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Abstract

Symbolic reasoning about large programs is bound to be icig@e
How to deal with this imprecision is a fundamental problerpiio-
gram analysis. Imprecision forces approximation. Tradgi static
program verification builds “may” over-approximations bétpro-
gram behaviors to check universal “for-all-paths” projgstwhile
automatic test generation requires “must” under-apprakions to
check existential “for-some-path” properties.

In this paper, we introduce a new approach to test generation
where tests are derived frowalidity proofs of first-order logic
formulas, rather thasatisfying assignments quantifier-free first-
order logic formulas as usual. Two key ingredients of tiigher-
order test generatiorare to (1) represent complex/unknown pro-
gram functions/instructions causing imprecision in sylitbex-
ecution byuninterpreted functionsand (2) recorduninterpreted
function samplescapturing input-output pairs observed at exe-
cution time for those functions. We show that higher-ordsst t
generation generalizes and is more precise than simpiifgom-
plex symbolic expressions using their concrete runtimaeslWe
present several program examples where our approach can exe
cise program paths and find bugs missed by previous tectmique
We discuss the implementability and applications of thisrapch.

We also explain in what sense dynamic test generation is more
powerful than static test generation.

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5pftware Engineer-
ing]: Testing and Debugging; F.3.L¢gics and Meanings of Pro-
gramg: Specifying and Verifying and Reasoning about Programs

General Terms Testing, Verification

Keywords Automatic Test Generation, Software Model Check-
ing, Uninterpreted Functions

1. Introduction

Automatic code-driven test generation aims at provingterisal
properties of programs: does there exist a test input thatega
ercise a specific program branch or statement, or follow aifipe
program path, or trigger a bug? Test generation dualizdgitaal
program verification and static program analysis aimed av-pr
ing universal properties which holds for all program pathsch
as “there are no bugs of type X in this program”.
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Symbolic reasoning about large programs is bound to be impre
cise. If perfect bit-precise symbolic reasoning was pdssiitatic
program analysis would detect standard programming ewiths
out reporting false alarms. How to deal with this impreaisis a
fundamental problem in program analysis. Traditionalistpto-
gram verification builds “may” over-approximations of theop
gram behaviors in order to prove correctness, but at the afost
reporting false alarms. Dually, automatic test generatamuires
“must” under-approximations in order to drive program exems
and find bugs without reporting false alarms, but at the cbgbs-
sibly missing bugs.

Most of the program analysis literature discusses progreuin v
fication for universal properties. Yet, except for statige\systems,
the biggest practical impact of program analysis so far bas bbug
finding, not proving the absence of bugs. The study of effegiro-
gram verification techniques for existential properties.(i‘sound
bug finding”) has recently experienced quite a resurgenceatA
alyst is arguably recent work on systematic dynamic tesegen
tion [15], and related extensions and tools (e.g., [2, 6287 24]).
Over the last few years, these techniques have been made more
scalable [16], and have been used to find many new security vul
nerabilities in Windows [12] and Linux [22] applications.

Work on automatic code-driven test generation can rougaly b
partitioned into two groupsstatic versusdynamictest generation.
Static test generation [20] consists of analyzing a prograstat-
ically, by reading the program code and using symbolic execution
techniques to simulate abstract program executions irr ¢odat-
tempt to compute inputs to drivB along specific execution paths
or brancheswithout ever executing the progra@n the other hand,
dynamic test generatiof21] consists of executing the prograf
starting with some given or random concrete inputs, gatlgesym-
bolic constraints on inputs at conditional statements@lbhie ex-
ecution, and then using a constraint solver to infer vasiarfithe
previous inputs in order to steer the next execution of tlog@mm
towards an alternative program branch; this process caepaated
with the goal ofsystematicallyexecuting all (or as many as possi-
ble) feasible program paths, while checking each executsing
run-time checking tools (like Purify, Valgrind or AppVegfi) for
detecting various types of errors [15].

It is argued in [15] that dynamic test generation is more pow-
erful than static test generation because imprecision mbsyic
execution can be alleviated using concrete values and nasizee
tion: whenever symbolic execution does not know how to geteer
a constraint for a program statement depending on somesigrg
can always simplify this constraint using the concreteirnatval-
ues of those inputs. To illustrate this point, consider thiing
program example [11]:

int obscure(int x, int y) {
if (x == hash(y)) return -1;
return O;

// error
// ok
}



Assume the constraint solver cannot “symbolically reasaimjut
the functionhash (perhaps because it is too complex or simply
because its code is not available). This means that the regmst
solver cannot generate two values for inputsand y that are
guaranteed to satisfy (or violate) the constrairg= hash(y). In
this case, static test generation cannot generate tegsitpdrive
the execution of the programbscure through either branch of
the conditional statement: static test generatiohdkplessfor a
program like this. Note that, for test generation, it is ndfisient
to know that the constraint == hash(y) is satisfiable fosome
values ofx andy, it is also necessary to generagecific valuefor

x andy that satisfy or violate this constraint.

In contrast, dynamic test generation can easily generatey f
fixed value ofy, a value ofk that is equal thash (y) since the latter
concrete value is known at runtime. By picking randomly ameht
fixing the value ofy, we can, in the next test execution, set the value
of the other inpuk either tohash (y) or to something else in order
to force the execution of the then or else branches, respégtof
the test in the functioebscure.

In summary, static test generation is unable to generate tes
inputs to control the execution of the prograshscure, while
dynamic test generation cagesily drive the executions of that
same program through all its feasible program paths. Iristeal
programs, imprecision in symbolic execution typicallyeps in in
many places, and dynamic test generation allows test gémera
to recover from that imprecision. Dynamic test generatian be
viewed as extending static test generation with additionatime
information, and is therefore more general and powerful.

But how much more powerful? How often can this concretiza-
tion trick be used? It would not work in the case of a consti#ie
hash(x)==hash(y)+1. Does there exist an algorithm to determine
in which cases concretization “works” and when it does naf C
concretization be modeled symbolically and therefore &ied by
static symbolic execution and test generation? If so, waids fun-
damental difference between static and dynamic test geme?a
Can one formalize both armgtove (and clarify how and why) they
are different? Is it possible to deal with imprecision in $atic
reasoning differently, in order to enable even more powesgst
generation?

The purpose of this paper is to answer all these questiorishwh
are central to test generation and program analysis. We tstar
carefully formalizing “concretization” as introduced 6], and
show that it may or may not generate sound path constraiets (S
tion 3). We then introduce (Section 4) a new more general form
of test generation, which we cdiligher-orderbecause it uses a
higher-order logic representation of program paths. Higider
test generation usasinterpreted functionso represent unknown
functions or instructions during symbolic execution, mesoun-
interpreted function samplesapturing concrete input-output pairs
observed at execution time for those functions, and geseragw
test inputs fromvalidity proofsof first-order logic formulas with
uninterpreted functions. We then show (in Section 5) thghéi-
order test generation can not only fully “simulate” conization
when the latter is done in a sound manner, but that it is als@ mo
general and powerful. We discuss how to implement this aaro
in practice in Section 6, and present an application (iniSect)
which requires the power of higher-order test generati@msgrs
with input lexers using hash functions for fast keyword gg@tion.
We conclude (in Section 9) by clarifying in what sense dyreaiest
generation is more powerful than static test generation.

2. Background: Systematic Dynamic Test
Generation

Dynamic test generation (see [15] for further details) tstesof
running the progranP under test both concretely, executing the
actual program, and symbolically, calculating constsaon values
stored in program variablasand expressed in terms of input pa-
rameters. Side-by-side concrete and symbolic executionpex-
formed using a concrete stofd and a symbolic stor&, which
are mappings fronmemory addresse@vhere program variables
are stored) to concrete and symbolic values respectivelsyr-
bolic valueis any expressior in some theoryZ where all free
variables are exclusively input parameters. For any prograri-
ablev, M (v) denotes theoncrete valueof v in M, while S(v)
denotes thesymbolic valueof v in S. For notational convenience,
we assume thai (v) is always defined and is simply/ (v) by de-
fault if no symbolic expression in terms of inputs is asstdavith

v in S. WhenS(v) is different fromM (v), we say that that pro-
gram variablev is “symbolic”, meaning that the value of program
variablev is a function of some input(s) which is represented by the
symbolic expressioy(v) associated with in the symbolic store.
We also extend this notation to allaW/ (e) to denote the concrete
value of symbolic expressionwhen evaluated with the concrete
store M. The notation+ for mappings denotes updating; for ex-
ample,M’ = M + [m s e] is the same map ak/, except that
M'(m) =e.

The programP manipulates the memory (concrete and sym-
bolic stores) through statements, @@mmandsthat are abstrac-
tions of the machine instructions actually executed. Werrassa
command can be amssignmenbf the formv := e (wherev is a
program variable and is an expression), eonditional statement
of the formif e then C’ else C” wheree denotes a boolean
expression, and”’ andC” denote the uniqdenext command to
be evaluated whea holds or does not hold, respectively, strop
corresponding to a program error or normal termination.

Given an input vectord assigning a concrete value to the i-
th input parameter, the evaluation of a program defines aueniq

finite?> program executionso 4 81 ... i sy, that executes the
finite sequencé€’; ... C,, of commands and goes through the finite
sequence; ... s, of program states. Eagitogram statds a tuple
(C, M, S, pc) whereC'is the next command to be evaluated, gnd

is a special meta-variable that represents the currentpatstraint.
For a finite sequence of commands (i.e., a control path), apath
constraintpe,, is a quantifier-free first-order logic formula over
theory 7 that is meant to characterize the input assignments for
which the program executes along The path constraint isound
and completavhen this characterization is exact, i.e., when the two
following conditions are satisfied.

DEFINITION 1. A path constrainpe,, is soundif every input as-
signment satisfyinge,, defines a program execution following
pathw. H

DEFINITION 2. A path constrainpe,, is completeif every input
assignment following pathy is a satisfying assignment, orode]
of pc,,. A

Path constraints are generated during dynamic symbolie exe
cution by collecting input constraints at conditional staents, as
illustrated in Figure 2. Figure 1 illustrates how to symbally
evaluate expressiorsoccurring in individual program instructions
(line 14 should be ignored for now). The notati&mw denotes the

1We assume program executions are sequential and detetfminis

2\We assume program executions terminate. In practice, atitgrevents
non-terminating program executions and issues a runtinoe er
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evalSymbolice) =
match (e):
casewv: // Program variablev
return S(&wv)
case +€1, ez): // Addition
f1 = evalSymbolicer)
f2 = evalSymbolices)
if f1 and f» are constants
return evalConcrete)
else
return createExpressiod+{’,f1,f2)
etc.
default: // default for unhandled expression
II'pe=pch Ny cel®i =14)
return evalConcrete)

Figurel. Symbolic expression evaluation.

Procedure executeSymbolicP,I) =
initialize My and So
path constraintpc = true
C = getNextCommand ()
while (C # stop)
match (C):
case p:=e):
M = M + [&v —evalConcretée)]
S =5+ [&v —evalSymbolige)]
case (ife then C’ else C"):
b=evalConcreté¢e)
c =evalSymbolige)
if b then pc=pcAc
else pc = pc A —c
C = getNextCommand () // end of while loop

Figure2. Symbolic execution.

address at which the value of program variable stored. To sim-
plify the presentation, we assume that all program var&ahkeve
some unique initial concrete value in the initial concrdtees)M,,

and that the initial symbolic storg, identifies the program vari-
ablesv whose values are program inputs (for all those, we have
So(v) = x; wherez; is the symbolic variable corresponding to
the input parametef;). Initially, pc is defined totrue. By con-
struction, all symbolic variables appearingyn are variablese;
corresponding to program inpuis

Systematic dynamic test generation [15] consists of syatiem
cally exploring all (or in practice many) feasible contfldw paths
of the program under test by using path constraints and dredms
solver. Given a program state= (C, M, S, pc) and a constraint
solver for theory7, if C is a conditional statement of the form
if e then O else C”, any satisfying assignment of the for-
mulapc A ¢ (respectivelypc A —¢) wherec = evalSymbolicg) in
states, defines program inputs that will lead the program to exe-
cute thethen (resp.else) branch of the conditional statement. By
systematically repeating this process, sudtiiracted searctcan
enumerate (in theory) all possible path constraints andtaady
execute all feasible program paths.

The search is exhaustive provided that the generation qfetie
constraint (including the underlying symbolic executiamd the
constraint solver for the given theofy are bothsound and com-
plete that is, for all program paths, the constraint solver returns
a satisfying assignment for the path constraiat if and only if
the path is feasible (i.e., there exists some input assighiead-
ing to its execution). If those conditions hold, in additianfind-
ing errors such as the reachability of bad program statesr{éke

THEOREM1. (adapted from [15]) Given a progran® as defined
above, a directed search using a path constraint generadiwh a
constraint solver that are both sound and complete exescidle
feasible program paths exactly once.

Thus, if a program statement has not been executed wheretehse
is over, this statement is not executable in any contextrdutce,
path constraint generation and constraint solving arellysnat
sound and complete.

Note that the above formalization and theorem do apply to
programs containing loops or recursion, as long as all progr
executions terminate. However, in the presence of a simglp |
whose number of iterations depends on some unbounded input,
the number of feasible program paths becomes infinite. Icticea
search termination can always be forced by bounding induesa
loop iterations or recursion, at the cost of potentiallysirig bugs.

3. Sound and Unsound Concretization
3.1 Concretization and Must Abstraction

When a program expression cannot be expressed in the gaeryth
7T decided by the constraint solver, it can be simplified using
concrete values of sub-expressions, or replaced by theretenc
value of the entire expression. This case corresponds ¢olith

of Figure 1. Let us caltoncretizationthe process of replacing a
symbolic expression by its current concrete value duringgadyic
symbolic execution.

In the presence of concretizations, path constraint génaris
in general no longer “sound and complete” since constrdiats
come approximate and path constraints no longer captune- acc
rately program path feasibility. (In the original DART algbm
of [15], some completeness flag would then be set off and ttex ou
loop in Figure 2 of [15] would run forever.) Moreover, Theord
no longer holds since its assumptions are no longer satisfied

Loosely speaking, concretizing a symbolic expression unde
approximates its set of possible values by a singleton se¢agong
its unique current runtime value. In that sense, concriizacan
be viewed as amust abstraction”which issound for bug-finding
Must abstractions capture existential reachability prige that
hold onsomebut not all program executions.

A sound path constraint (see Definition 1) is an example of
must abstraction [17]. Note that, if a sound path constraintis
satisfiablethenthe corresponding program paithis feasible. But
the converse does not necessarily hold: an algorithm foeng¢ing
sound path constraints may fail to generate path consdréamt
some feasible program paths, and hence may fail to exermise s
code and may miss bugs.

3.2 Unsound Concretization

Strictly speaking, however, concretization alone doegnatantee
a sound path constraint generation. Consider the followingram
example.

int foo(int x, int y) {
if (x == hash(y)) {

if (y 10) return -1; // error

.

Assume that the functiohash is “unknown”, that the program
is run with the input valueg=567 and y=42, thathash(42) is
567, and hence that the execution takesttiwn branch of the first
conditional statement. The path constraint generated doP&RT

assert(false)), a directed search can also prove their absence, algorithm of Figures 1 and 2 (i.exithoutline 14 of Figure 1) is

and therefore obtain a form of prograrerification

x =567 ANy #£10



Indeed, the expressiohash(y) which (we assume) is outside
T is replaced by its concrete value 567 by line 15 of Figure 1.
But the algorithm does not “record” this concretizationfs first
conditional statement, and allows a symbolic constraigt 10 to
be generated on later on. This path constraint correctly captures
the current concrete execution (singeis indeed 567 and is
indeed different from 10 for this run), but itiet soundfor z equal
to 567 and some value gfdifferent from 10, the input assignment
satisfies the path constraint but does not define a progracuigsxe
following the same execution pathhish (y) is not 567.

By negating the last constraint of this unsound path coimstra
and solving the new path constraint

z =567 Ay =10

one gets a new test input that should drive the program tentéied
error, but results instead indivergence[15], i.e., an unexpected
program path being takentiash (10) is different from 567.

The risk of divergences in the presence of unsound path con-
straints is not a new observation: it is discussed in [15] fauadi-
vates the need for comparing the actual path taken by thearog
under test with the expected pathderived from each path con-
straintpc,,. When additional constraints are automatically injected
in path constraints for checking additional program prtpsisuch
as the absence of buffer overflows, every new test input géstr
violating such injected constraints should be executedtdign
the bug before reporting it to the user, in order to avoid repg
false alarms due to divergences from unsound path constrain

3.3 Sound Concretization

To generate sound path constraints, we propose the folipnemw
variant of the DART algorithm: whenever a symbolic expressi
is concretized during symbolic execution, for all symbetciables
x; occurring ine, a newconcretization constraint; = I; is added
to the path constraint, as illustrated in line 14 of Figurevijch
we now assume is un-commented. This implies that the value of
each such symbolic variable is fixed to a constant equal to the
corresponding current input value belowin the path constraint.
Let us call this procedursound concretizatian

Indeed, we now show that sound concretization results indou
path constraints.

THEOREM 2. The algorithm of Figures 1 and @ith sound con-
cretization, i.e., including line 14 of Figure 1, generagesind path
constraints.

Proof: The proof relies on the assumption that all sources of impre-
cision in symbolic execution are detected and triggerdidiaul t
case in the procedurevalSymbolic shown in Figure 1. In ev-
ery such case, line 14 is executed and a concretizationredamss
injected in the path constraint. Otherwise, in all otheresasym-
bolic execution of individual instructions (assignmentscondi-
tional statements) is assumed to be precise, i.e., bothdsand
complete.

Consider a path constrainic,, generated by this algorithm
during the execution of a program path with an input vector
I = (I;|Vi). For every symbolic variable; (generalizing program
input I;) occurring inpc,,, two cases are possible. Either there
is a concretization constraint forcing to be equal tal;. Or all
constraints one; in pc,, are both sound and complete (symbolic
execution is precise so far for all individual instructidnsolving
x;). Either way, all values of; satisfyingpc,, satisfy all the tests
on inputs alongu and hence lead to a program execution following
the same patlw. Since the same argument holds for all symbolic
variablesz;, pc,, is soundll

Unlike ordinary constraints derived from conditional staents
executed by the program under test, concretization canttra

should not be negated later in the directed search, becagsséimg
these constraints will not define alternate path conssaintre-
sponding to new program paths. The only purpose of coneitéiiz
constraints is to guarantee soundness of path constraints.

ExAMPLE 1. Consider again the example of functitoo shown

in Section 3.2. Assume again we run with program with inputs
x=567 and y=42, and thathash(42) is 567. With sound con-
cretization, a concretization constraipt= 42 is generated when
symbolically evaluatingash (y) in the first conditional statement,
and dynamic symbolic execution generates the sound path con
straint

y=42Nx =567 ANy # 10
After negating the last constraint, the resulting constrai

y=42ANx =567 Ay =10

is not satisfiable, and no new test is generated to try to ciner
then branch of the second conditional statemiiht.

Sound concretization generates sound path constrainediamd
inates divergences. But in practice, sound concretizagiont nec-
essarily “better” than DART's default unsound concreiizat for
two reasons.

First, a drawback of sound concretization is that it redubes
ability to generate new tests.

EXAMPLE 2. Consider the following program using the same
hash function:

int foo-bis(int x, int y) {
if (x != hash(y)) {

if (y == 10) return -1; // error

.

Assume the program is run with inputs33 andy=42, and that
hash(42) is 567. Sound concretization generates the sound path
constraint

y=42 Nz # 567 Ay # 10
After negating the last constraint, the resulting constrai

y =42 Nx # 567 Ay =10

is not satisfiable, no new test is generated to try to cover the
then branch of the second conditional statement, and the error
is missed. In contrast, unsound concretization would gegadhe
path constraint

x # 567 ANy #£ 10

After negating the last constraint, a constraint solver ld@asily
solve the (unsound) path constraint

x # 567 ANy =10

and generate a new test thatikely (but not guaranteed) to hit the
error, assumingash (10) is likely different from the value ok
whatever its value is. This is an example dfgmod divergence’
|

Second, and perhaps most importantly, sound concretizatio
much harder to implemerthan unsound concretization, since it
requires detecting explicithall sources of imprecision in sym-
bolic execution — including conservatively estimating pts-
sible inputs and outputs of all individual instructions aati
unknown/library/operating-system functions used by tregmm
under test —, while unsound concretization can simply bdemp
mented by handling some program instructions and ignottieg t
others.



Finally, note that adding line 14 of Figure 1 is just one wainto
ject concretization constraints and that other variargspasssible.
For instance, the injection of concretization constrafiotssym-
bolic variablesr; occurring in a concretized expressiegould be
delayed during symbolic execution untilis actually being used
in some constraint (if any) in the path constrajmt,. This way,
examples such as

x := hash(y);
if (y == 10) return -1; // error

could be handled with sound concretization by postponijegting

a concretization constraint fgrfrom whenhash(y) is computed
to when program variable is being tested (if at all), and a con-
straint to cover the other branch of the té€st == 10) could be
generated and solved.

4. Higher-Order test Generation

We now introduce a more general form of test generation, lavie

call higher-orderbecause it uses a higher-order logic representa-
tion of path constraints. Higher-order test generationireg three
steps:

1. uninterpreted functions are used to represent unknowo- fu
tions or instructions during symbolic execution;

2. new test inputs are derived from validity proofs of firstier
logic formulas with uninterpreted functions;

3. concrete input-output value pairs need be recorded aseuni
preted function samples that are used when generating new co
crete test inputs.

We now discuss these three steps in detail one by one.

4.1 Symbolic Execution with Uninterpreted Functions

Another well-known approach for reasoning about unknowrcfu
tions is to represent those usinginterpreted functionsFigure 3
presents a more general algorithm for dynamic symbolic i@t
where unknown functions or instructions are represeasgicitly
using uninterpreted function symbols. This algorithm egtethe
standard symbolic execution procedure of Figure 2 with the n
lines marked withx. Whenever an unknown function or instruction
£ is encountered during symbolic execution (line 10 of FigBye
an uninterpreted function symbgluniquely representing the func-
tion/instruction is used to represent the symbolic retualue of
the function call, which is defined as the application of thack
tion to its symbolic input arguments (line 12). Symbolic exiéon
resumes after the function returns.

By unknown function, we mean any function whose code is not
available or not precisely representable by a symbolicesgion of
the theoryZ handled by the constraint solver for whatever reason
(such as hash or crypto functions, operating-system fonstien-
vironment/library functions outside of the main scope ddlgsis,
etc.). Similarly, by unknown instruction, we mean any atogprio-
gram instruction not handled by the symbolic evaluatiorcpdure,
i.e., involving some symbolic expression previously cetized in
line 13 of Figure 1. For simplicity, we represent such unknaom+
structions by uninterpreted functions as well; line 13 afife 1 is
thus no longer reachable, by construction, with the newriilgn 2

In Figure 3,args denotes a list of arguments. Each argument
is a variablev whose value is an input to the function call (we
consider a call-by-value function model here, for simpyigi

3 Any symbolic expression including an unknown function/instruction ap-
plication f(args) as sub-expression is equivalenttg .4, := f(args)
followed bye where f(args) is replaced by ¢ (4y.gs)-

Consider again the example of functigmo shown in Sec-
tion 3.2. When symbolically executing the first conditioséadte-
ment (x == hash(y)), a fresh uninterpreted function symbol
is introduced to represent the unknown functicizh. If the then
branch of the first conditional statement is taken, the patisictaint
generated is then

z = h(y)

The new symbolic execution performed by the algorithm of Fig
ure 3 typically generates more symbolic values than thedsrah
symbolic execution procedure of Figure 2, since it represan-
known functions with “symbolic” uninterpreted functionsstead
of using concretization and falling back on concrete valliégre-
fore, the new algorithm typically generates more symbobo-c
straints in the path constraipt (lines 17 and 18). We can prove
that those path constraints are always sound.

THEOREM 3. The algorithm of Figure 3 generates sound path con-
straints.

Proof: The proof relies on the assumption that all sources of im-
precision in symbolic execution are detected in line 10 efytho-
cedureexecuteSymbolic in Figure 3 and are representable by un-
interpreted functions (line 12), which implies that evenknown
function/instruction is deterministic and with a known urtgutput
signature. For all other cases, symbolic execution of iddil in-
structions (assignments or conditional statements) isasd to be
precise, i.e., both sound and complete.

Consider a path constrainic,, generated by this algorithm
during the execution of a program path with an input vector
I = (I;|Vi). At any time during the symbolic execution along
w, all direct dependencies on inputs are tracked preciselythé
symbolic store, either in sound and complete manner via tbe p
cedureevalSymbolic of Figure 1, or using uninterpreted function
applications. Therefore, at every conditional stateni¢eixecuted
alongw, if a constraintc involving some symbolic variable; is
added inC' to the path constrainic,,, all input values ofr; satis-
fying c take the same branch as the current concrete Valagz;.
Since the same argument holds for all symbolic variablesnd all
symbolic constraints ipc,,, every input assignment’ satisfying
the path constraintc,, defines a program execution following the
given pathw, which means thatc,, is sound

The previous theorem states thiign input assignment satisfies
a path constrainpc,, generated by the algorithm of Figure 3,
then the corresponding program execution will follow path
For instance, considering again our running example, aputin
assignment to the variablesandy that satisfies the path constraint
x = h(y) will take the then branch of the conditional statement
in function foo. But this result alone does not prescribew to
compute such values and generate tests from path constwatht
uninterpreted function symbols. This problem is discussad.

4.2 Generating Tests from Validity Proofs

When uninterpreted functions are used in path constrantsdel
imprecision in symbolic execution, test generation frorohspath
constraintanustbe performed fronvalidity proofs instead of sat-
isfiability proofs, as will be shown shortly. This requireatip con-
straints to bepost-processedbefore calling the validity checker:
every ordinary symbolic variable representing a prograputins
existentially quantifiedresulting in a first-order logic formula of
the form

Jz: o(f, x)
while every uninterpreted function symbglis implicitly left uni-
versally quantifiedn the validity check. Remember that first-order
logic does not allow explicit quantification over functionmiver-
sal function quantification is implicit when checking vatidwhile



/I f is an unknown function or instruction

Add (M (&wv),createExpression’(’,evalConcretegrgs))) to IOp;

1 Procedure executeSymbolicP,I) =

2 initialize My and S

3 path constraintpc = true

4 C = getNextCommand ()

5 while (C # stop)

6 match (C):

7 case p:=e):

8 M = M + [&v —evalConcretée)]

9 S =S+ [&v —evalSymbolide)]

10 = case (:= f(args)):

11 = M = M + [&v —evalConcretéf(args))]

12 x S =S+ [&v +—createExpression’(’,evalSymbolic@rgs))]
13 x

14 case (ife then C’ else C"):

15 b =evalConcretée)

16 c =evalSymbolige)

17 if b then pc=pcAc

18 else pc = pc A —c

19 C = getNextCommand () // end of while loop

Figure3. Symbolic execution with uninterpreted functions.

existential function quantification is implicit when chéog satis-
fiability.*

We emphasize that representing unknown functions by uninte
preted function symbols in validity queriesnst new in program
verification. Indeed, forerification the set of possible behaviors
of unknown functions needs to lmer-approximatedo guaran-
tee amayabstraction that can be used to pragerectnesshence
the use of (implicituniversal quantificationHowever, what is new
here (to the best of our knowledge) is our use of (impligit)ver-
sal quantificationfor uninterpreted function symbols foest gen-
eration, instead of (implicit)existential quantificationvith satisfi-
ability queries as usual in the context of test input gemnanaiVe
discuss this further in Section 8.

We now illustrate this important difference, and why we need
it. Consider again the example of thescure function used in the
introduction:

int obscure(int x, int y) {
if (x == hash(y)) return -1;
return 0;

}

Let us assume again that the functiossh is “unknown”, that the
program is run first with the input values-33 andy=42, and that
hash(42) is 567 and hence that the first execution takesettre
branch of the conditional statement. With the standard sjimb
execution of Figure 2, the single constraint appearing engath
constraintpc is

// error

// ok

r # 567
Next, thesatisfiabilityof the negation of this constraint, namely

T = 567

is checked by the constraint solver. Since it is satisfiable sat-
isfying assignment returned by the constraint solver issiermed
into a new input vector, namek=567 andy=42, that will drive the
next execution of the program along thigen branch of the condi-
tional statement. Note how input variahtas existentially quanti-
fied in thesatisfiability checlperformed by the constraint solver.
In contrast, with the new symbolic execution procedure gf Fi
ure 3, the single constraint appearing in the path constisaimow

x # h(y)

4A logic formula is satisfiableif there exists a variable assignment that
makes the formula true, and itvalid if all variable assignments make the
formula true.

whereh denotes the uninterpreted function symbol representiag th
unknown functiorhash. After post-processing, thealidity of the
formula

Jz,y :x = h(y)

is checked by the constraint solver (i.e., for/gl If the formula is
valid, atest-generation strategig derived from thevalidity proof
of the formula, viewed as a strategy for making the formuleagts
true. In this case, the formula is valid and the strategy is

“fix y, then setr to the valueh(y)”.

In other words, with the new algorithm, new tests are derfvech
validity proofs instead ofatisfying assignmengs usual.

Indeed, we have no choice: if uninterpreted functions aesl us
to model imprecision in symbolic execution, test generatian
no longer be performed from satisfiability checks. In thevabo
example, checking the satisfiability of the formula

x = h(y)

(whereh, x andy are thus all implicitly quantified existentially)
may return satisfying assignments that are unusable foiges
eration since the existential quantifier oveallows the constraint
solver toinventsome specific arbitrary functidnthat helps it prove
satisfiability. For instance, the constraint solver mayraefunction

h such thatk(0) = 0 and then returrx=0 andy=0 as satisfying
assignments. Since such a functiomay differ from the specific
unknown functiorhash called in the program under test, sound test
generation is not possible when existentially quantifying

4.3 TheNeed for Uninterpreted Function Samples

Test strategies derived from validity proofs arecessary but not
sufficientto compute concrete input vectors, which is required
in test generation. For instance, with the above test glyatae
“value h(y)” is not derived from the validity proof: a concrete
value forx can be obtained only when some values foand
h(y) are known. In general, the value afy) for a giveny can
only be known at runtime. (Unless the functiénis completely
known and not too complex to be represented as a logic formula
then a constraint solver using constant propagation staftom
some concrete input valuecould simulate the execution afwith
valuey as argument and compute the val(g); however, even in
this case, constant propagation is orders of magnitudeesiend
less scalable than simply running the actual code implemgitie
function i with valuey as argument.)



In the above example, we need to know thay ifs set to 42,
thenh(y) is 567 in order to set to that value following the test-
generation strategy derived from the validity proof.

In other words, the new symbolic execution algorithm using u
interpreted functions also needsrézord runtime concrete values
to allow for test generation of specific concrete input valuest us
call this stepuninterpreted function sampling

Specifically, we can record the concrete value of any functio
application such a&(y) during dynamic symbolic execution as
well as the concrete value of each of its arguments, as shown i
line 13 of Figure 3: a paifc, f(evalConcretéurgs))) is recorded
for each function application where evalConc(ete;s) denotes
the list of concrete values of each function argument@adenotes
the concrete return value of the function applied to thosee
argument values. In the above example, the record pair is thu
(567, h(42)), meaning thab67 = h(42).

These pairs(c, f(evalConcretéurgs))) of recorded values
have two purposes.

e They are used tinterpret a test generation strategy derived
from a validity proof in order to assign concrete values to
function applications (such ds(y)) appearing in the strategy
and generate concrete values to new input tests.

e They can also be used to generate additional constraints of

the formce = f(evalConcreturgs)) as anantecedento the
path constraint that is passed to the constraint solverh Suc
constraints restrict the possible interpretations fonterpreted
function symbolf, and increases the chance of validity.

The latter can be more powerful and is necessary for higradero
test generation to always subsume sound concretizationi)lds
shown in the next section. Therefore, we adopt this secotidrop
in what follows.

To sum up, given a path constraipt using a setX of sym-
bolic variables, a sef’ of uninterpreted functions and a seDr
of recorded input-output function samples, the post-ssed for-
mulaPOST (pc) obtained by post-processipg in high-order test
generation is the first-order logic formula defined by

POST(pc) =3X : A= pc

where 3X denotes that all symbolic variablas € X are ex-
istentially quantified=- denotes logical implication, and is the
conjunction of equality constraints= f(evalConcretérgs)) for
all (¢, f(evalConcretéurgs))) € I0r. In what follows, we callA
theantecedenbf POST (pc).

For instance, consider again our running example with a path
constraintpc containing a single constraint= h(y) and a single
recorded paif567, h(42)). ThenPOST (pc) is

Jz,y : (567 = h(42)) = (z = h(y))

Sometimes, the antecedent does not help the validity pteof i
self, as in the previous example, and only helps for germeyatc-
tual concrete test values. But sometimes, the antecedeetées-
sary to prove validity, as shown in Section 5.3.

In practice, recordingll concrete arguments and return values
of all uninterpreted function applications used in a path coimtra
can be prohibitively expensive for long program executidvisre-
over, it is unfortunately hard to predict which concreteuesl will
be needed later in the path constraint, i.e., which conwedtees are
concretizations of symbolic expressions with unintemuefuinc-
tions on which there are test&lowin the path constraint. How-
ever, it is possible to track onlgomesources of imprecision and
only represent those using uninterpreted functions, atrét and
represent onlgomeanput-output pairs for tracked functions. Imple-
mentability issues will be discussed further in Section 6.

5. Comparison

In this section, we compare the test-generation power digrmig
order test generation (Section 4) with sound and unsound con
cretization (Section 3).

5.1 Higher-Order Test Generation and Unsound
Concretization are Incomparable

As discussed at the end of Section 3.3, sound and unsound con-
cretization are incomparable in general, since unsoundretina-

tion can lead to (bad or good) divergences that will not oeuiti
sound concretization. Similarly, by Theorem 3, highereortest
generation generates sound path constraints and is tramjaca-

ble to unsound concretization in general, for the same reaso

ExAamMPLE 3. Consider the function

int bar(int x, int y) { // x,y are inputs
if ((x == hash(y)) AND (y == hash(x))) {
... // error

}
o

Given random inputsc = 33 andy = 42 and assuming
hash(42)=567 andhash(33)=123, unsound concretization will
generate an unsound path constraint

T # 567V y # 123

whose negation = 567 A y = 123 is satisfiable and generates a
new test input paifz = 567,y = 123) which will likely lead to a
divergence. In contrast, higher-order test generatiohgsiterate a
sound path constraint

z # h(y) Vy # h(z)

After post-processing, the validity of the formula,y : = =
h(y) Ay = h(z) will be checked. But no new test will be generated
since this formula is invalid (in general, unless we learmeo
additional property ofi such as there exists ansuch asc
h(h(z)), for instance)l

5.2 Higher-Order Test Generation isas Powerful as Sound
Concretization

In the remainder of this section, we will therefore restiice
comparison of higher-order test generation to sound ctimatmn.
Both algorithms generate sound path constraints (see &imeso2
and 3). We now show that high-order test generation is at bsas
powerful as test generation with sound concretization.

Given a path constrainic = A, _,_, ¢, let ALT (pc) denote
the newalternatepath constraint defined by the conjunction of the
negation of the last constraint of pc with all previous constraints
¢; with j < 4 in pc. We thus have

A

1<i<(n—1)

ALT (pc) = —cn A

Ci

Remember that, as explained in Section 2, all nonempty ik
a path constraint are also path constraints (except thakegwith
a concretization constraint).

Letpc© denote a path constraint generated for a program path
w with sound concretization (Section 3.3) and whose lasttcains
is not a concretization constraint. Let’, " be the path constraint
generated with higher-order test generation (Section #rljhe
same program pattv. Given any theoryZ, let7 U Tgu r denote
the theory combining with the theory of equality with uninter-
preted functions (EUF). Ipc5 and ALT (pc5,©) are quantifier-
free formulas ovefl, thenpc” and ALT (pcYF) are quantifier-



free formulas ovefl U Tz, while POST(ALT (pc ")) is a
first-order logic formula ove? U 7z, by construction.

THEOREMA4. (Simulation Theorem)
If ALT (pc5C) is satisfiable, thedOST(ALT (pclF)) is valid.

Proof:
We show how to derive a validity proof fdPOST (ALT (pcY¥))
from any satisfying assignment farLT (pc5©).

Whenever a complex/unknown expressigir;) ¢ 7 occurs
during symbolic execution with sound concretization, accetiza-
tion constraint:; = I; is introduced impc5, e(z;) becomes(1;),
and all future expressions(z;) depending onz; becomee’(I;).
In contrast, in higher-order test generation, every oenge of a
complex/unknown expressiaf(z;) ¢ T becomesf.(z;) where
fe is an uninterpreted function symbol representingnd the pair
(evalConcretée(1;)), fe(1;)) is being recorded.

Consider any symbolic variable; € X for which there is a
concretization constraint; = I; in ALT (pcC). Consider any
expressione(z;) ¢ 7 concretized intoe(Z;) and occurring in
ALT (pc5C). In POST(ALT (pclF)), e(x:) is represented by
fe(z:) and evalConcrete(I;)) = fe(I;) is in the antecedent.

In POST(ALT (pcY¥)), repeat the following process for
all the symbolic variables:; with a concretization constraint in
ALT (pc;,®) and for all the functionsf. using those variables as
arguments: substitute all the occurrencesdfy /; and then all the
occurrences of any functiofi.(1;) by evalConcretg:(1;)). (Note
that this last step would not be possible if evalCondrgtg)) =

fe(I;) was not present, i.e., known and recorded, in the antecedent

of POST(ALT(pcY F)).)

At the end, we are left with a formula(X’) where X’ denotes
the set of all remaining symbolic variable$ € X for which there
are no concretization constraints LT (pc;.©). Therefore, we
know that all expressions of the fora(z;) in ¢(X’) are in7,
that they did not introduce imprecision in symbolic execntiand
that they are represented in the exact same wayfif’ (pc5©).

Thus, by construction, the consequentddfX’) is syntacti-
cally equivalent toALT (pc5¢) when all its concretization con-
straints are removed. Since all occurrences of all uningéed
function symbolsf. have been eliminated from the consequent of
#(X"), the universal quantification over those functiong{X ")
becomes void intuitively. The same holds for the existéojiean-
tification for all symbolic variables:;; ¢ X’ that no longer ap-
pear ing(X"). Since the consequent ¢{ X”) is logically equiv-
alent to ALT (pci©), if the latter is satisfiable, theAX’ : A =
ALT (pciC) is valid. This implies thaBX : A = ALT (pcl ") is
valid (by setting the value of each variahlec X \ X' to ;).

We emphasize that the previous theorem haldly if uninter-
preted function samples are used. Otherwise, higher-tedegen-
eration may not be able to simulate sound concretizatioiluas
trated by the following example.

EXAMPLE 4. Consider the function

int pub(int x, int y) { // x,y are inputs
if ((hash(x) > 0) AND (y == 10)) return -1 // error

—

Given random inputg = 1 andy = 2 and assumingash(1)=5,
sound concretization will generate a sound path constraint

r=1Ay#10

(after simplifying5 > 0 to true). The alternate path constraint
r = 1 Ay = 10 is satisfiable and generates a new test input
pair (z = 1,y = 10) to cover thethen branch of the conditional

statement. In contrast, higher-order test generatidmoutuninter-
preted function samples will generate a sound path constrai

h(z)>0Ay#10

However, after post-processing of the alternate path cainstat-
tempting to cover thehen branch, the validity of the formula

Jz,y : h(z) >0Ay =10

will be checked. But no new test will be generated since this
formula is invalid (to see this, consider the functibrsuch that
h(z) = 0 for all z, for instance). If instead we consider higher-
order test generatiowith uninterpreted function samples, we then
obtain after post-processing the formula

dz,y : (h(1) =5) = (h(z) > 0Ay = 10)
which is valid (by settindz = 1,y = 10)). R

An important remark is that Theorem 4 only compares the path-
constraint generation capabilities of higher-order testegation
and sound concretization. But it doeet state that if there exists
a constraint solver that can prove the satisfiabilityddf7 (pc5©),
then there exists a constraint solver that can prove thelityali
of POST(ALT (pc%™)). Thus, when we say that “higher-order
test generation is as powerful as sound concretization'asgeme
we are givenperfectconstraint solvers for both satisfiability and
validity checking.

5.3 Higher-Order Test Generation is More Power ful Than
Sound Concretization

The previous theorem states that higher-order test geoeratat
least as powerful as sound concretization. Is it more paw2ifhe
answer is yes, for three reasons.

First, since higher-order test generation uges 7gu r, it can
infer test strategies thanks to axioms included in the thexr
equality with uninterpreted functions (EUF), which are aotil-
able to sound concretization, which only uges

ExamPLE 5. Higher-order test generation can generate tests from
validity proofs of post-processed path constraints such as

.y f(z) = fy)

thanks to the theory of equality with uninterpreted funcsio(So-
lution strategy: set = y). In contrast, sound concretization would
force the concretization of, y, f(z) and f(y), and would not be
able to generate a test to cover a path with such a path conslla

Second, higher-order test generation can sometimes ggvera
concrete input-output pairs that are part of the antecesfenpost-
processed path constraint in order to prove the validityoohiulas
that would otherwise be invalid.

ExAamMPLE 6. Consider the post-processed path constraint

3z, y: f(z) = fly)+1

This formula is in general invalid (to see this, consider iaction

f that always returns 0). However, assume that it is dynaigical
observed thaf(0) = 0 and f(1) = 1. Then these recorded pairs
can be part of the antecedent of the post-processed pattraiohs
which becomes

Jz,y: (fF0) =0 f(1) =1) = f(z) = f(y) +1

This formula is valid (solution strategy: set= 1 andy = 0). In
either case, sound concretization would force the coraaienin of
z,y, f(z) and f(y) and would not be able to generate new tdlits.

Third, higher-order test generation can sometimes gemézat
strategies that involvessequence of new testghose purpose is to



collectadditional function sampleis a targeted manner, instead of
a single new test as usual. Let us call this new type of tesirgéion
multi-step test generation

EXAMPLE 7. Consider again the example of functibso of Sec-
tion 3.2, reproduced here for convenience:

int foo(int x, int y) {
if (x == hash(y)) {

if (y == 10) return -1; // error

}

_—

Starting withx = 33 andy = 42 and assumin@ash (42)=567,
this first test takes the else branch of the first conditiotzemment.
After negating the last constraint, we obtain the post-gssed
alternate path constraint

Jz,y : (h(42) = 567) = = = h(y)

This formula is valid and we generate a new input vector=
567,y = 42). We run this new test and we now take the then branch
of the first conditional statement followed by the else blraoicthe
second conditional statement. After negating the lasttcains, we
obtain the post-processed alternate path constraint

Jz,y : (h(42) = 567) = (z = h(y) Ay = 10)

This formula is valid, and a test strategy derived from thigdits
proof is “sety = 10, setz = h(10)”. However, since the value of
h(10) has never been sampled, it is currently unknown!

A new intermediatetest with, say,(x 567,y 10) is
necessary to learn the value b{10), say 66. Only then can a
second input vectofx = 66,y = 10) be generated to finish
interpreting the previous test strategy, to exercisetthen branch
of the second conditional statement and hitéheor. B

This is an example of two-step test generation. Of courseh su
examples can easily be generalizedktstep test generation for
any k bounded by the number of program inputs.

Another related yet orthogonal suggestion would be to belu
in the antecedent of post-processed alternate path conisiganer-
ated with higher-order test generation, not only all theutrgutput
value pairs observed for the current run, but also all valaiesp
observed duringll previousruns.

6. Discussion: Implementability

As explained in the introduction, the main purpose of thipgra
is to carefully study the power of recent test generatiohni@gies

such as DART which are quickly gaining popularity. It is ateo
understand the fundamental difference between static amahaic

test generation. In the process, we proposed higher-cedegéen-
eration as a powerful test generation technique genearglsbund
concretization. How practical is higher-order test getien@

For large applications such as those targeted by whitebox

fuzzing [16], exhaustively trackingll sources of imprecision dur-
ing symbolic execution is problematic. Such imprecision te
due to unhandled individual instructions (for instance,¢cbmplete
x86 instruction set contains hundreds of instructions ilesd in
a 1,000+ pages manual with exotic bit-manipulations, fiagti
point/SSE instructions, etc.), operating-system calisd kernel
execution be symbolic and if so up to what depth?), compleg-fu
tions (for hashing, encrypting, compressing, encodingCafy
data), etc. For instance, a single symbolic execution ofEwith
45K input bytes executes nearly a billion x86 instructioses(Fig-
ure 6 of [16]), including many input-tainted unhandled oaesl
many system calls. Moreover, some of this imprecision isl liar

capture using uninterpreted functions because the reatifuns
may look nondeterministic and/or with complex or unknowput
output signatures (such as malloc, rand, fork, etc. whi&e &s
inputs large/unknown parts of the operating-system stadenaay
have many hidden side effects). Finally, capturing at etteadime
all observed input-output value pairs is problematic as wadt. F
large applications, all this would slow down an already stym-
bolic execution and generate gigantic path constraintswioald
overwhelm even the best engineered constraint solvers.

Therefore, we envision a mofecused roldor higher-order test
generation in practice, targeted at reasoning about spesr-
identified complex or unknown functions that must be deathwi
in order to properly test an application. One such apphbcais
presented in the next section.

Another obstacle to the implementability of higher-ordestt
generation is the relative lack of support for generatintiditst
proofs by existing constraint solvers such as SMT solveideéd,
a first-order logic formulaX : ¢(F, X) can be proved valid by
checking whether its negationX : —¢(F,X) is unsatisfiable
with a SatisfiabilityModulo-Theories solver. For first-order logic
formulas like those considered here, validity (equivdienhsatis-
fiability) is usually proved using saturation techniquel Better
tool support for generating saturation-based proofs (st jnod-
els for satisfiable instances) that are parsable by othés vemuld
help extracting a test generation strategy from such prddtse
work is needed in this area. In fact, our paper can be viewed as
a “requirement specification” for next-generation SMT sod/for
test generation, a growing application area for those, bgamnting
higher-order test generation as a new possible applicidithose
tools.

7. Application

In this section, we present an application which requirespthwer
of high-order test generation: test generation for pansétsinput
lexers using hash functions for fast keyword recognition.

As observed in [14], dynamic test generation can be ineffect
when testing applications with highly-structured inpiEsamples
of such applications are compilers and interpreters. Tlapgpd-
cations process their inputs in stages, such as lexingingaasid
evaluation. Unfortunately, lexers often detect languaggniords
by comparing their pre-computed hash values with the hakh va
ues of strings read from the input. This effectively pregesym-
bolic execution and constraint solving from ever genegatinput
strings that match those keywords since hash functionsotdre
inversed (i.e., given a constraint== hash(y) and a value fok,
one cannot compute a value fptthat satisfies this constraint). In
those cases, test generation is defeated already in thprficstss-
ing stages.

A typical code pattern is shown in Figure 4 in the appendix.
This C code is an excerpt from the open-source flex lexerallyit
the functionaddsym is called with every input-language keyword
so that each of those are hashed (with functi@aehfunct) and
stored in a hash tableable. Once the hash table is populated, the
parsing of the input starts. The input is being divided intortks
delimited by blank-spaces/tabs/etc. Each of those churgk¢han
parsed and the functidhindsym is called to check whether a chunk
matches a keyword.

Because of the presence of functissshfunct, dynamic test
generation may not be able to generate input strings (“ctiink
matching specific keywords. In [14], it is shown how such aopro
lematic lexer can be bypassed altogether for test gensrafithe
subsequent input-processing stages by (1) instrumermdeker
so that its returmnsymbol values become symbolic inputs during
symbolic execution, and (2) lifting the input space from retta
ter strings to sequences of symbols (token ids) using a geamm



specification of the input language being parsed. Unfotaipan-
strumenting a lexer this way can be problematic for comperis,
and this approach requires a user-supplied input-grampeaifs
cation.

In contrast, higher-order test generation provides a mote-a
mated approach to test generation through such lexers. &yhieuk
only thing the user is required to specify is the name of thefu
tion hash (like hashfunct or possibly a hash-function wrapper
like findsym in the example of Figure 4) whose calls are then
tracked during symbolic execution and represented usingran
interpreted function exactly as described in Section 4.if@uini-
tialization, all the pairghashvalue, hash(keyword)) are being
recorded to be included in the antecedent of post-procgsatd
constraints. Whenever test generation needs a specificabytmb
drive the parser through a new specific program branch, the th
ory of equality with uninterpreted functions combined wéththe
input-output value pairs recorded fansh makes it possible to
effectively “inverse” this hash function for the finitely ma key-
words of the input language, which is sufficient for test gatien
for such applications. For instance, when an assignmetenséant
of the formsymbol = hash(inputChunk) is followed by a con-
ditional statement of the formf (symbol 52) ..., observ-
ing thathash(’while’) = 52 is sufficient for higher-order test
generation to generate aaputChunk equal towhile in order to
exercise thehen branch of the conditional statement.

In the context of test generation, uninterpreted functioage
been used for representing symbolic test summaries in ceimpo
tional symbolic execution [1, 17]. There, a function sumynisr
represented by a first-order logic formula using an unimetgal
function symbol representing the function. A function suamynis
defined as a disjunction (i.e., a set) of intraprocedurah gain-
straints expressed in terms of the function inputs and asitpuinc-
tion summaries can be computed incrementally, to includeemo
and more intraprocedural path constraints as they are \dised
during a directed search. Test generation with functionrsaries
is performed as usual by a satisfiability check, where alhtamt
preted functions are therefore implicitly existentiallyagtified.
This use of uninterpreted functions for function summaisethus
different from their use in higher-order test generatiorevehun-
interpreted functions represent imprecision in symbakiecaition
in individual path constraints. Both types of uninterpreted func-
tions could actually be used simultaneously, as they an@ganal,
for “higher-order compositional test generation”. Notattifunc-
tion summaries do not have to be represented using unietetbr
functions, and can be encoded directly in propositionalclag-
stead [11].

We do not know of any other work where tests are derived from
validity proofs, or where uninterpreted functions are usechodel
imprecision in symbolic executidior test generation

The (implicit) alternation of universal function quantieand

Note that, in some lexers, hash values are pre-computed andexistential variable quantifiers in our post-processech pain-

hard-coded in the source code. Then, it is not possible terebs
at execution time all relevant input-output value pairssiach hash
functions at the beginning of each execution. However, sujoht-
output pairs could still be “learned” over time by startihg testing
session with a representative set of well-formed inputsepbing
the hash values of all the language keywords those inputsioon
and then using all pairs recorded in all previous executions
subsequent symbolic executions.

We have performed preliminary experiments with highereord
test generation in such a targeted manner in conjunction thé
whitebox fuzzer SAGE [16] and using the Z3 SMT solver [9].¢&in
Z3 does not support the generation of saturation-basedgtbese
experiments were conducted with an ad-hoc pre-procestpgs
eliminate uninterpreted functions in path constraint®betalling
Z3 for a satisfiability check as usual: (1) all uninterprefadc-
tion samplesi(c1) = c2 are collected in a tabléOr (wherec;

straints can be viewed as a game between an unknown environ-
ment (controlling the unknown functions) and a test gewerat
(controlling test inputs). To view test generation as a gameot

new [5, 25]. Model-driven test generation for conformanest-t

ing, i.e., checking whether a blackbox implementation ooms

to a whitebox specification, can be viewed as a game and, under
specific assumptions, can be encoded logically using diemti
alternation, for instance using Quantified Boolean Forsuthow-

ever, we are not aware of any work on model-based test gémerat
using uninterpreted functions or validity proofs of firstler logic
formulas as in our work.

Given a program and a set of input parameters, test genera-
tion refers to the problem of generating input tests in otdex-
ercise a specific program path, branch or statement. Inasintr
static, dynamic and higher-order test generation den@eifspap-
proaches to solving the test generation problem. Test gdoeris

andc» denote constants), and then (2) whenever a constraint of theonly one way of proving existential reachability propesti pro-

form h(z) = c2 occurs in a path constraint, it is replaced by a
disjunction of constraints = ¢; for all ¢; such thath(c1) = c2
(to handle hash collisions). This procedure is simple tolémgnt
but handles only limited cases and is far from simulatingfthie
reasoning power of U 7gyr. Nevertheless, experiments with a
simple parser including a lexer similar to Figure 4 show tha
partial implementation of higher-order test generatiosuficient

to accurately drive program executions through the lexecdn-
trast, regular dynamic test generation is no better thaokblka
random testing because it is not able to drive executioraugir
tests involving the hash function in the lexer.

8. Other Related Work

Abstracting program functions using uninterpreted fuotdiis a
well-known technique in verification-condition generatior pro-
gram verification of universal properties (e.g., [4]). laticontext,
the set of all program behaviors is over-approximated iisgmee
of program-analysis imprecision, and verification is elsshled by
checking the validity of a logic formula representing thérempro-
gram (or module). Uninterpreted function symbols in therfola
are therefore implicitly universally quantified as in ournko

grams, where specific concrete input values are generatxckto
cise specific program paths. More generally, such prosectie be
proved using so-calleshust abstractionsf programs, without nec-
essarily generating concrete tests. A must abstractioafisetl as
a program abstraction that preserves existential readiyabbper-
ties of the program. For instance, in predicate abstra¢tidnl7],
amust transitionfrom an abstract statd; to an abstract statd,
implies that

Ver € Ay :des € As i1 — o

that is, for every concrete state abstracted byA,, there exists

a program execution from; to a concrete state, such thatc,

is abstracted byd.. Must transitions can be chained together to
prove existential reachability properties of progranes, find bugs

in a sound mannerSound path constraints are particular cases of
must abstractions [17]. Note the analogy between the altiem

of universal and existential quantifiers in the definitionnofist
transition and in our post-processed path constraints.

Other related work includes [8, 18] where must abstractions
are built backwards from error states using static prograalya
sis. This approach can detect program locations and stabes p
ably leading to error states (no false alarms), but may dgilrove
reachability of those error states back from whole-prognaitrel



states, and hence may miss bugs or report unreachable ttes.s
Imprecision in symbolic reasoning, e.g., due to systensa@alun-
known functions, is modeled by assigning nondeterminisilces
to all possible modified (output) variables, which is lessgmse
than using uninterpreted functions yet still assumes dthawn
functions have known sets of possible outputs/side-effeguild-
ing must abstractions statically can be fast but requiresbsyic
reasoning about the whole program. On the other hand, dgnami
test generation is slower but more precise by allowing syimiea-
ecution to degrade gracefully using concrete runtime \&iueen-
ever symbolic reasoning is difficult.

Static test generation can be extended to concretize syanbol
values whenever static symbolic execution becomes imga¢td].
This approach not only requires to detect all sources ofétipion,
but also one call to the constraint solver for each conagtin to
ensure that every synthesized concrete value satisfies gymo-
bolic constraints along the current program path. For tlasaoes
discussed in Section 6, such requirements are not prafdidarge
applications. In contrast, dynamic test generation avibidse two
limitations by leveraging a specific concrete executionraawo-
matic fall back for symbolic execution [15].

Dynamic test generation is currently an active area of resea
and many other extensions and applications have been mwpos
such as [2, 6, 10, 23, 24] to name just a few (see [7] for a recent
survey). This other related work does not specifically fomufow
to deal with imprecision in symbolic execution and could dfén
from the techniques introduced in our work.

9. Conclusion

We presented higher-order test generation, a powerful naw 6f
test generation, which can also be expensive as it requaelsing
explicitly sources of imprecision in symbolic executiosjng un-
interpreted functions, recording input-output functiamgples, and
checking validity of first-order logic formulas. We showealhthis
approach can perform novel forms of test generation, sunohués
step test generation, and drive the executions of inpuepsrsith
lexers using hash functions for fast keyword recognition.

We also showed that the key property of dynamic test genera-
tion that makes it more powerful than static test generatamly
its ability to observe concrete values and to record thogeath
constraints. In contrast, the process of simplifying carm@ym-
bolic expressions using concrete runtime values can beaety
simulated using uninterpreted functions. However, thaseiete
values are necessary to effectively compute new input v&cto
fundamental requirement in test generation.
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/* addsym— add symbol and definitions to symbol table

*

* —1 is returned if the symbol already exists, and the change natde.
*/

static int addsym (sym, stdef, int.def, table, tablesize)
register char sym[];
char xstr_def;
int int_def;
hashtable table;
int table_size;

int hashval = hashfunct (sym, tableize);
register struct hashentry xsym.entry = table[hashval];
register struct haslentry xnew_entry;

register struct haslentry xsuccessor;

while (sym.entry) {
if (!strcmp (sym, symentry—>name)) { /« entry already existssx/
return —1;
}

sym_entry = symentry—>next;

}

/% create new entrysx/
new.entry = (struct hashentry x)
flex_alloc (sizeof (struct haslentry));

if (new_entry == NULL)
flexfatal (-("symbol table memory allocation failed”));

if ((successor = table[hashkal]) != 0) {
new_entry—>next = successor;
successof>prev = newentry;

else
new_entry—>next = NULL;

new_entry—=>prev = NULL;
new.entry—>name = sym;
new_entry—>str_val = str.def;
new_entry—int_val = int_.def;

table[hashval] = new.entry;

return O;

}

/% findsym — find symbol in symbol tablex/

static struct hashentry «findsym (sym, table, tablesize)
register const charksym;
hashtable table;

int table_size;
{
static struct hashentry emptyentry = {
(struct hashentry «) 0, (struct hashentry %) O,
(char %) 0, (char x) 0, O,
i
register struct hashentry xsym_entry = table[hashfunct (sym, tableize)];
while (sym.entry) {
if (Istrcmp (sym, symentry—>name))
return symentry;
sym_entry = symentry—>next;
}
return &emptyentry;
}

Figure4. Code excerpt from the flex lexer (file sym.c, flex-2.5.35, keaby 2008).



