the execution of processes while mini-

mizing the impact of the instrumentation on the tim-

ing (scheduling) between the di�erent processes, for (2)

storing a minimum amount of information for faithfully

replaying (\roll-back") very long scenarios leading to

errors, and for (3) obtaining a consistent representa-

tion of a state (\snapshot") of a distributed/concurrent

system. Note that these problems are avoided with our

approach since (1) all the sources of nondeterminism are

fully controlled by a scheduler process, (2) the purpose

of our approach is to make possible the systematic anal-

ysis of short executions of a concurrent system, rather

than analyzing very long ones (e.g., containing millions

of process transitions), and (3) our analysis is performed

by examining only the global states of the concurrent

system, which the scheduler process can easily re-create.
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A Correctness Proofs

Theorem 1 Consider a concurrent system as de�ned

in Section 2, and let A

G

denote its state space. Then,

all the deadlocks that are reachable after the initializa-

tion of the system are global states, and are therefore

in A

G

. Moreover, if there exists a state reachable after

the initialization of the system where an assertion is vi-

olated, then there exists a global state in A

G

where the

same assertion is violated.

Proof: (Sketch)

By de�nition, a deadlock is a state where the execu-

tion of the next operation of every process in the system

is blocking. Since we assumed that only executions of

visible operations may be blocking, all deadlocks are

global states.

Let s be a reachable state where an assertion a is

violated. Let P

i

be the process containing the assertion

a. We know that the next operation to be executed by

P

i

in s is the assertion a, which is a visible operation.

For every process P

j

other than P

i

, let o

j

denote the

next visible operation that process P

j

will eventually

execute. Consider the global state s

0

where, for all pro-

cesses P

j

, j 6= i, the next operation to be executed by

P

j

is the visible operation o

j

, and the next operation of

process P

i

is the assertion a. Clearly, the global state

s

0

is reachable from state s. Moreover, since only in-

visible operations may have been executed from s to s

0

,

assertion a is still violated in s

0

. (The execution of invis-

ible operations in a process may not change the value of

any variable or data structure local to another process.)

Finally, since s

0

is reachable from s, there exists a con-

current execution of the system that reaches the global

state s

0

after the initialization of the system. Any se-

quence w of process transitions such that the sequence

of visible operations in w can be observed during the

concurrent execution leading to s

0

de�nes a path from

s

0

to s

0

in the global state space A

G

of the system.

Therefore, s

0

is in A

G

.

Let us now turn to the proof of Theorem 2. To es-

tablish this result, we use the notion of Mazurkiewicz's

traces [Maz86]. Traces are de�ned as equivalence classes

of sequences of transitions. Given a set T and a valid de-

pendency relation D � T �T as de�ned in De�nition 1,

two sequences over T belong to the same trace with re-

spect toD (are in the same equivalence class) if they can

be obtained from each other by successively exchanging

adjacent transitions which are independent according

to D. For instance, if t

1

and t

2

are two transitions of

T which are independent according to D, the sequences

t

1

t

2

and t

2

t

1

belong to the same trace. A trace is rep-

resented by one of its elements enclosed within brack-

ets and, when necessary, subscripted by the alphabet T

and the dependency relation. Thus the trace containing



both t

1

t

2

and t

2

t

1

could be represented by [t

1

t

2

]

(T ;D)

.

A trace corresponds to a partial ordering of symbol oc-

currences and contains all linearizations of this partial

order. If two independent symbols occur next to each

other in a sequence of a trace, the order of their occur-

rence is irrelevant since they occur concurrently in the

partial order corresponding to that trace.

We will also make use of the two following lemmas

from [God96]. These two lemmas state basic properties

of persistent sets.

Lemma 4.2 of [God96] Let s be a state in A

G

, and let

d be a deadlock reachable from s in A

G

by a nonempty

sequence w of transitions. For all w

i

2 [w], let t

i

denote

the �rst transition of w

i

. Let Persistent Set(s) be a

nonempty persistent set in s. Then, at least one of the

transitions t

i

is in Persistent Set(s).

Lemma 6.8 of [God96] Let s be a state in A

G

, and let

w be a nonempty sequence of transitions from s in A

G

.

For all w

i

2 [w] from s in A

G

, let t

i

denote the �rst

transition of w

i

. Let Persistent Set(s) be a nonempty

persistent set in s. If none of the t

i

are in Persis-

tent Set(s), then all the transitions in Persistent Set(s)

are independent with all the transitions in w.

To establish the correctness of Algorithm 2, we �rst

prove the following lemma. Assume that all that con-

cerns sleep sets in Algorithm 2 is not implemented (or

equivalently that the sleep set associated to every global

state reached during the search is empty). We now

prove that, under this assumption, if there exists a se-

quence of transitions in A

G

from s

0

to a deadlock or

to a state s where an assertion a is violated, then Al-

gorithm 2 without using sleep sets will eventually visit

this deadlock or a state where the assertion a is violated,

provided that A

G

is �nite and acyclic.

Lemma 1 Consider a concurrent system as de�ned in

Section 2, and let A

G

denote its state space. Assume

A

G

is �nite and acyclic. Let A

R

be the state space ex-

plored by Algorithm 2 without using sleep sets. Let s

be a state in A

R

. Let d be a deadlock reachable from s

in A

G

by a sequence w of transitions. Then, d is also

reachable from s in A

R

. Moreover, if s

0

is a state where

an assertion a is violated that is reachable from s in A

G

by a sequence w

0

of transitions, then there exists a state

(not necessarily s

0

) reachable from s in A

R

where the

assertion a is violated.

Proof:

The proof proceeds by induction on the length of

w and w

0

. For jwj = 0 and jw

0

j = 0, the result is

immediate. Now, assume the theorem holds for paths

(sequences of transitions) of length n � 0 and let us

prove that it holds for paths of length n+ 1.

Assume a deadlock d can be reached from s by a

path w of length n + 1 in A

G

. For all w

i

2 [w], let t

i

denote the �rst transition of w

i

. Let Persistent Set(s)

be the nonempty persistent set that is selected in s by

Algorithm 2, i.e., the set of transitions that are explored

from s in A

R

. By Lemma 4.2 of [God96], we know that

at least one of the transitions t

i

is in Persistent Set(s).

Since t

i

is in Persistent Set(s), it is explored from state

s and a state from which a path of length n leads to the

deadlock d is reached in A

R

. This together with the

inductive hypothesis proves the lemma for the deadlock

case.

We now consider the case of an assertion violation.

Assume that a state s

0

where an assertion a is violated

can be reached from s by a path w

0

of length n + 1 in

A

G

. Let Persistent Set(s) be the nonempty persistent

set that is selected in s by Algorithm 2, i.e., the set

of transitions that are explored from s in A

R

. For all

w

0

i

2 [w

0

], let t

0

i

denote the �rst transition of w

0

i

. If at

least one of the transitions t

0

i

is in Persistent Set(s), it

is explored from state s and a state from which a path

of length n leads to s

0

is reached in A

R

.

Otherwise, by applying Lemma 6.8 of [God96] to

s and w

0

, we know that all the transitions in Persis-

tent Set(s) are independent with all the transitions in

w

0

. Consequently, for all the states s

j

reached after exe-

cuting one of the transitions in Persistent Set(s) in A

R

,

the sequence of transition w

0

is still executable from s

j

in A

G

and leads to a state s

0

j

where the assertion a is

violated (this follows from De�nition 1). By applying

the same reasoning to any state s

j

and since all the ex-

ecutions of the system are �nite (since its state space is

�nite and acyclic), one concludes that a transition t

0

i

is

eventually executed from a successor state s

k

of s such

that all the transitions from s to s

k

are independent

with all the transitions in w

0

. After the execution of t

0

i

from s

k

, a state s

l

is reached in A

R

from which a path

of length n in A

G

leads to a state where the assertion a

is violated. This together with the inductive hypothesis

proves the lemma for the case of an assertion violation.

From Lemma 1 it is then immediate to conclude that

a state-less search using only persistent sets and started

in the initial state of A

G

will detect all the deadlocks

and assertion violations in A

G

. We now show that the

use of sleep sets as described in Algorithm 2 preserves

this result.

Theorem 2 Consider a concurrent system as de�ned

in Section 2, and let A

G

denote its state space. Assume

A

G

is �nite and acyclic. Then, all the deadlocks in A

G

are visited by Algorithm 2. Moreover, if there exists a

global state in A

G

where an assertion is violated, then

there exists a global state visited by Algorithm 2 where



the same assertion is violated.

Proof:

Consider a deadlock d or a state s

0

where an assertion

is violated that is reachable from the initial global state

s

0

. Imagine that we �x the order in which transitions

selected in a given state are explored and that we �rst

run Algorithm 2 without sleep sets. Let A

R

be the state

space explored during this run. Assume that, for every

state s in A

R

, the transitions explored from s are sorted

from left to right following the order in which there are

explored: t

1

is to the left of t

2

if t

1

is explored before

t

2

. Then, we run Algorithm 2 with sleep sets while still

exploring transitions in the same order. The important

point is that the order used in both runs is the same, the

exact order used is irrelevant. By Lemma 1, we know

that, if d is a deadlock, d is visited by Algorithm 2

without sleep sets, while if an assertion a is violated

in s

0

, a state s

00

where the same assertion is violated

is visited by Algorithm 2 without sleep sets. We now

prove that the leftmost path in A

R

leading to d or to a

state where the assertion a is violated is still explored

in the second run when using Algorithm 2 with sleep

sets.

Let p = s

0

t

0

! s

1

t

1

! s

2

: : : s

n�1

t

n�1

! s be this path.

The only reason why it might not be fully explored (i.e.,

until s is reached) by the algorithm using sleep sets is

that some transition t

i

of p is not taken because it is

in the sleep set associated with s

i

. This means that t

i

has been added to the sleep set associated with some

previous state of the path p and then passed along p

until s

i

. Let us prove that this is impossible.

Assume that t

i

is in the sleep set associated with

state s

i

, denoted s

i

:Sleep. Hence, t

i

has been added to

the sleep set associated with some previous state s

j

, j <

i, of the path p and passed in the sleep set associated

with the successor states of s

j

along the path p until

s

i

. Formally, t

i

62 s

j

:Sleep when s

j

is visited along this

path and t

i

2 s

k

:Sleep for all states s

k

, j < k � i. This

implies that t

i

has been explored before t

j

from s

j

since

a transition is introduced in the sleep set after it has

been explored (line 14 of Algorithm 2). Moreover, all

transitions that occur between t

j

and t

i

in p, i.e., all t

k

such that j � k < i, are independent with respect to

t

i

. Indeed, if this was not the case, t

i

would not be in

s

i

:Sleep since transitions that are dependent with the

transition taken are removed from the sleep set (line 11

of Algorithm 2).

Consequently, t

i

t

j

: : : t

i�1

(the sequence t

j

: : : t

i�1

t

i

where t

i

has been moved to the �rst position) is in

[t

j

: : : t

i�1

t

i

]. Thus, t

i

t

j

: : : t

i�1

and t

j

: : : t

i�1

t

i

are two

interleavings of a single trace, and hence lead to the

same state: s

j

t

i

t

j

:::t

i�1

) s

i+1

. Since there is a path

s

j

t

i

t

j

:::t

i�1

) s

i+1

from s

j

, and since t

i

is explored before

t

j

in s

j

, the application of Lemma 1 to the state reached

after the execution of t

i

from s

j

implies that the path p

is not the leftmost path in A

R

leading to d or to a state

where the assertion a is violated. A contradiction.

Finally, it is worth noticing that all the above results

also hold when a valid conditional dependency relation

is used. Moreover, in that case, the above results hold

without requiring the valid conditional dependency re-

lation to be weakly uniform [God96].


