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Abstract

We study in this paper the problem of analyzing implemen-

tations of open systems | systems in which only some of the

components are present. We present an algorithm for auto-

matically closing an open concurrent reactive system with

its most general environment, i.e., the environment that can

provide any input at any time to the system. The result is a

nondeterministic closed (i.e., self-executable) system which

can exhibit all the possible reactive behaviors of the original

open system. These behaviors can then be analyzed using

VeriSoft, an existing tool for systematically exploring the

state spaces of closed systems composed of multiple (pos-

sibly nondeterministic) processes executing arbitrary code.

We have implemented the techniques introduced in this pa-

per in a prototype tool for automatically closing open pro-

grams written in the C programming language. We dis-

cuss preliminary experimental results obtained with a large

telephone-switching software application developed at Lu-

cent Technologies.

1 Introduction

Systematic state-space exploration, as such or elaborated

into temporal-logic model-checking (e.g., [CES86, QS81]), is

attracting growing attention for checking the correctness of

concurrent reactive systems. State-space exploration tools

for software systems have traditionally been restricted to the

exploration of the state space of an abstract description of

the system, speci�ed in a modeling language (e.g., [Hol91,

CPS93, McM93]). VeriSoft [God97] is a recent tool which ex-

tends the scope of systematic state-space exploration to con-

current systems in which processes execute arbitrary code

written in general-purpose programming languages such as

C or C++. VeriSoft explores the state space of a concurrent

system by actually executing the code for the components

of the system and by controlling their synchronizations. It

thus eliminates the need for modeling the system, an often

time-consuming and error-prone task, and combines aspects

of debugging and replay tools for concurrent systems with

the sort of state-space exploration associated with model

checking.

Systematic state-space exploration requires the system

being analyzed to be closed, i.e., self-executable. This im-

plies that, given an open system, an executable representa-

tion of the environment in which the system operates need

be available for closing the system. Providing manually a

simple but faithful representation of the environment of an

open system is often a di�cult task. In order to analyze

the implementation of a large open system with VeriSoft,

this task can become tedious and impractical because the

interface between the implementation of a system and its

environment can be complex. We address in this paper the

problem of automatically closing the implementation of an

open system.

Given an open system, a model of its environment |

whether generated manually or automatically | might be

either too restrictive, in which case it may cause the ver-

i�cation to miss some possible erroneous behaviors of the

system, or too general, in which case it will increase the size

of the state space and may result in unrealistic erroneous

behaviors. This paper describes an algorithm for closing a

system with its most general environment. In this way, it

is certain that the veri�cation will not miss any erroneous

behaviors due to an insu�ciently general environment. In

practice, the intended use of this approach is that a de-

veloper provides manually an implementation for a partial

model of the environment, in order to capture more precisely

certain areas of interest, and then applies our algorithm to

close the remainder of the system.

At �rst blush, such an algorithm might seem easy to

achieve: Given an open system S, add a new component

E

S

to S whose behavior includes all possible sequences of

inputs and outputs of S. However, this naive approach gen-

erates a closed system whose state space is typically so large

that it renders any analysis intractable: for instance, E

S

is in�nitely branching whenever the set of inputs is in�nite.

Instead, our algorithm uses a static analysis of the open sys-

tem to eliminate its interface. In fact, our transformation

preserves, or may even reduce, the static degree of branching

of the original code.

Our work is inspired by challenges encountered when ap-

plying VeriSoft to analyze software applications in Lucent

Technologies' 5ESS telephone switching system. Many ap-

plications within the 5ESS software are composed of concur-

rent reactive components of considerable size and complex-

ity, and cannot be suitably analyzed using traditional test-



ing tools. On the other hand, it is non-trivial to close such

multi-process applications in order to analyze them using

automatic state-space exploration techniques. For example,

manually closing a 5ESS application can be tantamount to

simulating millions of lines of code implementing the rest of

the 5ESS software.

We have implemented the techniques introduced in this

paper in a prototype tool for automatically closing open

programs written in the C programming language. We have

applied our tool to a complex 5ESS software application, and

are in the process of analyzing the resulting closed system

using VeriSoft.

This paper is organized as follows. In the next section, we

give some background about the veri�cation of concurrent

reactive systems, and describe the underlying framework

adopted in this work. Then we discuss in Section 3 basic

issues involved in closing open concurrent reactive systems.

Next, we present our algorithm for closing open programs,

and illustrate it with two examples. The correctness of the

algorithm is established in Section 5, where its precision is

also discussed. We then remark on our practical experi-

ence in applying this work to telecommunication software.

Finally, we conclude with a comparison between program

closing and related work, and with suggestions on possible

improvements.

2 Background

We recall in this section the framework introduced in [God97].

We consider a closed concurrent system S composed of a �-

nite set P of processes and a �nite set O of communication

objects. Each process P 2 P executes a sequence of op-

erations that is described in a sequential program written

in a full-
edged programming language such as C. Such se-

quential programs are deterministic: every execution of the

program on the same data performs the same sequence of op-

erations. We assume that processes only communicate with

each other by performing operations on communication ob-

jects. A communication object O 2 O is de�ned by a pair

(V;OP ), where V is the set of all possible values for the ob-

ject (its domain), and OP is the set of operations that can

be performed on the object. Examples of communication

objects are shared variables, semaphores, and FIFO bu�ers.

At any time, at most one operation can be performed on a

given communication object (operations on a same commu-

nication object are mutually exclusive). For the purpose of

this work, we also assume that the enabledness of any op-

eration on any communication object depends exclusively

on the sequence of operations that has been performed on

the object in the history of the system, and not on values

that are possibly stored or passed through the object, or

passed as argument to the operation. Operations on com-

munication objects are called visible operations, while other

operations are by default called invisible. The execution of

an operation is said to be blocking if it cannot be completed.

We assume that only executions of visible operations may

be blocking.

At any time, the concurrent system is said to be in a

state. The system is said to be in a global state when the

next operation to be executed by every process in the sys-

tem is a visible operation. We assume that every process in

the system always eventually attempts to execute a visible

operation.

1

This implies that initially, after the creation of

1

VeriSoft (see forthcoming description) reports a \divergence"

all the processes of the system, the system may reach a �rst

and unique global state s

0

, called the initial global state of

the system. We de�ne a process transition, or transition for

short, as one visible operation followed by a �nite sequence

of invisible operations performed by a single process and

ending just before a visible operation. Let T denote the set

of all transitions of the system.

A transition is said to be disabled in a global state s when

the execution of its visible operation is blocking in s. Oth-

erwise, the transition is said to be enabled in s. A transition

t that is enabled in a global state s can be executed from

s. Because the number of invisible operations in a transi-

tion is �nite, the execution of an enabled transition always

terminates. When the execution of t from s is completed,

the system reaches a global state s

0

, called the successor of

s by t.

2

We write s

t

! s

0

to mean that the execution of

the transition t leads from the global state s to the global

state s

0

, while s

w

) s

0

means that the execution of the �nite

sequence w of transitions leads from s to s

0

. If s

w

) s

0

, s

0

is

said to be reachable from s.

We now de�ne a formal semantics for the concurrent sys-

tems that satisfy our assumptions. A concurrent system as

de�ned here is a closed system: from its initial global state,

it can evolve and change its state by executing enabled tran-

sitions. Therefore, a natural way to describe the possible

behaviors of such a system is to consider its set of reachable

global states and the transitions that are possible between

these.

Formally, the joint global behavior of all processes in a

concurrent system can be represented by a transition system

A

S

= (S;�; s

0

) such that S is the set of global states of the

system, � � S � S is the transition relation de�ned such

that (s; s

0

) 2 � i� 9t 2 T : s

t

! s

0

, and s

0

is the initial

global state of the system. An element of � corresponds

to the execution of a single transition t 2 T of the system.

The elements of � will be referred to as global transitions. It

is natural to restrict A

S

to its global states and transitions

that are reachable from s

0

, because the other global states

and transitions play no role in the behavior of the system.

In what follows, a \state in A

S

" denotes a global state that

is reachable from s

0

. A

S

is called the global state space of

the system.

Because we consider here closed concurrent systems, the

environment of one process is formed by the other processes

in the system. This implies that, in the case of a single

\open" reactive system, the environment in which this sys-

tem operates has to be represented, possibly using other

processes. In practice, a complete representation of such an

environment may not be available, or may be quite com-

plex. It is then convenient to use a model, i.e., a simpli�ed

representation, of the environment to simulate its external

behavior. For this purpose, we introduce a special oper-

ation \VS toss" to express a valuable feature of modeling

languages: nondeterminism. This operation takes as argu-

ment a positive integer n, and returns an integer in [0; n].

The operation is nondeterministic: the execution of a transi-

tion starting with VS toss(n) may yield up to n+1 di�erent

successor states, corresponding to di�erent values returned

by VS toss. In contrast with what was de�ned in [God97],

when a process does not attempt to execute any visible operation

for more than a given (user-speci�ed) amount of time.

2

Operations on objects (and hence transitions) are deterministic:

the execution of a transition t in a state s leads to a unique successor

state.



we consider VS toss as an invisible operation in this paper,

in order to simplify the following presentation and terminol-

ogy.

In [God97], it is shown that deadlocks and assertion vio-

lations can be detected by exploring only the global states of

a concurrent system as de�ned above. Deadlocks are states

where the execution of the next operation of every process

in the system is blocking. Assertions can be speci�ed by the

user with the special operation \VS assert". This operation

can be inserted in the code of any process, and is consid-

ered visible. It takes as its argument a boolean expression

that can test and compare the value of variables local to

the process. When \VS assert(expression)" is executed, the

expression is evaluated. If the expression evaluates to false,

the assertion is said to be violated.

VeriSoft [God97] is a tool for systematically exploring

the state space of a concurrent system as de�ned above.

In a nutshell, every process of the concurrent system to be

analyzed is mapped to a UNIX process. The execution of

the system processes is controlled by an external process,

called the scheduler. The scheduler observes the visible and

VS toss operations performed by processes inside the sys-

tem, and can suspend their execution. By resuming the

execution of (the next visible operation of) one selected sys-

tem process in a global state, the scheduler can explore one

transition between two global states in the state space of

the concurrent system. By reinitializing the system, the

scheduler can explore alternative paths in the state space.

Because states of processes can be complex (due to point-

ers, dynamic memory allocation, large data structures of

various shapes, recursion, etc.), VeriSoft does not attempt

to compute any representation for the reachable states of

the system being analyzed, and hence performs a system-

atic state-space exploration without storing any intermedi-

ate states in memory. It is shown in [God97] that the key

to make this approach tractable is to use a new search al-

gorithm built upon existing state-space pruning techniques

known as partial-order methods [God96]. For �nite acyclic

state spaces, this search algorithm is guaranteed to termi-

nate and can be used for detecting deadlocks and assertion

violations without incurring the risk of any incompleteness

in the veri�cation results. In practice, VeriSoft can be used

for systematically and e�ciently testing the correctness of

any concurrent system, whether or not its state space is

acyclic. Indeed, it can always guarantee, from a given ini-

tial state, complete coverage of the state space up to some

depth.

3 Closing Open Systems

Systematic state-space exploration requires the system be-

ing analyzed to be closed. Given an open system, an exe-

cutable representation of its environment need be provided

for closing the system. In this section, we de�ne more pre-

cisely what \closing an open system" means, and discuss

several approaches to the problem.

Let us now consider an open concurrent system S: S can

interact with its environment via an interface composed of

a set I

S

of inputs and a set O

S

of outputs. Let V

i

denote

the set of possible input values that can be provided by the

environment to the system S via input i in I

S

, and let V

o

denote the set of possible output values that can be pro-

duced by S to its environment via output o in O

S

. Closing

such an open system means combining the system with an

executable representation for its environment. The result of

the combination is a self-contained executable system.

Creating an executable representation for the environ-

ment of an open system can be a tedious task, because (1)

the interface between the system and its environment may

be complex and (2) many possible data values may be pro-

vided by the environment. In order to facilitate this task, it

would be useful to have an algorithm for generating auto-

matically an executable representation of the most general

environment in which an open system can operate. Pre-

cisely, we de�ne the most general environment E

S

of a sys-

tem S as the environment that nondeterministically provides

any value v

i

in V

i

whenever the system S takes an input i in

I

S

, and that can take any output o in O

S

produced by the

system. By construction, the combination of the system S

with its most general environment E

S

makes it possible to

observe all the possible visible behaviors that S can exhibit.

Note that, by de�nition, there are no dependencies between

the input and output values provided and accepted by E

S

,

respectively.

Generating automatically E

S

from S would address prob-

lem (1) above, but not problem (2): the set of input values

provided by E

S

can be very large, even in�nite, which would

yield an intractable state-space search. A better approach

would be to partition the sets of possible input values pro-

vided by E

S

into equivalence classes such that values in

the same equivalence class would imply exactly the same

behavior of S. Of course, partitioning each data domain

V

i

, i 2 I

S

, into such equivalence classes is a hard problem,

and undecidable in general. Computing simple conservative

approximations for these equivalence classes is possible but

would require a sophisticated, and hence more expensive,

static analysis of the code describing the system. We will

come back to this option in Section 7.

In this work, we investigate an alternative approach: In-

stead of generating an executable representation of the most

general environment E

S

of an open system S, we propose to

eliminate its interface altogether. Speci�cally, we present in

the next section an algorithm that transforms an open sys-

tem S into a closed (nondeterministic) system S

0

such that

all data values in S �E

S

that may depend on the behavior

of E

S

are eliminated in S

0

, and all control-
ow choices in

S �E

S

that may depend on these data values are replaced

by non-deterministic choices in S

0

. The reactive behavior of

S �E

S

and S

0

, as well as their e�ect on data values that do

not depend on E

S

, are closely related:

� Every execution of S � E

S

corresponds to an execu-

tion of S

0

that exhibits the same sequence of visible

operations and that preserves all data values that do

not depend on E

S

.

� All deadlocks and all assertion violations in A

S�E

S

that evaluate only expressions whose value does not

depend on E

S

are preserved in A

S

0

.

Our algorithm performs a static analysis of the source

code executed by the processes P in P of the open system S.

Speci�cally, we assume that each process P in P executes a

sequence of operations, that is described in a sequential pro-

gram written in a full-
edged programming language such as

C. We also assume that such a program can be decomposed

into a �nite collection of procedures p

j

which may call each

other, and includes a unique top-level procedure.

Because open systems are composed of processes, and



because programs describing processes are composed of pro-

cedures, we map the notions of inputs and outputs from the

system level to the procedure level as follows. Let I

j

and O

j

denote the input and output sets of procedure p

j

, respec-

tively. When a procedure p

j

produces an output o in O

j

that is taken as input i in I

k

by another procedure p

k

, we

will write o = i. By construction, we have:

I

S

= (

S

j

I

j

) n (

S

j

O

j

) and O

S

�

S

j

O

j

.

Examples of input values of a procedure p

j

include values

passed as argument to p

j

when it is being called, and point-

ers to values used in p

j

but set outside of p

j

.

In the next section, we present an algorithm for trans-

forming each procedure p

j

individually. Then, we prove that

these \local" transformations preserve together the visible

behavior of each of the processes P in P and of the system

S itself.

4 The Algorithm

We assume we are working with an imperative program-

ming language that meets the following general description.

A program consists of a sequence of statements of the follow-

ing four types: assignment statements which assign values

to memory locations called variables, conditional statements

(if{then{else, switch{case, while, for), procedure call state-

ments, and termination statements (return, exit). The pro-

gramming language also provides basic atomic data struc-

tures (e.g., integer, real, boolean), and constructor and se-

lector operations (e.g., records, arrays, pointers) for creating

and manipulating data structures built up from the basic

data structures. Visible operations are procedure calls of a

speci�c kind.

Throughout this paper, we use the term variable to refer

to a memory location in which a value may be stored. Exam-

ples of variables are identi�ers (program variables), pointers,

array elements, mutable record �elds, and so forth. A vari-

able is thus a semantic object rather than a syntactic one.

Our motivation for this is several-fold: increased generality,

independence of the framework from the choice of source

language, and increased abstraction in the correctness spec-

i�cation of our algorithm.

Every procedure p

j

described in a program satisfying

the above assumptions can be represented by a control-
ow

graph G

j

= (N

j

; A

j

), where

� the set of nodes N

j

is the set of statements that appear

in the program describing p

j

;

� the set of arcs A

j

� N

j

�N

j

is such that (n; n

0

) 2 A

j

i� the program statement corresponding to n

0

may be

the next one to be executed by p

j

after the execution

of the program statement corresponding to n.

Each arc (n; n

0

) in A

j

is labeled with a boolean expression

on variables occurring in the statement that speci�es when

the program statement corresponding to n

0

is executed af-

ter the program statement corresponding to n. For every

node n in N

j

, the boolean expressions that label arcs from n

are mutually exclusive, and their disjunction is a tautology.

Note that we assume that the control 
ow describing the se-

quencing of operations performed by a process is completely

speci�ed by the procedures p

j

; interruptions and other pre-

emptive schemes that may violate this assumption are not

considered here for the sake of simplicity.

Let n be a node of the control-
ow graph of some proce-

dure p

j

implementing an open system S. We say a variable

v is used in node n if the value of v may be required during

some execution of the statement corresponding to n (i.e.,

the value in the memory location corresponding to v may

be read). Similarly, we say a variable v is de�ned in node n

if the value of v may be modi�ed during the execution of the

statement corresponding to n (i.e., a value may be written in

the memory location corresponding to v). Let V (n) denote

the set of variables used in node n. For simplicity, we assume

that every execution of an assignment statement de�nes the

value of exactly one variable. Conditional and termination

statements are assumed not to de�ne any variables.

Procedure calls are modeled as follows. We assume that

each argument of a procedure call is a variable. When the

procedure call is executed, a new fresh variable is created

for each argument and is initialized (de�ned) with the value

of the corresponding variable passed as argument. Fresh

variables are assumed not to escape their scope: they can-

not be used by the calling procedure. The execution of the

called procedure can then start with the execution of its start

node. By de�nition, we assume that start nodes do not use

nor de�ne any variables. After the execution of a termina-

tion statement in the called procedure, the execution of the

calling procedure is resumed at the (unique) node following

the corresponding procedure call. We assume that termi-

nation statements in the top-level procedure of any process

is always blocking. (Therefore, the number of processes is

always constant.)

In addition to the above somewhat standard assump-

tions, we assume that, for each input i in I

j

, it is possible

to determine whether i is also in I

S

. This means that it is

possible to determine statically which input values of a pro-

cedure p

j

may be provided by the environmentE

S

, including

indirectly via other procedures. For simplicity, we assume

the environment E

S

is not allowed to de�ne variables that

have been previously de�ned by the system S.

For every procedure p

j

, we also compute a de�ne-use

graph G

j

= (N

j

; A

j

), where

� the set of nodes N

j

is the set of statements that appear

in the program describing p

j

;

� the set of arcs A

j

� N

j

�N

j

is such that (n; n

0

) is in A

j

implies that the program statement corresponding to

n

0

uses the value of a variable v de�ned by the program

statement corresponding to n; the arc (n; n

0

) is then

labeled with v. Furthermore, if a node n de�nes a

variable v and a node n

0

uses variable v, and if there is

a control-
ow path from n to n

0

in G

j

along which v is

not de�ned, then there is an arc (n; n

0

) in A

j

labeled

with v.

Techniques for computing de�ne-use dependencies are dis-

cussed, e.g., in [ASU86, FOW87, MR90], and require a may-

alias analysis (e.g., [CWZ90, Lan91, Deu94, Ruf95]).

We now turn to the presentation of our algorithm for

closing an open procedure p

j

. This algorithm is presented

in Figure 1. It takes as input both the control-
ow graph

G

j

and the de�ne-use graph G

j

of the procedure p

j

. The

algorithm generates a new control-
ow graph G

0

j

by trans-

forming G

j

using information extracted from G

j

. From G

0

j

,



1. Input: the control-
ow graph G

j

and de�ne-use graph G

j

of procedure p

j

.

2. Analysis of G

j

to compute V

I

(n) for each node n:

� Let N

E

S

denote the set of nodes in N

j

that uses the value of a variable de�ned by the environment E

S

.

� Compute the set N

I

of nodes in N

j

that are reachable from a node in N

E

S

by a (possibly empty) sequence of de�ne-use

arcs in G

j

.

� For each node n in N

I

, let V

I

(n) denote the set of variables used in n that are de�ned by E

S

or that are labeling an

arc leading to n from n

0

2 N

I

in G

j

.

� For each node n not in N

I

, we have V

I

(n) = 0.

3. Mark the nodes of G

j

according to the following rules:

� mark the start node;

� mark each node corresponding to a termination statement;

� mark each node corresponding to a call to a procedure of the system;

� mark each node n corresponding to an assignment or conditional statement such that n is not in N

I

.

4. Generate the control-
ow graph G

0

j

= (N

0

j

; A

0

j

) as follows.

For each node n of G

j

marked in Step 3, do the following:

� add n to N

0

j

;

� for each arc a = (n; n

0

) 2 A

j

, let succ(a) denote the set of marked nodes of G

j

that are reachable from n by a sequence

aw of control-
ow arcs in G

j

passing through unmarked nodes exclusively and starting with arc a;

{ if jsucc(a)j = 0, do nothing;

{ if jsucc(a)j = 1, add an arc in A

0

j

from n to the node in succ(a) and labeled with the boolean expression labeling

arc a;

{ if jsucc(a)j > 1, create a new node n

00

corresponding to a conditional statement testing the value of

\VS toss(jsucc(a)j � 1)"; add an arc in A

0

j

from n to n

00

and labeled with the boolean expression labeling arc

a; then, for every node n

k

2 succ(a), 0 � k � (jsucc(a)j � 1), add an arc in A

0

j

from n

00

to n

k

and labeled with a

boolean expression that is satis�ed i� the value returned by the call to VS toss performed in n

00

returns k.

5. Perform the following �nal modi�cations to G

0

j

:

� remove the parameters of p

j

that are de�ned by E

S

;

� for each node n in G

0

j

corresponding to a procedure call to procedure p

l

, remove each argument of the procedure call

whose corresponding parameter has been removed by Point 1 of Step 5 when transforming G

l

.

6. Output: the control-
ow graph G

0

j

of procedure p

0

j

.

Figure 1: Algorithm transforming G

j

into G

0

j

it is then easy to construct a new procedure p

0

j

that has G

0

j

for control-
ow graph.

Let us detail the di�erent steps performed by the algo-

rithm. Step 2 determines which program statements of p

j

may use (possibly indirectly via other variables) a value de-

�ned by the environment E

S

. This information is computed

from the de�ne-use graph of p

j

. Step 3 of the algorithm

selects the program statements of p

j

that will be preserved

in p

0

j

. These include all the procedure calls (which, by def-

inition, include all the visible operations) and termination

statements, as well as the assignment and conditional state-

ments that do not use any value provided by E

S

. Then,

Step 4 constructs from the control-
ow graph G

j

a new

control-
ow graph G

0

j

which simulates, using the nondeter-

ministic VS toss operation, all the possible e�ects of the

values provided by E

S

on the control-
ow of p

j

. Step 5

completes the transformation by removing references to pa-

rameters of procedures that may be used to transmit values

of variables de�ned by E

S

. Note that \variables de�ned by

E

S

" from the point of view of a procedure include variables

v de�ned in other procedure calls during the executions of

nodes n corresponding to assignment statements such that

V

I

(n) 6= ;, or of nodes n corresponding to procedure calls

such that v 2 V

I

(n). Therefore, the existence of a single

node n corresponding to a procedure call to p

j

such that

v 2 V

I

(n) is su�cient to make Point 1 of Step 5 remove the

parameter of p

j

corresponding to v.

The overall time complexity of the above algorithm is es-

sentially linear in the size of G

j

and G

j

since the transforma-

tion can be performed by a single traversal of both graphs.

Note that Step 4 of the algorithm eliminates cyclic paths

that traverse exclusively unmarked nodes. Divergences due

to such paths are therefore not preserved in G

0

j

.

Figures 2 and 3 illustrate the result of applying our al-

gorithm on two di�erent open procedures, p and q. The

graphs on the left are the control-
ow graphs G

p

and G

q

of

the procedures. In each case, the procedure takes as input

a value provided by the environment E

S

and stored in a

variable named x. The graphs on the right are the closed

control-
ow graphs G

0

p

and G

0

q

that the algorithm gener-

ates from G

p

and G

q

, respectively. Note that G

0

p

and G

0

q

are equivalent; although p and q are functionally distinct,

the algorithm transforms each of them to the same closed

program. In the case of procedure p, the resulting closed

program is a strict upper approximation of p combined with

its most general environment E

S

. For no values of x can

G

p

send a mixture of \even" and \odd" values, but for cer-

tain combinations of VS toss results, G

0

p

can. In the case of

procedure q, however, the resulting closed program is equiv-

alent to q combined with its most general environment E

S

.

In this case, q sends the ten least-signi�cant bits of x, and

so the set of executions induced by the set of all input values

x is equivalent to the set of executions induced by the set of

all VS toss results.



cnt=0;

cnt=cnt+1;

y=0 ?

return;

y=x%2;

proc p(x)

Start

True

True

True

(y=0)

not(y=0)

True
True

True

cnt<10 ?

(cnt<10)

not(cnt<10)

send("even",cnt); send("odd",cnt);

cnt=0;

cnt=cnt+1;

return;

Start

True

True
True

True

proc p()

True

VS_toss(1)=0 ?

(VS_toss(1)=0)

not(VS_toss(1)=0)

cnt<10 ?
not(cnt<10)

(cnt<10)

send("even",cnt); send("odd",cnt);

Figure 2: A simple example of transformation: original G

p

(left) and transformed G

0

p

(right)

y=0 ?

Start

True

True

(y=0)

not(y=0)

True
True

True

send("even",cnt); send("odd",cnt);

cnt=0;

cnt<10 ?

True

not(cnt<10)
return;

(cnt<10)

True

y=x%2;

x=x/2;

cnt=cnt+1;

proc q(x)

Start

True

VS_toss(1)=0 ?

(VS_toss(1)=0)

not(VS_toss(1)=0)

send("even",cnt); send("odd",cnt);

True

(cnt<10)

cnt=cnt+1;

True
True

True

not(cnt<10)
cnt<10 ? return;

cnt=0;

proc q()

Figure 3: Another example of transformation: original G

q

(left) and transformed G

0

q

(right)



The correctness of the algorithm is established in the

next section.

5 Correctness and Precision

Let a store s be a function from variables (memory locations)

to values. Let an execution � = s

0

n

1

! s

1

n

2

! s

2

: : : s

m�1

n

m

!

s

m

of a closed system S�E

S

be the sequence of stores s

i

the

system goes through while executing the sequence n

1

: : : n

m

of nodes.

A variable v is said to be functionally dependent on an

input value v

i

provided by the environment E

S

after the

execution of a sequence of nodes n

1

: : : n

m

of system S if

there exist some executions � and �

0

of S � E

S

executing

the sequence of nodes n

1

: : : n

m

such that � and �

0

di�er only

by the value v

i

provided by E

S

sometime before or during

the execution and the value of v at the end of � is di�erent

from the value of v at the end of �

0

. Let V

I

[[n

1

: : : n

m

]]

denote the set of variables functionally dependent on some

value provided by the environment after the execution of

n

1

: : : n

m

.

For instance, in the following simple procedure,

proc p(x);

f

a=x%2;

b=a+1;

c=b;

g

variables a, b, and c are functionally dependent on E

S

at

the end of the procedure if the value of variable x is provided

by the environment. In contrast, in the following procedure,

proc p(x);

f

a=0;

if (x)

then b=a-1;

else b=a+1;

c=b;

g

none of the variables a, b, and c are functionally dependent

on the environment at the end of the procedure, even if the

value of variable x is provided by the environment. Indeed,

given any control-
ow path leading to the end of the pro-

cedure (there are two such paths in this example), all the

executions of the procedure following this path will yield the

same �nal values for variables a, b, and c. In other words,

the environment has no in
uence on the set of �nal values

obtained after executing this path.

In practice, computing such sets V

I

[[n

1

: : : n

m

]] is prob-

lematic since they are de�ned with respect to the execu-

tions of the system to be analyzed, whose dynamic behavior

is unknown. Therefore, our algorithm rather exploits the

sets V

I

(n), which are computed for each node of each proce-

dure in Step 2 of the algorithm by analyzing the de�ne-use

graph of that procedure. For each node n, the set V

I

(n) is an

upper approximation of the set of variables that are used in

node n and functionally dependent of the environment after

the execution of any sequence of nodes ending just before n.

Formally, we have the following.

Lemma 1 Let V

I

(n) denote the set of variables computed

by Step 2 of the algorithm of Figure 1 for each node n in the

control-
ow graph G

j

of a procedure p

j

. Then, for any exe-

cution � = s

0

n

1

! s

1

n

2

! s

2

: : : s

m�1

n

m

! s

m

of the closed sys-

tem S �E

S

, we have (V

I

[[n

1

: : : n

m�1

]] \ V (n

m

)) � V

I

(n

m

).

Proof: The proof is by induction on the length of execu-

tions. For an execution of length zero, i.e., when the system

S is in its initial global state s

0

, the �rst node n

1

to be

executed can only be the start node of the top-level proce-

dure of some process in the system. Since by de�nition start

nodes do not use any variables, we have V (n

1

) = ;, and the

lemma trivially holds.

Let us now prove that, if the lemma holds for executions

of length smaller or equal to m, then it also holds for exe-

cutions of length m+ 1. Consider an execution s

0

n

1

! s

1

n

2

!

s

2

: : : s

m�1

n

m

! s

m

n

m+1

! s

m+1

of S �E

S

, and a variable v in

V

I

[[n

1

: : : n

m

]]\V (n

m+1

). Let us show that v is in V

I

(n

m+1

).

If the value of v in n

m+1

is directly de�ned by E

S

some-

time before the execution of node n

m+1

, n

m+1

is in the set

N

E

S

of nodes in N

j

that uses the value of a variable de�ned

by the environment E

S

(Point 1 of Step 2). Hence, n

m+1

is

in N

I

(Point 2 of Step 2). Moreover, since v 2 V (n

m+1

), v

is in V

I

(n

m+1

) (Point 3 of Step 2).

Otherwise, let n

i

be the last node preceding n

m+1

in �

and �

0

where v is de�ned. Hence, since the environment

is not allowed to de�ne variables previously de�ned by the

system, the value of v does not change between s

i

and s

m+1

.

Since v 2 V

I

[[n

1

: : : n

m

]], there exist some executions � and

�

0

of S�E

S

executing the sequence of nodes n

1

: : : n

m

such

that � and �

0

di�er only by some input value provided byE

S

sometime before or during the computation and the value

of v at the end of � is di�erent from the value of v at the

end of �

0

. Since the value of v is the same in s

i

and s

m

,

there also exists executions of n

1

: : : n

i

that di�er only by the

same input value provided by E

S

sometime before or during

the computation and that lead to di�erent values of v after

the execution of n

i

. Therefore, we have v 2 V

I

[[n

1

: : : n

i

]].

Moreover, since v is de�ned in n

i

, this means that there

exists some other variable v

0

functionally dependent on E

S

after n

1

: : : n

i�1

that is used in n

i

to de�ne v. In other

words, we have v

0

2 V

I

[[n

1

: : : n

i�1

]]\V (n

i

). By applying the

inductive hypothesis to execution s

0

n

1

! s

1

n

2

! s

2

: : :

n

i

! s

i

,

we have v

0

2 V

I

(n

i

).

Consider the case where n

i

corresponds to the execution

of a statement in another procedure call. If n

i

corresponds to

an assignment statement, since V

I

(n

i

) 6= ;, v is considered as

being de�ned by E

S

from the point of view of the procedure

of n

m+1

. Else n

i

corresponds to a higher-level procedure

call (fresh variables created by lower-level procedure calls

are assumed not to escape their scope), and v is de�ned in

n

i

with the value of v

0

2 V

I

(n

i

), then v is again considered as

being de�ned by E

S

from the point of view of the procedure

of n

m+1

.

Consider the case where n

i

and n

m+1

are nodes corre-

sponding to the execution of statements of the same proce-

dure call p

j

. In this case, we know that n

i

is an assignment

statement de�ning variable v (since fresh variables created

and de�ned by procedure calls are assumed not to escape

their scope). Since v

0

2 V

I

(n

i

), V

I

(n

i

) 6= ;, and hence

n

i

2 N

I

(Point 3 and 4 of Step 2). Furthermore, there is an

arc labeled with v from n

i

to n

m+1

in the de�ne-use graph

G

j

of procedure p

j

(see de�nition of de�ne-use graph). Con-



sequently, v 2 V

I

(n

m+1

) (Point 3 of Step 2).

Note that Step 2 of the algorithm simply gives one way

to compute approximations of the sets \V

I

[[n

1

: : : n

m�1

]] \

V (n

m

)" using standard notions (i.e., de�ne-use graph) for

which algorithms already exist in the literature. Of course,

other algorithms could be used, provided that they can be

proved to compute sets \V

I

(n)" satisfying the previous lemma.

As we will see in Theorem 6, the following de�nition

precisely de�nes the set of variables of the system S whose

values are preserved by our algorithm.

De�nition 2 Let � = s

0

n

1

! s

1

n

2

! s

2

: : : s

m�1

n

m

! s

m

be an

execution of the closed system S�E

S

. Then, V

S

(n

1

: : : n

m

)

is de�ned inductively as follows.

� V

S

(�) = ;.

� V

S

(n

1

: : : n

m

) is de�ned as:

{ if n

m

corresponds to an assignment statement

that de�nes variable v and V

I

(n

m

) = ;,

V

S

(n

1

: : : n

m

) = V

S

(n

1

: : : n

m�1

) [ fvg;

{ if n

m

corresponds to an assignment statement

that de�nes variable v and V

I

(n

m

) 6= ;,

V

S

(n

1

: : : n

m

) = V

S

(n

1

: : : n

m�1

) n fvg;

{ if n

m

corresponds to a procedure call and A de-

notes the set of fresh variables corresponding to

parameters that are not removed in Point 2 of

step 5 of the algorithm,

V

S

(n

1

: : : n

m

) = V

S

(n

1

: : : n

m�1

) [ fAg;

{ otherwise,

V

S

(n

1

: : : n

m

) = V

S

(n

1

: : : n

m�1

).

Intuitively, V

S

(n

1

: : : n

m

) re
ects the accumulation of im-

precisions due to the successive approximations of the sets

V

I

[[n

1

: : : n

i

]] \ V (n

i

) by V

I

(n

i

), for all 1 � i � m. We have

the following.

Theorem 3 Let � = s

0

n

1

! s

1

n

2

! s

2

: : : s

m�1

n

m

! s

m

be an

execution of the closed system S�E

S

. Then, V

I

[[n

1

: : : n

m

]]\

V

S

(n

1

: : : n

m

) = ;.

Proof: Follows from Lemma 1 by an induction on the

length of executions.

When, for any execution � = s

0

n

1

! s

1

n

2

! s

2

: : : s

m�1

n

m

! s

m

of the closed system S �E

S

, every variable de�ned in s

m

is

either in V

I

[[n

1

: : : n

m

]] or in V

S

(n

1

: : : n

m

), the approxima-

tions due to the sets V

I

(n

i

), 1 � i � m, are optimal. We will

come back to this point when we will discuss the precision

of our algorithm at the end of this section.

A property similar to Lemma 1 holds for V

S

.

Lemma 4 Let � = s

0

n

1

! s

1

n

2

! s

2

: : : s

m�1

n

m

! s

m

be an

execution of the closed system S � E

S

. Then, we have

(V (n

m

) n V

I

(n

m

)) � V

S

(n

1

: : : n

m�1

).

Proof: Let v be a variable in V (n

m

) that is not in V

I

(n

m

).

Let us show that v 2 V

S

(n

1

: : : n

m�1

). Since v 62 V

I

(n

m

), we

know v is not de�ned by E

S

. Hence, let n

i

denote the last

node in n

1

: : : n

m

where v has been de�ned. Consider the

case where n

i

corresponds to the execution of a statement in

another procedure call. If n

i

corresponds to an assignment

statement, then V

I

(n

i

) = ;, otherwise v would be consid-

ered as de�ned by the environment from the point of view of

the procedure of n

m

. Else n

i

corresponds to a higher-level

procedure call (fresh variables created by lower-level proce-

dure calls are assumed not to escape their scope), and v is

a fresh variable corresponding to a parameter not removed

in Point 2 of Step 5 of the algorithm, since v would be oth-

erwise considered as de�ned by the environment from the

point of view of the procedure of n

m

. Therefore, by De�ni-

tion 2, v was added to V

S

(n

1

: : : n

i

) in n

i

. Consider now the

other case where n

i

and n

m

are nodes corresponding to the

execution of statements in the same procedure call. Then,

n

i

corresponds to an assignment statement (since fresh vari-

ables created and de�ned by procedure calls are assumed not

to escape their scope), and there is a de�ne-use arc from n

i

to n

m

labeled with v (see de�nition of de�ne-use graph);

this implies that V

I

(n

i

) = ;, since otherwise, by Point 3 of

Step 2 of the algorithm, V

I

(n

m

) would contain v. Therefore,

by De�nition 2, v was added to V

S

(n

1

: : : n

i

) in n

i

.

Since n

i

is the last node in n

1

: : : n

m

where v has been de-

�ned during the execution of n

i

: : : n

m

, v is in V

S

(n

1

: : : n

m

).

We now prove that the system S

0

obtained after the

transformation is closed.

Lemma 5 For any node n

0

in the control-
ow graph G

0

j

of

any procedure p

0

j

generated by the algorithm of Figure 1, we

have V

I

(n

0

) = ;:

Proof: Each node n

0

of a control-
ow graph G

0

j

either (1)

is a conditional statement testing the value returned after a

call to VS toss, introduced in Step 4 of the algorithm, or (2)

corresponds to a marked node n of the original control-
ow

graph G

j

. For nodes of type (1), the lemma trivially holds.

Let us now consider nodes of type (2). By Step 3 of the

algorithm, we know that the corresponding node n of G

j

is

associated with either (2.1) a start node, (2.2) a termination

statement, (2.3) a procedure call, or (2.4) an assignment

or conditional statement for which V

I

(n) = ;. Since start

nodes and nodes corresponding terminal statements do not

use any variables, we have V (n) = ; and hence V

I

(n) =

;, i.e., the lemma holds for subcases (2.1) and (2.2). By

Step 5 of the algorithm, references to variables in V

I

(n) are

eliminated. Therefore, the lemma holds for subcases (2.3)

and (2.4).

Since we have proved that the system S

0

obtained after the

transformation performed by our algorithm is closed and

hence self-executable, we can now consider its executions

and relate them precisely to the executions of S in conjunc-

tion with E

S

.

Speci�cally, the following theorem establishes a formal

correspondence between computations of both systems. Let

� denote a �nite sequence of nodes n

0

n

1

: : : n

k

executed by

a single process such that n

0

is a node marked in Step 3 of

the algorithm, and, for all 1 � j � k, n

j

is unmarked. A

computation � = s

0

�

1

! s

1

�

2

! s

2

: : : s

m�1

�

m

! s

m

of a closed

system is then de�ned as the �nite sequence of stores s

i

the system goes through while executing the sequences �

i

of

nodes.

In what follows, all the nodes in G

0

j

that are added by

Point 1 of Step 4 of the algorithm are considered as marked

in G

0

j

, while all the other nodes of G

0

j

are considered as



unmarked. This implies that there is a one-to-one corre-

spondence between the marked nodes n and n

0

of G

j

and

G

0

j

respectively. We write n = n

0

to denote this correspon-

dence. By construction (see algorithm), the statements asso-

ciated with corresponding marked nodes are either identical

or are both procedure calls that may di�er only by their

arguments.

We write v 2 s to denote a variable that is de�ned in

store s. Let s(v) denote the value of variable v de�ned in

store s. Let �

0

denote the �rst node n

0

of the sequence

of nodes � = n

0

n

1

: : : n

k

. We write �

0

i

� �

0

0

i

to mean

that �

0

i

= �

0

0

i

and that these nodes are executed by cor-

responding processes P and P

0

of S and S

0

respectively.

Let next(s) denote the set of marked nodes next to be exe-

cuted from a store s in a computation. Since there is exactly

one such node per process (which may possibly be blocking),

the size of next(s) is constant and equal to the number of

processes in the system. We write next(s

i

) � next(s

0

i

) to

mean that 8n 2 next(s

i

) : 9n

0

2 next(s

0

i

) : n � n

0

and

8n

0

2 next(s

0

i

) : 9n 2 next(s

i

) : n

0

� n.

We are now ready to state the main theorem that de�nes

the correctness of our algorithm.

Theorem 6 Let S be an open system that satis�es all the

assumptions previously de�ned and implemented by a set of

procedures p

j

. Let S

0

be the system implemented by the set

of procedures p

0

j

obtained by transforming each procedure p

j

using the algorithm of Figure 1. Then, for every computa-

tion � = s

0

�

1

! s

1

�

2

! s

2

: : : s

m�1

�

m

! s

m

of S � E

S

, there

exists a computation �

0

= s

0

0

�

0

1

! s

0

1

�

0

2

! s

0

2

: : : s

0

m�1

�

0

m

! s

0

m

of

S

0

such that, 80 � i � m, the three following properties are

satis�ed:

1. if i > 0, �

0

i

� �

0

0

i

;

2. next(s

i

) � next(s

0

i

); and

3. 8v 2 V

S

(�

1

: : : �

i

) : s

i

(v) = s

0

i

(v).

Proof: The proof is by induction on the length of com-

putations. For computations of length zero, the closed sys-

tems S �E

S

and S

0

are in their initial global states s

0

and

s

0

0

respectively, and Property 1 is vacuously true. The set

next(s

0

) contains the start node of the top-level procedure

executed by each process P in P of the system S. Since start

nodes are preserved by the algorithm (Point 1 of Step 3),

we have next(s

0

) � next(s

0

0

). Since initially, we assume

no variables have been de�ned by the system yet, we have

V

S

(�) = ;, and Property 3 of the theorem trivially holds.

Let us consider a computation �

m

of S � E

S

of length

m and the corresponding computation �

0

m

of S

0

obtained by

the induction hypothesis. Let us show that, for any pos-

sible computation �

m+1

of length m + 1 extending �

m

by

a sequence �

m+1

= n

0

n

1

: : : n

k

of nodes, there exists a se-

quence �

0

m+1

= n

0

0

n

0

1

: : : n

0

k

0

of nodes extending �

0

m

to a

computation �

0

m+1

such that �

0

m+1

� �

0

0

m+1

, next(s

m+1

) �

next(s

0

m+1

) and 8v 2 V

S

(�

1

: : : �

m+1

) : s

m+1

(v) = s

0

m+1

(v).

Let P denote the process of S which executes the se-

quence of nodes n

0

n

1

: : : n

k

. Let P

0

be the process of S

0

corresponding to P . Since n

0

is a node of some procedure

p

j

that is marked by Step 3 of the algorithm, let n

0

0

be the

corresponding node of G

0

j

such that n

0

= n

0

0

. Since �

m+1

is a

computation, n

0

is not blocking in s

m

. Since n

0

2 next(s

m

),

it follows from the inductive hypothesis that n

0

0

2 next(s

0

m

).

If n

0

is not an operation on a communication object, then

neither is n

0

0

and hence n

0

0

is also not blocking. Otherwise,

we know, by assumption, that the enabledness of any op-

eration on any communication object depends exclusively

on the sequence of operations that has been performed on

the object in the history of the system, and not on the val-

ues that are possibly stored or passed through the object,

or passed as an argument to the operation. Since all op-

erations on communication objects are procedure calls, the

corresponding nodes are marked in the calling procedures

and in their transformed versions. Therefore, from the in-

ductive hypothesis, it is easy to show that the projections of

�

m

and �

0

m

onto nodes corresponding to operations on any

given communication object are identical. Since n

0

= n

0

0

and n

0

is not blocking in s

m

, n

0

0

is not blocking in s

0

m

. Thus,

we have �

0

m+1

� �

0

0

m+1

.

By de�nition of a computation, we know that the next

node to be executed by P from s

m+1

is a marked node,

let us denote it by n

k+1

. Hence, we have next(s

m+1

) =

(next(s

m

) n fn

0

g) [ fn

k+1

g. Let n

0

k+1

be the marked node

for S

0

corresponding to the node n

k+1

. In order to prove

that next(s

0

m+1

) = (next(s

0

m

) n fn

0

0

g) [ fn

0

k+1

g and hence

that next(s

m+1

) � next(s

0

m+1

), we have to show that there

is an execution of process P from s

0

m

that leads to n

0

k+1

without traversing any marked nodes other than n

0

0

. Two

cases are possible: either n

0

and n

k+1

correspond to the

executions of statements of the same procedure call p

j

, or

they do not. We consider these two cases successively.

If n

0

and n

k+1

are nodes of procedure p

j

, then n

0

0

and

n

0

k+1

are nodes of procedure p

0

j

. This also means that the

marked node n

0

corresponds to either a start node, or an

assignment statement, or a conditional statement, and that

V

I

(n

0

) = ;. Therefore, there is exactly one arc a from

n

0

in G

j

whose label evaluates to true in s

m

. This arc

leads to node n

1

. Let succ(a) denote the set of marked

nodes of G

j

that are reachable from n

0

by a sequence aw

of control-
ow arcs in G

j

passing through unmarked nodes

exclusively and starting with arc a. Since n

k+1

2 succ(a),

jsucc(a)j � 1. Therefore, by Point 2 of Step 4 of the algo-

rithm, there is an arc a

0

from n

0

0

in G

0

j

that is labeled with

the boolean expression labeling arc a. Since V

I

(n

0

) = ;,

we know by Lemma 4 that V (n

0

) � V

S

(�

1

: : : �

m

). There-

fore, by applying Property 3 of the inductive hypothesis,

we have 8v 2 V

S

(�

1

: : : �

m

) : s

m

(v) = s

0

m

(v), and thus

8v 2 V (n

0

) : s

m

(v) = s

0

m

(v). By de�nition of a control-


ow graph, all variables occurring in the boolean expression

labeling arc a are in V (n

0

). Thus, if the boolean expression

labeling arc a evaluates to true in s

m

, then the same boolean

expression, which labels arc a

0

, also evaluates to true in s

0

m

.

Since this boolean expression labels arc a

0

in G

0

j

, the execu-

tion of node n

0

0

from s

0

m

leads to the successor node of arc

a

0

in G

0

j

, let us call it n

0

1

.

If jsucc(a)j = 1, by Point 2.2 of Step 4 of the algo-

rithm, n

0

1

is the node corresponding to n

k+1

, i.e., n

0

k+1

,

which concludes the proof of this case. Otherwise, we have

jsucc(a)j > 1. By Point 2.3 of Step 4 of the algorithm, node

n

0

1

corresponds to a test on the value returned by a call to

the nondeterministic function VS toss, and there is an arc

from n

0

1

to n

0

k+1

in G

0

j

. Since boolean expressions testing the

value returned by a call to VS toss introduced in Step 4 al-

ways evaluate to true in any store, by taking �

m+1

= n

0

0

n

0

1

,

we de�ne an execution of process P from s

0

m

that leads to

n

0

k+1

.

We now consider the case where n

0

and n

k+1

correspond



to the executions of statements of two di�erent procedure

calls p

j

and p

l

. (Note that, in case of a recursive procedure

call, p

l

executes the same code as p

j

.) This implies that n

0

0

and n

0

k+1

also correspond to the executions of statements

of two di�erent procedure calls p

0

j

and p

0

l

. Two cases are

possible: n

0

corresponds either to a procedure call, or to a

termination statement. If n

0

is a procedure call, n

k+1

is the

start node of the procedure p

l

being called. Since proce-

dure calls and start nodes are marked nodes, the execution

of n

0

0

leads directly to n

0

k+1

, which completes the proof of

Property 2 for this case. Otherwise, n

0

is a termination

statement. Since n

0

is not blocking in s

m

, p

j

is not the

top-level procedure call of this process, and procedure p

l

is

the procedure that called p

j

. Thus n

1

must be the successor

node in G

l

of the node of G

l

that called p

j

(by construction,

every node corresponding to a procedure call has always ex-

actly one successor node in a control-
ow graph). Let a be

the arc from this node to n

1

in G

l

. The rest of the proof

for this case is identical to the case analysis on jsucc(a)j

done in the previous paragraph. This concludes the proof

of Property 2.

We now prove Property 3. Recall that the environment

cannot de�ne any variables previously de�ned by the system

and hence any variables in V

S

(�

1

: : : �

m

). The key observa-

tion to prove Property 3 is then that, by De�nition 2, for

any node n that does not correspond to an assignment state-

ment with V

I

(n) = ;, or does not correspond to a procedure

call with a nonempty set A of fresh variables correspond-

ing to parameters not removed in Point 2 of step 5 of the

algorithm, we have V

S

(�

1

: : : �

m

) � V

S

(�

1

: : : �

m

n

0

).

Let s and s

0

denote the stores reached by processes P

and P

0

after the execution of nodes n

0

and n

0

0

from stores

s

m

and s

0

m

, respectively. If node n

0

satis�es the conditions

stated in the previous paragraph, we immediately have 8v 2

V

S

(�

1

: : : �

m

n

0

) : s(v) = s

0

(v).

If the marked node n

0

corresponds to an assignment

statement that de�nes a variable v

0

, we know n

0

62 N

I

(Point 4 of Step 3 of the algorithm), and V

I

(n

0

) = ;. By

Lemma 4, this means that V (n

0

) � V

S

(�

1

: : : �

m

). There-

fore, by applying Property 3 of the inductive hypothesis,

we have 8v 2 V

S

(�

1

: : : �

m

) : s

m

(v) = s

0

m

(v), and thus

8v 2 V (n

0

) : s

m

(v) = s

0

m

(v). This implies that n

0

and

n

0

0

performs identical store transformations. Therefore, v

0

is de�ned both in s and s

0

with the same value. Moreover,

by De�nition 2, V

S

(�

1

: : : �

m

n

0

) = V

S

(�

1

: : : �

m

)[fv

0

g. We

thus have 8v 2 V

S

(�

1

: : : �

m

n

0

) : s(v) = s

0

(v).

Consider the case where the marked node n

0

corresponds

to a procedure call with a nonempty set A of fresh variables

corresponding to parameters not removed in Point 2 of step

5 of the algorithm. Let A

0

be the set of variables whose val-

ues are passed as argument via such parameters, and hence

copied into some fresh variable in A. Hence, we have A

0

�

V (n

0

) and A

0

\V

I

(n

0

) = ;. By Lemma 4, we know (V (n

0

)n

V

I

(n

0

)) � V

S

(�

1

: : : �

m

). Therefore, A

0

� V

S

(�

1

: : : �

m

).

Therefore, by applying Property 3 of the inductive hypoth-

esis, we have 8v 2 V

S

(�

1

: : : �

m

) : s

m

(v) = s

0

m

(v), and thus

8v 2 A

0

: s

m

(v) = s

0

m

(v). This implies that 8v 2 A : s(v) =

s

0

(v). By De�nition 2, V

S

(�

1

: : : �

m

n

0

) = V

S

(�

1

: : : �

m

) [

fAg. We thus have again 8v 2 V

S

(�

1

: : : �

m

n

0

) : s(v) =

s

0

(v).

By repeating the same argument for the remaining nodes

in �

m+1

(if any), the proof of Property 3 is complete.

Intuitively, the previous theorem states that, for every com-

putation � of S �E

S

, the \projection" of � (including call

stacks of processes) onto the set of variables that do not use

variables de�ned by or functionally dependent on E

S

is pre-

served by the transformation performed by our algorithm.

Note that the original correctness criterion used in The-

orem 6 combines aspects of both reactive and functional

program semantics: Points 1 and 2 of the theorem estab-

lishes a simulation relation between S � E

S

and S

0

, while

Point 3 of the theorem establishes a functional equivalence

for a subset of the values computed by S �E

S

and S

0

.

From Theorem 6, it is then easy to show that deadlocks

and assertion violations that do not test expressions involv-

ing values provided by the environment E

S

are preserved by

the transformation performed by the algorithm. Precisely,

recall that assertions are visible operations, and hence pro-

cedure calls from the point of view of our algorithm. To be

consistent with our previous assumption that only variables

can be passed as arguments to procedure calls, we assume

every assertion in S has exactly one argument, which is a

variable whose value determines whether or not the asser-

tion is violated. We say that an assertion that corresponds

to some (by construction, marked) node n in S is preserved

in S

0

if the variable passed as argument in n is not elimi-

nated by Point 2 of Step 5 of the algorithm of Figure 1 in the

corresponding node n

0

in S

0

. We then have the following.

Theorem 7 Let S and S

0

be de�ned as in Theorem 6. Let

A

S�E

S

denote the state space of the closed system S � E

S

obtained by combining S with its most general environment

E

S

, and let A

S

0

denote the state space of the closed system

S

0

. Then, all the deadlocks in A

S�E

S

are in A

S

0

. Moreover,

for all the assertions in procedures p

j

preserved in p

0

j

, if

there exists a global state in A

S�E

S

where such an assertion

is violated, then there exists a global state in A

S

0

where the

same assertion is violated.

Proof: Consider a deadlock s in A

S�E

S

. By de�nition, a

deadlock is a reachable global state in A

S�E

S

where all the

processes are blocked. Let � be a computation of S � E

S

that leads to the deadlock. By applying Theorem 6, we

know that there exists a computation �

0

of S

0

that leads to

a global state s

0

such that next(s) � next(s

0

). Since the exe-

cutions of all the nodes in next(s) are blocking, all the nodes

in next(s) attempt to perform a visible operation. Since the

enabledness of any operation on any communication object

depends exclusively on the sequence of operations that has

been performed on the object in the history of the system,

and since this history is the same in � and �

0

for all commu-

nication objects by Property 1 of Theorem 6, the executions

of all the nodes in next(s

0

) are also blocking, and s

0

is a

deadlock in A

S

0

.

Let us now consider the case of assertion violations. Let

s be a global state s in A

S�E

S

where an assertion is violated.

This means that there is a node n in next(s) corresponding

to this assertion which tests the value of a variable v. Hence,

v 2 V (n). Since the assertion is violated, the value of v in

s is \false". Let � be a computation of S � E

S

that leads

to s. By applying Theorem 6, we know that there exists

a computation �

0

executing �

1

: : : �

m

of S

0

that leads to a

global state s

0

such that next(s) � next(s

0

). Let n

0

be the

node in next(s

0

) such that n � n

0

. Since the assertion is

preserved in S

0

, we know that V

I

(n) = ;, and that n

0

also

tests the value of variable v. By Lemma 4, V

I

(n) = ; implies

that V (n) � V

S

(�

1

: : : �

m

). Since v 2 V (n), by Property 3

of Theorem 6, we conclude that s(v) = s

0

(v). Hence, the



assertion is also violated in s

0

in A

S

0

.

Note that the transformation from S to S

0

eliminates some

program statements from S, yet it must preserve all possi-

ble behaviors of S as speci�ed above. One must be careful

to ensure that when the transformation removes program

statements from S that may lead to run-time errors, these

errors cannot generate extra executions in S (that S

0

would

thus not preserve). Therefore, we make the following obser-

vations about the run-time errors in the original system S.

If the semantics of the source language speci�es the behav-

ior of a particular run-time error, that behavior needs to be

preserved in S

0

if it may lead to additional executions in S.

Otherwise, for all errors whose behavior is not speci�ed by

the source-language semantics, but rather left to the partic-

ular implementation of the language, S

0

does not need to

preserve any particular choice of behavior. In other words,

the correctness of the transformation is de�ned relative to

the source language itself rather than a particular imple-

mentation of the source language. For example, C does not

specify the behavior of run-time errors such as array-out-

of-bounds, and so the transformation algorithm for C pro-

grams may freely remove array references when appropriate.

In contrast, an array-out-of-bounds error in an ML program

throws an exception, and so S

0

needs to preserve any bounds

check whose exception may lead to additional executions in

S.

An optimal translation of an open system S is a closed

system S

0

opt

such that the properties in Theorem 6 addition-

ally hold in the other direction. In other words, for every

computation of S

0

opt

there exists a computation in S � E

S

that satis�es the three properties in the theorem. For ex-

ample, consider Figure 3 and consider a system S that com-

prises only the procedure q(x). Then the algorithm performs

an optimal translation as explained in the text that accom-

panies that example. In contrast, the translation in Figure 2

is not optimal.

Of course, it is not possible in general to achieve an op-

timal translation. There are several sources of conservative

approximation in our algorithm.

Interprocedural issues: The algorithm assumes that it is

known which nodes in a control-
ow graph of proce-

dure p use the value of a variable de�ned by the envi-

ronment E

S

. The source of this information may be

manual, in the form of a speci�cation, or automatic, in

the form of an interprocedural analysis on top of our

intraprocedural analysis. If manual, then it is only

possible to achieve an optimal speci�cation if the en-

tire open system S is known in advance; otherwise, it

will be necessary to assume conservatively that any in-

put variables or variables whose addresses escape are

de�ned by the environment. If automatic, then the in-

terprocedural analysis will necessarily be approximate

in general due to well-known sources of imprecision

such as escaping variables, the call-context problem,

and so forth.

Data
ow analysis: There are the standard imprecisions

associated with a classic data
ow analysis. For in-

stance, any may-alias analysis may generate spurious

dependencies. Furthermore, composing de�ne-use arcs

is imprecise. For example, the code a=x+1; b=a-x;

will report incorrectly that b is dependent upon x.

Lemma 1 covers this source of imprecision.

Finite variance: In a given run of a system, some execu-

tions of a given node may be functionally dependent on

E

S

and others not. Our algorithm conservatively re-

moves such nodes. In brief, any data
ow analysis must

be of �nite variance and thus may su�er this kind of

imprecision. Our analysis is monovariant, and the cor-

responding imprecision is summarized in Theorem 3.

Temporal independence: In a given run of a system, there

may be multiple executions of a given conditional node

that are all functionally dependent on E

S

in precisely

the same way. For instance, consider Figure 2. The

open program encounters the conditional test 10 times

per call to p, but goes down the same branch each time.

The particular branch is dependent on E

S

. The trans-

lated closed program performs 10 VS toss operations

rather than a single one before the loop. In this case,

hoisting the conditional test \y=0" outside the loop in

p would have eliminated this imprecision. In general,

however, it is unavoidable.

Note that the above discussion concerns only the precision

of our algorithm with respect to the possible sets of com-

putations satisfying Theorem 6. One can also discuss the

optimality of the branching structure of the generated pro-

gram. For instance, sequences of VS toss that result in the

same sequences of marked nodes are redundant, and could

thus be eliminated. This line of thought will not be discussed

further here.

6 Applications

The motivation behind this work is the desire to analyze au-

tomatically very large concurrent reactive systems for which

reliability is critical. One such system is Lucent Technolo-

gies' 5ESS telephone switching system [MS85], which pro-

vides telecommunications services for land-line and wireless

networks. The 5ESS software consists of thousands of in-

teracting concurrent reactive processes, and is comprised of

millions of lines of code, mostly written in the C program-

ming language. The software is continually evolving as new

features are added.

The sheer size, complexity, and changing nature of the

code renders it extremely di�cult to understand the possible

interactions between the processes in the switch. Such inter-

actions are often extremely hard to reproduce and analyze

in the existing testing environments available in the 5ESS

development organization. These include an on-line simula-

tion environment, which can execute a complete version of

the 5ESS software, and testing labs where the 5ESS software

can be executed on actual 5ESS hardware switches. A de-

veloper using either of these testing environments must �rst

set a signi�cant number of data con�gurations before being

able to run a test. Non-determinism among concurrent pro-

cesses is implicitly resolved by the execution environment.

Therefore, it can be di�cult to reproduce a speci�c scenario.

Recently, we have started investigating in collaboration

with a group of 5ESS developers how the techniques in-

troduced in this paper combined with VeriSoft could be

used for providing a new \lightweight" testing and reverse-

engineering platform for reactive properties of 5ESS code.

As a case study, we considered a large multi-process 5ESS

application that is responsible for providing call processing

features { such as originations, terminations, location regis-

tration, hand over, roaming, and call forwarding { for spe-

ci�c wireless systems. This call processing software describes



about 10 main families of concurrent reactive processes. The

code describing each family of processes ranges from approx-

imately 30,000 to several hundred thousand lines of C code.

In order to be able to execute this code for analyzing its

dynamic behavior without using the existing heavyweight

execution environments, we �rst needed a way to make the

application \stand-alone". Therefore, we implemented the

algorithm described in this paper in a prototype tool for

automatically closing open programs written in the C pro-

gramming language. We manually developed software stubs

for providing a small number of inputs corresponding to ba-

sic external events we wanted to control in order to trig-

ger, and observe afterwards, interactions between concur-

rent processes of the application. The remainder of the sys-

tem was closed automatically using our tool. At the time of

this writing, VeriSoft is currently being used to analyze the

dynamic behavior of the closed application. Note that com-

pletely closing this application by hand is clearly impractical

because it would require developing and maintaining code

for simulating a substantial portion of the entire 5ESS switch

software and databases.

7 Related Work and Conclusions

The core of our algorithm for closing an open system is a

data
ow analysis of C or C-like procedures. The data
ow

analysis is phrased as a graph-reachability problem. This

is a common approach to data
ow problems that our al-

gorithm shares with many others, such as [Cal88, CK88,

Kou77], to name but a few. In particular, we use stan-

dard techniques for computing de�ne-use dependencies, such

as [ASU86, FOW87, MR90]. These techniques rely on a

(conservative) solution to the aliasing problem. Examples

of alias analyses include [CWZ90, Deu94, Lan91, Ruf95,

SRW96], to name a few of many.

Using graph-reachability-based data
ow analyses to drive

transformations of imperative programs is a well established

technique. For instance, [HR92] describes transformations

based on the Program Dependence Graph [FOW87, KKL

+

81].

Perhaps the most common such transformation is program

slicing, originally introduced by Weiser in [Wei81] and later

much investigated and extended (e.g., [HRB88, Tip95]). The

input to a typical slicing tool is a program, a point p within

the program, and an identi�er x. The output is a possibly

reduced program that preserves the trace of values bound

to x at p. Note that a correct (albeit useless) slicing algo-

rithm is the identity transformation. Our transformation is

di�erent in that it must eliminate some parts of the original

program | namely, the parts that depend on values sup-

plied by the environment. Our transformation may seem

similar to a simultaneous slice on each identi�er at each

program point that does not depend on a value supplied by

the environment the environment, where those identi�ers

are pre-computed by a forward analysis. However, such a

slice would be too large. For instance, consider the exam-

ple programs in Figures 2 and 3. In each case, the trace

of cnt values depends on the conditional test involving y;

hence, the above slicing procedure would not eliminate the

the nodes involving y, and the resulting program would re-

main open. To close the program, we must eliminate all

nodes that depend on a value provided by the environment.

Therefore, in contrast to slicing, we require only inclusion

rather than equivalence of executions, and we are forced to

introduce VS toss in order to achieve in a single transforma-

tion both inclusion of executions and complete elimination

of nodes dependent upon the environment.

Combining an open system with its most general envi-

ronment is related to the idea of hiding a set of visible actions

of a process [Hoa85, Mil89] in a process calculus. The orig-

inality and technical contributions of our work are to apply

this idea to full-
edged programming languages, instead of

simple transition systems.

Systematically exploring the state space of the imple-

mentation of a concurrent system written in a programming

language such as C, rather than constructing and/or analyz-

ing an approximate model of that implementation, is a new

approach to concurrent program analysis. This work con-

tinues the line of research set forth in [God97]. A comple-

mentary approach to analyzing such systems is to use static

analysis, such as abstract interpretation [CC77]. Most work

has involved analyzing the communication patterns that oc-

cur in a system [Tay83, LC91, MR93, Col95, Cri95, Ven97].

A model checker could analyze the results of such static anal-

yses in order to prove the absence of certain speci�c types

of errors. In contrast, our approach is based on dynamic

observation of a system. This opens up the possibility of

detecting a wider range of behaviors that may have been

abstracted away by a static analysis. In this paper, we have

shown that this kind of dynamic analysis can be used even

on open systems by �rst applying a static analysis | not to

construct a model of the system, but rather to transform it

to a closed form.

Our algorithm is a �rst solution to the general problem

of closing an open system. There is evidence to suggest

that this algorithm can be applied to large pieces of code.

The algorithm also has the signi�cant practical bene�t that

it can close any open system completely automatically. It

is also applicable to open sequential systems, i.e., systems

comprising only a single process.

The experience that we have gained in developing this

transformation algorithm has shed some light on possible

ways to improve the precision of the result. Consider, for

instance, a resource-management system that receives (via

its open interface) 32-bit integers representing amounts of

time requested from the resource, but whose visible behav-

ior only depends on which of a small set of ranges each re-

quest falls into. Our transformation would completely elim-

inate the open interface in order to avoid the intractability

that arises from the systematic exploration of all possible

inputs. However, one could hope for a static analysis that

would determine the appropriate partitioning of the input

domain, and, if it is small enough, simplify the interface in-

stead of eliminating it. Consider further that the original

system contains a control path along which are two con-

ditional tests that both depend on an input, say the time

request, but always evaluate to the same value. The cur-

rent algorithm inserts a VS toss operation at both points.

A static analysis that could detect this property could cut

the possible branching of the state-space exploration in half.

Both of these examples are special cases of the general prob-

lem of symbolically analyzing the behavior of an imperative

program with respect to unknown values (the open inter-

face). We are investigating the applicability of an existing

symbolic analysis [Col96] to this problem.
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