
On the Costs and Benefits of using
Partial-Order Methods for the
Verification of Concurrent Systems

Patrice Godefroid

Proceedings of DIMACS Workshop on Partial-Order Methods in Verification, AMS, Princeton, July 1996.

Copyright DIMACS-AMS, 1996.

On the Costs and Bene�ts of using Partial-Order Methods

for the Veri�cation of Concurrent Systems

(Invited Paper)

Patrice Godefroid

Abstract. Veri�cation by state-space exploration is one of the most success-

ful strategies for analyzing the correctness of �nite-state concurrent reactive

systems. Partial-order methods are algorithms for dynamically pruning the

state space of such systems without incurring the risk of any incompleteness

in the veri�cation results. This paper presents results of experiments per-

formed with these algorithms on real protocol examples, and discusses the

practical signi�cance of partial-order methods.

1. Introduction

State-space exploration is one of the most successful strategies for checking the

correctness of �nite-state concurrent reactive systems. It consists in exploring a

global state graph, called the state space, representing the combined behavior of

all concurrent components in the system. Many di�erent types of properties of a

system can be checked by exploring its state space: deadlocks, dead code, unspec-

i�ed receptions, violations of user-speci�ed assertions, etc. Moreover, the range of

properties that state-space exploration techniques can verify has been substantially

broadened during the last decade thanks to the development of model-checking

methods for various temporal logics (e.g., [CES86, LP85, QS81, VW86]).

The main limit of this approach to veri�cation is the often excessive size of the

state space. Owing to simple combinatorics, this size can be exponential in the

size of the description of the system being analyzed. This exponential growth is

known as the state-explosion problem. The state-explosion problem is due, among

other causes, to the modeling of concurrency by interleaving, or, more accurately,

to the exploration of all possible interleavings of concurrent events. For instance,

the execution of n concurrent events is investigated by exploring all n! interleavings

of these events.

Recently, a collection of veri�cation techniques, referred to as \partial-order

methods", have demonstrated that exploring all interleavings of concurrent events

is not a priori necessary for veri�cation. Indeed, interleavings corresponding to

the same concurrent execution contain related information. The intuition behind

partial-order methods is that concurrent executions are really partial orders and

that expanding such a partial order into the set of all its interleavings is an ine�cient

1991 Mathematics Subject Classi�cation. Primary 68Q05, 68Q60; Secondary 03B70.

1

2 PATRICE GODEFROID

way of analyzing concurrent executions. Instead, concurrent events should be left

unordered since the order of their occurrence is irrelevant. Hence the name \partial-

order methods". However, rather than choosing to work with direct representations

of partial orders, these algorithms keep to an interleaving representation of partial

orders, but attempt to limit the expansion of each partial-order computation to

just one of its interleavings, instead of all of them. Precisely, given a property ',

partial-order methods explore only a reduced part of the global state space that is

provably su�cient to check the given property. The di�erence between the reduced

and the global state spaces is that not all interleavings of concurrent events are

systematically represented in the reduced one. In what follows, we call \partial-

order method" any algorithm for generating such a reduced state space.

Partial-ordermethods as de�ned above �rst appeared independently in [Val88a,

Val88b] and [God90, GW91b], and were developed further in [Val90, GW91a,

GHP92, HGP92, GP93, Pel93, Val93, WG93, GKPP94, HP94, Pel94]. A

detailed comparison of the results published in these papers is available in [God96].

Partial-order methods are now used in several existing veri�cation tools, and have

been tested on numerous real-protocol examples (e.g., see [GHP92, HGP92,

HP94, GPS96]).

Of course, it has been recognized for some time before the early 90's that

concurrency and nondeterminism are not the same thing. This observation has

actually inspired a fairly large body of work on so-called \partial-order models" of

concurrency (e.g., [Lam78, Maz86, Pra86, Win86]). Work in this area studies

various semantics for concurrency, and compares their properties. Also, partial-

order temporal logics (e.g., [PW84, KP86, KP87, Pen88, Pen90]) have been

designed to be semantically more expressive than previously existing (linear-time

and branching-time) temporal logics. In contrast, partial-order methods yields

results identical to those of veri�cation methods based on classical interleaving

semantics, they just make it possible to perform the veri�cation more e�ciently.

Several approximate methods based on simple heuristics have been proposed

to restrict the number of interleavings that are explored [GH85, Wes86, Hol87].

These heuristics carry with them the risk of incomplete veri�cation results, i.e., they

can detect errors but cannot prove the absence of errors. In contrast, partial-order

methods reduce the number of interleavings that must be inspected in a completely

reliable manner, provably without the risk of any incompleteness in the veri�cation

results.

Strategies for proving properties of concurrent systems without considering all

possible interleavings of their concurrent actions have been proposed in [AFdR80,

EF82, Pnu85, SdR89, KP92b, JZ93]. These proof methods are applied in the

context of an inference system, in which the correctness of a system is established

by proving assertions about its components. This approach to veri�cation has the

advantage of not being restricted to �nite-state systems. On the other hand, it

requires proofs that are manual. Even with the help of a theorem prover, carrying

out proofs with a theorem prover is far from fully automatic since most steps of

the proof require inventive interventions from the user. In contrast, the focus of

the partial-order methods we discuss in this paper is purely on algorithmic issues,

since we discuss fully-automatic state-space exploration techniques.

The idea that the cost of modeling concurrency by interleaving can be avoided

in �nite-state veri�cation also appeared in [JK90, PL90, McM92, Esp94]. In

[JK90], the problem of �nding an \optimal" reduced state space with just enough

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 3

transitions and states to preserve Mazurkiewicz's trace semantics is addressed.

In [PL90], a method that relies on a pomset grammar description of the system is

introduced. Also, in [McM92, Esp94], one �nds a veri�cation method that works

by unfolding a Petri net description of a concurrent system into a �nite acyclic

structure. These methods are quite di�erent from those discussed in this work.

Note that so far none of these other methods have been widely experimented on a

large set of realistic examples, as it has been the case for the partial-order methods

discussed here.

2. Basic Notions

Consider a concurrent system composed of several processes. Let us assume

that the system is represented by a set � of system transitions, speci�ed for instance

in some guarded-command modeling language. The choice of a particular modeling

language and semantics is not essential for the following discussion. What matters

is that it is possible to compute from � a global transition system A

G

(or \global

state space") representing the joint behavior of all the processes in the system. For

the sake of simplicity, we will assume that each transition of A

G

corresponds to the

execution of one system transition t 2 �.

1

We will write s

t

! s

0

to mean that the

execution of the transition t 2 � leads the system from the state s of A

G

to the

state s

0

of A

G

, and s

w

) s

0

to mean that the execution of the sequence w 2 �

�

of

transitions leads from s to s

0

.

The basic idea that enables us to check properties of A

G

without constructing

the whole of A

G

is the following: A

G

contains many paths that correspond simply

to di�erent execution orders of the same system transitions. If these transitions are

\independent", for instance because they are executed by noninteracting processes,

then changing their order will not modify their combined e�ect.

This notion of independency between transitions and its complementary notion,

the notion of dependency, can be formalized by the following de�nition (adapted

from [KP92a]).

Definition 2.1. Let � be the set of system transitions and D � � � � be a

binary, reexive, and symmetric relation. The relation D is a valid dependency

relation for the system i� for all t

1

; t

2

2 �, (t

1

; t

2

) 62 D (t

1

and t

2

are independent)

implies that the two following properties hold for all global states s in the global

state space A

G

of the system:

1. if t

1

is enabled in s and s

t

1

! s

0

, then t

2

is enabled in s i� t

2

is enabled in s

0

(independent transitions can neither disable nor enable each other); and

2. if t

1

and t

2

are enabled in s, then there is a unique state s

0

such that s

t

1

t

2

) s

0

and s

t

2

t

1

) s

0

(commutativity of enabled independent transitions).

This de�nition characterizes the properties of possible \valid" dependency re-

lations for the transitions of a given system. Note that it is not practical to check

the two properties listed above for all pairs of transitions for all states in order to

determine which transitions are independent and which are not. Therefore, in prac-

tice, one uses easily checkable syntactic conditions that are su�cient for transitions

to be independent. See [God96] for a detailed presentation of that topic.

1

Transitions are assumed to be deterministic: the execution of a transition t in a state s

leads to a unique successor state. This is not a restriction since \nondeterministic transitions"

can always be modeled by a set of deterministic transitions with non mutually exclusive guards.

4 PATRICE GODEFROID

Following the work of Mazurkiewicz [Maz86], one can use the notion of inde-

pendent transitions to de�ne an equivalence relation on sequences of transitions:

two sequences of transitions are equivalent if they can be obtained from each other

by successively permuting adjacent independent transitions. Thus, given an inde-

pendency relation, sequences of transitions can be grouped into equivalence classes

which Mazurkiewicz calls traces. It is easy to see that sequences of transitions w

1

and w

2

belonging to the same trace lead to the same state of A

G

. This property is

basically what will allow us to only explore part of the global state space A

G

: to

determine if a state is reachable by a trace, it is su�cient to explore one transition

sequence corresponding to that trace.

It might thus appear that we are using Mazurkiewicz's trace semantics. This is

not really so. Indeed, to view Mazurkiewicz's theory as a semantics, the indepen-

dency relation should be considered as part of the semantics: given an independency

relation, one can determine the Mazurkiewicz semantics of a system. The criterion

for a partial construction of the state-space would then be that the Mazurkiewicz

semantics are preserved. Here a less restrictive point of view is taken. The semantic

criterion is that the result of checking a property in the class of interest should be

the same as if checking the property on A

G

. The link with Mazurkiewicz's seman-

tics is only in the fact that the algorithms presented in the next section rely on the

concept of independency and on the properties it implies. With some algorithms,

it is even possible to use de�nitions of independence that are weaker than the one

of De�nition 2.1 (e.g., [GP93, God96]).

3. The Algorithms

In this section, we present the basic algorithmic ideas used in the style of partial-

order veri�cation methods we are considering. For simplicity, we only consider the

problem of detecting terminating (deadlock) states. In order to check for properties

more elaborate than deadlocks (such as arbitrary safety properties or linear-time

temporal-logic formulas), it is usually necessary to preserve more information in the

reduced state space A

R

, i.e, to explore more states and transitions. This is done

by enforcing additional conditions that have to be satis�ed during the generation

of A

R

. We refer the reader to [God96] for a detailed comparison of the various

techniques that have been proposed to address this problem.

The speci�cation of the algorithms we discuss here is thus that they should �nd

all states of A

G

with no outgoing transitions while exploring as small a fraction as

possible of A

G

. All the partial-order algorithms follow the same basic pattern: they

operate as classical state-space searches except that, at each state s reached during

the search, they compute a subset T of the set of transitions enabled at s and explore

only the transitions in T , the other enabled transitions are not explored. We call

such a search a selective search. It is easy to see that a selective search through A

G

only reaches a subset (not necessarily proper) of the states and transitions of A

G

.

Two main techniques for computing such sets T have been proposed in the

literature. The �rst technique actually corresponds to a whole family of algo-

rithms [Ove81, Val91, GW91b, GP93]. It is shown in [God96] that all these

algorithms (including Valmari's algorithms for computing \strong stubborn sets")

compute persistent sets. The second type of technique is the sleep set technique

(e.g., [GW93]). Interestingly, these two techniques are compatible and can be

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 5

used simultaneously to further improve the selection of the set T . We �rst describe

persistent-set techniques.

Intuitively, a subset T of the set of transitions enabled in a state s of A

G

is

called persistent in s if all transitions not in T that are enabled in s, or in a state

reachable from s through transitions not in T , are independent with all transitions

in T . In other words, whatever one does from s, while remaining outside of T , does

not interact with or a�ect T . Formally, we have the following [GP93].

Definition 3.1. A set T of transitions enabled in a state s is persistent in s

i�, for all nonempty sequences of transitions

s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

from s in A

G

and including only transitions t

i

62 T , 1 � i � n, t

n

is independent

with all transitions in T .

Note that the set of all enabled transitions in a state s is trivially persistent

since nothing is reachable from s by transitions that are not in this set. Persistent

sets are very similar, although not equivalent, to the \faithful decompositions"

introduced (independently) in [KP92b] and to the \ample sets" used in [Pel93].

Let a persistent-set selective search be a selective search through A

G

which,

in each state s that it reaches, explores only a set T of enabled transitions that is

persistent in s, and that is nonempty if there exist transitions enabled in s. It is

easy to prove that a persistent-set selective search started from the initial state of

A

G

will explore all deadlocks of A

G

[God96].

Of course, the key element required for the implementation of a persistent-

set selective search is an algorithm for computing persistent sets. Such algo-

rithms [Ove81, Val91, GW91b, GP93] infer the persistent sets from the static

structure (code) of the system being veri�ed. They di�er by the type of information

about the representation of the system that they use (e.g., \distinguishing between

internal and global transitions", \which process can access which variable", \which

process can access which variable from its current location", etc.). The aim of these

algorithms is to obtain the smallest possible persistent sets. Usually, the more in-

formation about the program the algorithm uses, the smallest the persistent set it

produces are, albeit at the cost of a higher computational complexity. See [God96]

for a detailed comparison of these algorithms and of their complexity. Note that

exploring the smallest number of enabled transitions at each step of the search

is only a heuristic: it does not necessary lead to the exploration of the smallest

number of states in A

R

.

The second technique for computing the set of transitions T to consider in a

selective search is the sleep set technique [GW93] introduced in [God90]. This

technique does not exploit information about the static structure (code) of the

program, but rather about the past of the search. Used alone it reduces the number

of transitions explored, but not the number of states [God96], which can still be

very useful as we will see in Section 6. Used in conjunction with a persistent

set technique it can further reduce the number of states explored. Indeed, when

the persistent set technique cannot avoid the selection of independent transitions

in a state, sleep sets can avoid the exploration of multiple interleavings of these

transitions. Again, we refer the reader to [God96] for a detailed presentation of

the sleep set algorithm and of its complexity.

6 PATRICE GODEFROID

4. How Can Partial-Order Methods Be Evaluated?

How much can one gain by using these algorithms? It is very di�cult to give

a general answer. Indeed, one can quite easily construct families of systems for

which nothing is gained whatsoever. Examples of such systems are systems where

the coupling between the processes is so tight that two independent transitions are

never simultaneously enabled. (The system is in fact purely sequential.) In this

case, partial-order methods yield no reduction, and the selective search becomes

equivalent to a classical exhaustive search.

On the other hand, it is also easy to construct systems for which the growth

of the state space when the number of processes in the system increases is reduced

from exponential to polynomial by a selective search. This is the case, for instance,

for the well-known dining-philosophers example [Val88a]. Going one step further,

it is also possible to �nd examples of systems for which the global state space

increases in size when the value of some parameter grows, while the reduced state

space remains the same. See Chapter 8 of [God96] for such an example.

Clearly, by a biased choice of examples, an arbitrarily exaggerated impres-

sion of the improvements could thus be suggested. For instance, by setting the

number of philosophers to a su�ciently large number, we can claim that we can

verify properties of systems with astronomical numbers of states, like 10

20

states

as in [BCM

+

90], or even systems with in�nite numbers of states. Of course, this

should be taken with a grain of salt since the fact that checking only a small part

of such enormous state spaces is su�cient only indicates that most of the states in

the global state space are uninteresting. This observation leads us to the following

conclusion: the number of states in the global state space of a system does not give

a good measure of its \complexity".

Along the same line of thought, the study of the asymptotic behavior of the

function giving the number of states for di�erent numbers of processes in a system

is only of limited practical interest. Indeed, state-space exploration techniques are

rarely used to verify systems composed of tens of identical processes. For such

systems, it is preferable to use other veri�cation techniques specially tailored for

proving properties of systems with unde�ned numbers of participants (e.g., [KM89,

WL89]).

Consequently, experiments with realistic examples, including industrial-size

ones, appear to be the most informative approach to evaluating partial-order veri-

�cation methods.

5. Evaluation

In order to perform experiments on complex concurrent systems, we have imple-

mented a selective search algorithm using persistent sets and sleep sets in an add-on

package for the protocol veri�cation system SPIN [Hol91]. SPIN is a veri�cation

tool for communication protocols described in the Promela language. Promela is

a nondeterministic guarded-command language. Promela de�nes systems of asyn-

chronously executing concurrent processes that can interact via shared variables

and message channels. Interaction via message channels can be either synchronous

(i.e., by rendez-vous) or asynchronous (bu�ered) with arbitrary (user-speci�ed)

bu�er capacities, and arbitrary numbers of message parameters. These di�erent

types of communication can be combined. Given a concurrent system described

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 7

by a Promela program, SPIN can verify properties of the system by performing a

depth-�rst search in the global state space of the system.

The partial-order package for SPIN that we have developed is available free of

charge for educational and research purposes by anonymous ftp from ftp.monte-

�ore.ulg.ac.be in the /pub/po-package directory. More information on the partial-

order package can be found in the README �le in this directory.

The partial-order package has been tested on various examples of protocols.

The aim of these experiments was to determine the type of reduction that can be

expected on real protocol examples when using the partial-order veri�cation algo-

rithms, and to evaluate the respective impact of these algorithms on the reduction

obtained. In this Section, results obtained with four sample protocols are detailed.

� PFTP is a �le transfer protocol presented in Chapter 14 of [Hol91], modeled

in 206 lines of Promela. It consists of three processes communicating via

FIFO channels.

� MULOG3 is a model of a mutual exclusion algorithm presented in [TN87],

for 3 participants, modeled in 97 lines of Promela. It consists of six processes

communicating via FIFO channels and shared variables.

� ABRA is a model of the Abracadabra protocol presented in [Tur93], mod-

eled in 168 lines of Promela. It consists of four processes communicating via

FIFO channels.

� DTP is a data transfer protocol, modeled in 406 lines of Promela. It consists

of three processes communicating via FIFO channels.

We report here experiments performed using four di�erent algorithms.

� DFS denotes an exhaustive search performed in a depth-�rst order.

� SLEEP denotes a selective search using sleep sets.

� PS denotes a selective search using persistent sets.

� PS+SLEEP denotes a selective search using both persistent sets and sleep

sets.

Results of these experiments are presented in Table 1. All experiments were

performed on a SPARC2 workstation with 64 Megabytes of RAM, using the Partial-

Order Package version 3.0. For each run, the numbers of visited states and traversed

transitions are given. Time (in seconds) is user time plus system time as reported by

the UNIX-system time command. All visited states are stored in a hash table. To

avoid signi�cant run-time penalties for disk-access, visited states can only be stored

in randomly accessed memory, i.e., in the main memory available in the computer

on which the experiments are performed. Consequently, parameter settings in all

the protocols considered were chosen to produce global state spaces that can easily

be stored in 64 Megabytes of RAM. For each run, the amount of memory used is

directly proportional to the number of stored states.

From the numbers given in Table 1, two main observations can be made con-

cerning the respective impact of persistent sets and sleep sets on the reduction

obtained.

� Persistent Sets yield the most important reductions on the number of vis-

ited states. They can also yield good reductions on the number of explored

transitions.

� Sleep sets yield a less impressive reduction on the number of visited states,

but yield very good reductions on the number of explored transitions.

8 PATRICE GODEFROID

Protocol Algorithm Stored States Transitions Time

PFTP DFS 446,982 1,257,317 478.2

SLEEP 446,982 622,364 639

PS 276,722 482,722 662.7

PS+SLEEP 249,994 351,633 684.7

MULOG3 DFS 38,181 111,668 25.3

SLEEP 38,181 38,241 30.5

PS 18,537 38,906 25.8

PS+SLEEP 17,984 18,057 26

ABRA DFS 149,816 372,010 494.2

SLEEP 149,816 176,469 546

PS 32,289 40,931 166.3

PS+SLEEP 27,781 34,381 155.7

DTP DFS 251,409 648,467 200.2

SLEEP 251,409 269,912 189

PS 9,904 10,351 11.3

PS+SLEEP 9,904 10,351 11.5

Table 1. Evaluation

For all protocols, the best reductions can be obtained with PS+SLEEP, i.e., by

using simultaneously persistent sets and sleep sets. Using persistent sets and sleep

sets gives better reductions than using persistent sets alone in almost all cases. For

DTP, persistent sets are so good in reducing the number of states and transitions

that sleep sets are not able to improve this result.

These results show that using the partial-order methods discussed in this work

is basically a no-risk improvement. In the worst case, when the reduction is not

su�cient to make up the additional run time overhead (PFTP), the selective search

can be slightly slower than a classical search, but the overall time complexity re-

mains linear in the number of explored transitions.

Moreover, using partial-order methods can strongly decrease both the time and

the memory resources needed to verify properties of concurrent systems (DTP).

Therefore, they can be used to verify more complex protocols.

6. State-Space Caching

Another observation that can be made from the results given in Table 1 is the

following: when using partial-order methods, and especially when using sleep sets,

the number of state matchings, i.e., the number of visited transitions minus the

number of visited states, strongly decreases. This phenomenon can be explained as

follows [GHP92].

When performing a classical search (like DFS), almost all states in the state

space of a concurrent system are typically visited several times. There are two

causes for this:

1. From the initial state, the explorations of all interleavings of a single �nite

concurrent execution of the system always lead to the same state. This state

will thus be visited several times because of all these interleavings.

2. From the initial state, explorations of di�erent �nite concurrent executions

may lead to the same state.

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 9

When using partial-order methods, and especially when using sleep sets, most of

the e�ects of the �rst cause given above can be avoided, and, in many cases, most

of the states are visited only once during the selective search.

States that are visited only once do not need to be stored in memory. Indeed,

the only reason why visited states are stored in memory is to avoid redundant

explorations of parts of the state space: when a state that has already been visited

is visited again later during the search, it is not necessary to revisit all its successors.

Unfortunately, it is impossible to determine which states are visited only once before

the search is completed. However, if most of the states are visited only once, the

probability that a state will be visited again later during the search is very small,

and the risk of double work when not storing an already visited state becomes

very small as well. This enables one not to store most of the states that have

already been visited without incurring too much redundant explorations of parts

of the state space. The memory requirements can thus strongly decrease without

seriously increasing the time requirements.

State-space caching [Hol85, JJ91] is a memory management technique for

storing the states encountered during a depth-�rst search that consists in storing

all the states of the current explored path (i.e., those in the current depth-�rst

search \stack") plus as many other states as possible given the remaining amount

of available memory. It thus creates a restricted cache of selected system states

that have already been visited. Initially, all states encountered are stored into the

cache. When the cache �lls up, old states that are not in the stack are removed

from the cache to accommodate new ones. This method never tries to store more

states than possible in the cache. Thus, if the size of the cache is greater than the

maximal size of the stack during the exploration, the search is not truncated, and

eventually terminates.

We have implemented such a caching discipline in our partial-order package.

The caching discipline can be used with any of the selective-search algorithms that

were considered in the previous section. Results of experiments with di�erent cache

sizes and the algorithms DFS, PS, and PS+SLEEP for the MULOG3 protocol are

presented in Figure 1. For each run, the run time is directly proportional to the

number of explored transitions.

With DFS, these results clearly show that the size of the cache, i.e., the num-

ber of stored states, can be reduced to approximately the third of the total number

of states in A

G

without seriously a�ecting the number of explored transitions and

hence the run time. If the cache is further reduced, the run time increases dramati-

cally, due to redundant explorations of large parts of the state space. This run-time

explosion makes state-space caching ine�cient under a certain threshold.

With PS, this threshold can be reduced to approximately the eighth of the total

number of states. This improvement is not very spectacular because the number of

matched states, even when using PS, is still too important (see Table 1). The risk

of double work when reaching an already visited state that has been removed from

the cache is not reduced enough.

With PS+SLEEP, the situation is di�erent: there is no run-time explosion

anymore. Indeed, the number of matched states is reduced so much (see Table 1)

that the risk of double work becomes very small. When the cache size is reduced

up to the maximal depth of the search (this maximal depth is the lower bound for

the cache size since all states of the stack are stored to ensure the termination of

the search), the increase of the number of explored transitions is still less than 10%

10 PATRICE GODEFROID

0

200000

400000

600000

800000

1e+06

1.2e+06

0 5000 10000 15000 20000 25000 30000 35000 40000

Stored states

DFS

PS

PS + SLEEP

Transitions

Figure 1. Performances of state-space caching for MULOG3

with respect to the number of transitions explored by PS+SLEEP when all visited

states are stored in memory, i.e., without using state-space caching.

In other words, the MULOG3 protocol, which has 38,181 reachable states that

can be visited by DFS in 25 seconds (see Table 1), can be analyzed with the same

run time by using PS+SLEEP and state-space caching while storing no more than

150 states. The memory requirements are reduced by a factor of 200 while the run

time remains the same.

Of course, the practical interest of this result is that using partial-order methods

and state-space caching together makes possible the complete exploration of very

large state spaces, that could not be explored so far.

For instance, consider two other versions of the MULOG protocol, denoted MU-

LOG4 and MULOG5, with respectively four and �ve participants. Let PS+SLEEP-

+Caching denote a selective search using persistent sets, sleep sets, and state-space

caching. Tables 2 and 3 present results of experiments performed on MULOG4

and MULOG5 with the algorithms DFS, PS+SLEEP, and PS+SLEEP+Caching.

\Stored states" is the number of stored states at the end of the search. When state-

space caching is used, the maximum number of stored states, i.e., the size of the

cache, is limited to 300,000 states. (This number is approximately the maximum

number of states that can be stored in RAM for MULOG4 and MULOG5 while still

avoiding any paging.) \Cleared states" is the number of times a state was removed

from the cache. \Matched states" is the number of state matchings that occurred

during the search.

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 11

Algorithm Stored St. Cleared St. Matched St. Transitions Time

DFS { { { { {

PS+SLEEP 654,600 0 6,189 660,789 986.4

(2516.7)

PS+SLEEP+Caching 300,000 354,676 6,198 660,874 1122.6

(1184.4)

Table 2. Veri�cation of MULOG4

Algorithm Stored St. Cleared St. Matched St. Transitions Time

DFS { { { { {

PS+SLEEP { { { { {

PS+SLEEP+Caching 300,000 28,613,162 349,904 29,263,066 60,633.1

Table 3. Veri�cation of MULOG5

For MULOG4, DFS was not able to complete its search, since its global state

space is too large to be stored in (64 Megabytes of) memory. Using state-space

caching with DFS does not help, because of the run time explosion mentioned

above. MULOG4 can still be veri�ed using PS+SLEEP, even without state-space

caching. Real time as reported by the UNIX-system time command is given be-

tween parentheses below the run time (user time plus system time). The important

di�erence between these two numbers for PS+SLEEP is due to paging (storing

654,600 states of MULOG4 requires more than 64 Megabytes of RAM, so some of

them had to be stored on disk).

For MULOG5, the only algorithm that is able to completely verify the correct-

ness of this protocol is PS+SLEEP+Caching. The complete selective search takes

approximately 17 hours, and explores 29,263,066 transitions. This means that the

reduced state space A

R

explored by PS+SLEEP contains at most 29,263,066 states.

The size of the global state space A

G

of MULOG5 is not known, but is very likely

several orders of magnitude larger than the largest state spaces that can be explored

by other existing veri�cation tools.

Note that the e�ciency of the state-space caching technique can be dynamically

estimated during the search: if the maximum stack size remains acceptable with

respect to the cache size and if the proportion of matched states remains small

enough, the run-time explosion will likely be avoided. Else one cannot predict if

the cache size is large enough to avoid the run-time explosion.

7. Conclusion

Using partial-order methods is basically a no-risk improvement with respect

to a classical exhaustive search in the state space of the system being analyzed.

Moreover, partial-order methods can yield substantial improvements in the perfor-

mances of the veri�cation. Therefore, these methods broaden the applicability of

state-space exploration techniques to more complex systems.

The reduction obtained depends on the coupling between the processes in the

system. When the coupling is very tight, partial-order methods yield no reduction,

and the selective search becomes equivalent to a classical exhaustive search. When

12 PATRICE GODEFROID

the coupling between the processes is very loose, the reduction can be very im-

pressive. For most realistic examples, partial-order methods provide a signi�cant

reduction of the memory and time requirements needed to verify protocols.

It is worth noticing that partial-order methods can already yield good perfor-

mance improvements for verifying systems containing only a handful of processes.

It is not necessary to consider systems composed of tens of processes to obtain spec-

tacular reductions. To put it in another way, the part of the state explosion due to

the exploration of all possible interleavings of independent transitions can already

be very important for systems containing only a few processes, and partial-order

methods are able to get rid of most of this explosion.

This very important point emphasizes the practical signi�cance of partial-order

methods. Indeed, most of the protocol models that are analyzed with state-space

exploration techniques typically contain only a handful of processes. The examples

we have considered in Section 5 reect this reality. For instance, a typical protocol

example is usually composed of a few processes that communicate asynchronously

by exchanging messages through some communication medium, each process being

described by a long piece of sequential code, with complex interactions between

control and data.

Not only these systems are very frequent, but they are also very hard to verify:

they are complex (several hundreds lines of (Promela) code are needed to model

these systems), and their state spaces are highly irregular. Speci�cally, their state

spaces seem to be much more irregular than, for instance, those of systems composed

of many identical processes (or pieces of hardware), for which symbolic veri�cation

techniques are able to capture the regularity of the state space with the guidance

of the user (see, e.g., [BCM

+

90, McM93]). In contrast, for examples of the type

we are considering here, existing symbolic veri�cation techniques were reported to

be inferior to classical state-space exploration algorithms [HD93]. Consequently,

for this particular, though important, class of systems, partial-order methods are

one of the most successful approaches to tackle the state explosion arising during

the analysis of such systems.

Finally, we have shown that using partial-order methods, and especially using

sleep sets, can substantially improve the state-space caching discipline by getting rid

of the main cause of its previous ine�ciency, namely prohibitive state matching due

to the exploration of all possible interleavings of concurrent executions all leading

to the same state. Thanks to sleep sets, the memory requirements needed to verify

large reduced state spaces can be strongly decreased (several orders of magnitude)

without seriously a�ecting the time requirements. This makes possible the complete

exploration of very large reduced state spaces (several tens of million states) in a

reasonable time (one night). Used together, partial-order methods and state-space

caching signi�cantly push back the limits of veri�cation by state-space exploration.

Note

The results reported in this paper appeared in [God96].

References

[AFdR80] K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communicating

sequential processes. ACM Transactions on Programming Languages and Systems,

2:359{385, 1980.

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 13

[BCM

+

90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model

checking: 10

20

states and beyond. In Proceedings of the 5th Symposium on Logic in

Computer Science, pages 428{439, Philadelphia, June 1990.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state

concurrent systems using temporal logic speci�cations. ACM Transactions on Pro-

gramming Languages and Systems, 8(2):244{263, January 1986.

[EF82] T. Elrad and N. Francez. Decomposition of distributed programs into communication

closed layers. Science of Computer Programming, 2:155{173, 1982.

[Esp94] J. Esparza. Model checking using net unfoldings. Science of Computer Programming,

23:151{195, 1994.

[GH85] M. G. Gouda and J. Y. Han. Protocol validation by fair progress state exploration.

Computer Networks and ISDN systems, pages 353{361, May 1985.

[GHP92] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited. In

Proc. 4th Workshop on Computer Aided Veri�cation, volume 663 of Lecture Notes in

Computer Science, pages 178{191, Montreal, June 1992. Springer-Verlag.

[GKPP94] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to branch-

ing time model checking. Proceedings of the Third Israel Symposium on Theory of

Computing and Systems, 1994.

[God90] P. Godefroid. Using partial orders to improve automatic veri�cation methods. In Proc.

2nd Workshop on Computer Aided Veri�cation, volume 531 of Lecture Notes in Com-

puter Science, pages 176{185, Rutgers, June 1990. Springer-Verlag. Extended version

in ACM/AMS DIMACS Series, volume 3, pages 321{340, 1991.

[God96] Patrice Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems

{ An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in

Computer Science. Springer-Verlag, January 1996.

[GP93] P. Godefroid and D. Pirottin. Re�ning dependencies improves partial-order veri�cation

methods. In Proc. 5th Conference on Computer Aided Veri�cation, volume 697 of

Lecture Notes in Computer Science, pages 438{449, Elounda, June 1993. Springer-

Verlag.

[GPS96] P. Godefroid, D. Peled, and M. Staskauskas. Using partial-order methods in the for-

mal validation of industrial concurrent programs. In Proceedings of ISSTA'96 (Inter-

national Symposium on Software Testing and Analysis), pages 261{269, San Diego,

January 1996.

[GW91a] P. Godefroid and P. Wolper. A partial approach to model checking. In Proceedings of

the 6th IEEE Symposium on Logic in Computer Science, pages 406{415, Amsterdam,

July 1991.

[GW91b] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cation of dead-

lock freedom and safety properties. In Proc. 3rd Workshop on Computer Aided Veri-

�cation, volume 575 of Lecture Notes in Computer Science, pages 332{342, Aalborg,

July 1991.

[GW93] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cation of dead-

lock freedom and safety properties. Formal Methods in System Design, 2(2):149{164,

April 1993.

[HD93] A. J. Hu and D. L. Dill. E�cient veri�cation with bdds using implicitly conjoined

invariants. In Proc. 5th Conference on Computer Aided Veri�cation, volume 697 of

Lecture Notes in Computer Science, pages 3{14, Elounda, June 1993. Springer-Verlag.

[HGP92] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction strate-

gies for reachability analysis. In Proc. 12th IFIP WG 6.1 International Symposium on

Protocol Speci�cation, Testing, and Veri�cation, pages 349{363, Lake Buena Vista,

Florida, June 1992. North-Holland.

[Hol85] G. J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(12):2413{2434, 1985.

[Hol87] G. J. Holzmann. Automated protocol validation in argos | assertion proving and

scatter searching. IEEE Trans. on Software Engineering, 13(6):683{696, 1987.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[HP94] G. J. Holzmann and D. Peled. An improvement in formal veri�cation. In Proc.

FORTE'94, pages 177{191, Bern, 1994.

14 PATRICE GODEFROID

[JJ91] C. Jard and Th. Jeron. Bounded-memory algorithms for veri�cation on-the-y. In

Proc. 3rd Workshop on Computer Aided Veri�cation, volume 575 of Lecture Notes in

Computer Science, Aalborg, July 1991. Springer-Verlag.

[JK90] R. Janicki and M. Koutny. On some implementation of optimal simulations. In Proc.

2nd Workshop on Computer Aided Veri�cation, volume 531 of Lecture Notes in Com-

puter Science, pages 166{175, Rutgers, June 1990. Springer-Verlag.

[JZ93] W. Janssen and J. Zwiers. Specifying and proving communication closedness in proto-

cols. In Proc. 13th IFIP WG 6.1 International Symposium on Protocol Speci�cation,

Testing, and Veri�cation, pages 323{339, Li�ege, May 1993. North-Holland.

[KM89] R. P. Kurshan and K. McMillan. A structural induction theorem for processes. In

Proceedings of the Eigth ACM Symposium on Principles of Distributed Computing,

pages 239{248, Edmonton, Alberta, August 1989.

[KP86] Y. Kornatzky and S. S. Pinter. A model checker for partial order temporal logic. EE

PUB 597, Department of Electrical Enginering, Technion-Israel Institute of Technol-

ogy, 1986.

[KP87] S. Katz and D. Peled. Interleaving set temporal logic. In Proc. 6th ACM Symp. on

Principles of Distributed Computing, pages 178{190, Vancouver, August 1987.

[KP92a] S. Katz and D. Peled. De�ning conditional independence using collapses. Theoretical

Computer Science, 101:337{359, 1992.

[KP92b] S. Katz and D. Peled. Veri�cation of distributed programs using representative inter-

leaving sequences. Distributed Computing, 6:107{120, 1992.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7):558{564, 1978.

[LP85] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programs satisfy

their linear speci�cation. In Proceedings of the Twelfth ACM Symposium on Principles

of Programming Languages, pages 97{107, New Orleans, January 1985.

[Maz86] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to Other

Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an

Advanced Course, volume 255 of Lecture Notes in Computer Science, pages 279{324.

Springer-Verlag, 1986.

[McM92] K. McMillan. Using unfolding to avoid the state explosion problem in the veri�cation

of asynchronous circuits. In Proc. 4th Workshop on Computer Aided Veri�cation,

volume 663 of Lecture Notes in Computer Science, pages 164{177, Montreal, June

1992. Springer-Verlag.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[Ove81] W. T. Overman. Veri�cation of Concurrent Systems: Function and Timing. PhD

thesis, University of California Los Angeles, 1981.

[Pel93] D. Peled. All from one, one for all: on model checking using representatives. In Proc.

5th Conference on Computer Aided Veri�cation, volume 697 of Lecture Notes in Com-

puter Science, pages 409{423, Elounda, June 1993. Springer-Verlag.

[Pel94] D. Peled. Combining partial order reductions with on-the-y model-checking. In Proc.

6th Conference on Computer Aided Veri�cation, volume 818 of Lecture Notes in Com-

puter Science, pages 377{390, Stanford, June 1994. Springer-Verlag.

[Pen88] W. Penczek. A temporal logic for event structures. Fundamenta Informaticae,

11(3):297{326, 1988.

[Pen90] W. Penczek. Proving partial order properties using CCTL. Proc. Concurrency and

Compositionality Workshop, San Miniato, Italy, 1990.

[PL90] D. K. Probst and H. F. Li. Using partial-order semantics to avoid the state explosion

problem in asynchronous systems. In Proc. 2nd Workshop on Computer Aided Veri-

�cation, volume 531 of Lecture Notes in Computer Science, pages 146{155, Rutgers,

June 1990. Springer-Verlag.

[Pnu85] A. Pnueli. Applications of temporal logic to the speci�cation and veri�cation of reactive

systems: A survey of current trends. In Proc. Advanced School on Current Trends

in Concurrency, volume 224 of Lecture Notes in Computer Science, pages 510{584,

Berlin, 1985. Springer-Verlag.

[Pra86] V. Pratt. Modelling concurrency with partial orders. International Journal of Parallel

Programming, 15(1):33{71, 1986.

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 15

[PW84] S. S. Pinter and P. Wolper. A temporal logic for reasoning about partially ordered

computations. In Proc. 3rd ACM Symposium on Principles of Distributed Computing,

pages 28{37, Vancouver, 1984.

[QS81] J.P. Quielle and J. Sifakis. Speci�cation and veri�cation of concurrent systems in

CESAR. In Proc. 5th Int'l Symp. on Programming, volume 137 of Lecture Notes in

Computer Science, pages 337{351. Springer-Verlag, 1981.

[SdR89] F. A. Stomp and W. P. de Roever. Designing distributed algorithms by means of formal

sequentially phased reasoning. In Proc. 3rd International Workshop on Distributed

Algorithms, volume 392 of Lecture Notes in Computer Science, pages 242{253, Nice,

1989. Springer-Verlag.

[TN87] M. Trehel and M. Naimi. Un algorithme distribu�e d'exclusion mutuelle en log(n).

Technique et Science Informatiques, pages 141{150, 1987.

[Tur93] K. J. Turner et al. Using Formal Description Techniques { An Introduction to Estelle,

Lotos and SDL. Wiley, 1993.

[Val88a] A. Valmari. Error detection by reduced reachability graph generation. In Proc. 9th

International Conference on Application and Theory of Petri Nets, pages 95{112,

Venice, 1988.

[Val88b] A. Valmari. Heuristics for lazy state generation speeds up analysis of concurrent sys-

tems. In Proc. of the Finnish Arti�cial Intelligence Symposium STeP-88, volume 2,

pages 640{650, Helsinki, 1988.

[Val90] A. Valmari. A stubborn attack on state explosion. In Proc. 2nd Workshop on Com-

puter Aided Veri�cation, volume 531 of Lecture Notes in Computer Science, pages

156{165, Rutgers, June 1990. Springer-Verlag.

[Val91] A. Valmari. Stubborn sets for reduced state space generation. In Advances in Petri

Nets 1990, volume 483 of Lecture Notes in Computer Science, pages 491{515. Springer-

Verlag, 1991.

[Val93] A. Valmari. On-the-y veri�cation with stubborn sets. In Proc. 5th Conference on

Computer Aided Veri�cation, volume 697 of Lecture Notes in Computer Science, pages

397{408, Elounda, June 1993. Springer-Verlag.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

veri�cation. In Proceedings of the First Symposium on Logic in Computer Science,

pages 322{331, Cambridge, June 1986.

[Wes86] C. H. West. Protocol validation by random state exploration. In Proc. 6th IFIP WG

6.1 International Symposium on Protocol Speci�cation, Testing, and Veri�cation,

pages 233{242. North-Holland, 1986.

[WG93] P. Wolper and P. Godefroid. Partial-order methods for temporal veri�cation (invited

paper). In Proc. CONCUR'93, volume 715 of Lecture Notes in Computer Science,

pages 233{246, Hildesheim, August 1993. Springer-Verlag.

[Win86] G. Winskel. Event structures. In Petri Nets: Applications and Relationships to Other

Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an

Advanced Course, volume 255 of Lecture Notes in Computer Science, pages 325{392.

Springer-Verlag, 1986.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with net-

work invariants. In Automatic Veri�cation Methods for Finite State Systems, Proc.

Int. Workshop, Grenoble, volume 407 of Lecture Notes in Computer Science, pages

68{80, Grenoble, June 1989. Springer-Verlag.

Bell Laboratories, Lucent Technologies, 1000 E. Warrenville Road, Naperville,

IL 60566, U.S.A.

E-mail address: god@bell-labs.com

