
Higher-Order Test Generation

Patrice Godefroid
Microsoft Research
pg@microsoft.com

Abstract
Symbolic reasoning about large programs is bound to be imprecise.
How to deal with this imprecision is a fundamental problem inpro-
gram analysis. Imprecision forces approximation. Traditional static
program verification builds “may” over-approximations of the pro-
gram behaviors to check universal “for-all-paths” properties, while
automatic test generation requires “must” under-approximations to
check existential “for-some-path” properties.

In this paper, we introduce a new approach to test generation
where tests are derived fromvalidity proofs of first-order logic
formulas, rather thansatisfying assignmentsof quantifier-free first-
order logic formulas as usual. Two key ingredients of thishigher-
order test generationare to (1) represent complex/unknown pro-
gram functions/instructions causing imprecision in symbolic ex-
ecution byuninterpreted functions, and (2) recorduninterpreted
function samplescapturing input-output pairs observed at exe-
cution time for those functions. We show that higher-order test
generation generalizes and is more precise than simplifying com-
plex symbolic expressions using their concrete runtime values. We
present several program examples where our approach can exer-
cise program paths and find bugs missed by previous techniques.
We discuss the implementability and applications of this approach.
We also explain in what sense dynamic test generation is more
powerful than static test generation.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Testing, Verification

Keywords Automatic Test Generation, Software Model Check-
ing, Uninterpreted Functions

1. Introduction
Automatic code-driven test generation aims at proving existential
properties of programs: does there exist a test input that can ex-
ercise a specific program branch or statement, or follow a specific
program path, or trigger a bug? Test generation dualizes traditional
program verification and static program analysis aimed at prov-
ing universal properties which holds for all program paths,such
as “there are no bugs of type X in this program”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

Symbolic reasoning about large programs is bound to be impre-
cise. If perfect bit-precise symbolic reasoning was possible, static
program analysis would detect standard programming errorswith-
out reporting false alarms. How to deal with this imprecision is a
fundamental problem in program analysis. Traditional static pro-
gram verification builds “may” over-approximations of the pro-
gram behaviors in order to prove correctness, but at the costof
reporting false alarms. Dually, automatic test generationrequires
“must” under-approximations in order to drive program executions
and find bugs without reporting false alarms, but at the cost of pos-
sibly missing bugs.

Most of the program analysis literature discusses program veri-
fication for universal properties. Yet, except for static type systems,
the biggest practical impact of program analysis so far has been bug
finding, not proving the absence of bugs. The study of effective pro-
gram verification techniques for existential properties (i.e., “sound
bug finding”) has recently experienced quite a resurgence. Acat-
alyst is arguably recent work on systematic dynamic test genera-
tion [15], and related extensions and tools (e.g., [2, 6, 17,23, 24]).
Over the last few years, these techniques have been made more
scalable [16], and have been used to find many new security vul-
nerabilities in Windows [12] and Linux [22] applications.

Work on automatic code-driven test generation can roughly be
partitioned into two groups:staticversusdynamictest generation.
Static test generation [20] consists of analyzing a programP stat-
ically, by reading the program code and using symbolic execution
techniques to simulate abstract program executions in order to at-
tempt to compute inputs to driveP along specific execution paths
or branches,without ever executing the program. On the other hand,
dynamic test generation[21] consists of executing the programP
starting with some given or random concrete inputs, gathering sym-
bolic constraints on inputs at conditional statements along the ex-
ecution, and then using a constraint solver to infer variants of the
previous inputs in order to steer the next execution of the program
towards an alternative program branch; this process can be repeated
with the goal ofsystematicallyexecuting all (or as many as possi-
ble) feasible program paths, while checking each executionusing
run-time checking tools (like Purify, Valgrind or AppVerifier) for
detecting various types of errors [15].

It is argued in [15] that dynamic test generation is more pow-
erful than static test generation because imprecision in symbolic
execution can be alleviated using concrete values and randomiza-
tion: whenever symbolic execution does not know how to generate
a constraint for a program statement depending on some inputs, one
can always simplify this constraint using the concrete runtime val-
ues of those inputs. To illustrate this point, consider the following
program example [11]:

int obscure(int x, int y) {
if (x == hash(y)) return -1; // error
return 0; // ok

}



Assume the constraint solver cannot “symbolically reason”about
the functionhash (perhaps because it is too complex or simply
because its code is not available). This means that the constraint
solver cannot generate two values for inputsx and y that are
guaranteed to satisfy (or violate) the constraintx == hash(y). In
this case, static test generation cannot generate test inputs to drive
the execution of the programobscure through either branch of
the conditional statement: static test generation ishelplessfor a
program like this. Note that, for test generation, it is not sufficient
to know that the constraintx == hash(y) is satisfiable forsome
values ofx andy, it is also necessary to generatespecific valuesfor
x andy that satisfy or violate this constraint.

In contrast, dynamic test generation can easily generate, for a
fixed value ofy, a value ofx that is equal tohash(y) since the latter
concrete value is known at runtime. By picking randomly and then
fixing the value ofy, we can, in the next test execution, set the value
of the other inputx either tohash(y) or to something else in order
to force the execution of the then or else branches, respectively, of
the test in the functionobscure.

In summary, static test generation is unable to generate test
inputs to control the execution of the programobscure, while
dynamic test generation caneasily drive the executions of that
same program through all its feasible program paths. In realistic
programs, imprecision in symbolic execution typically creeps in in
many places, and dynamic test generation allows test generation
to recover from that imprecision. Dynamic test generation can be
viewed as extending static test generation with additionalruntime
information, and is therefore more general and powerful.

But how much more powerful? How often can this concretiza-
tion trick be used? It would not work in the case of a constraint like
hash(x)==hash(y)+1. Does there exist an algorithm to determine
in which cases concretization “works” and when it does not? Can
concretization be modeled symbolically and therefore simulated by
static symbolic execution and test generation? If so, what is the fun-
damental difference between static and dynamic test generation?
Can one formalize both andprove(and clarify how and why) they
are different? Is it possible to deal with imprecision in symbolic
reasoning differently, in order to enable even more powerful test
generation?

The purpose of this paper is to answer all these questions, which
are central to test generation and program analysis. We start by
carefully formalizing “concretization” as introduced in [15], and
show that it may or may not generate sound path constraints (Sec-
tion 3). We then introduce (Section 4) a new more general form
of test generation, which we callhigher-orderbecause it uses a
higher-order logic representation of program paths. Higher-order
test generation usesuninterpreted functionsto represent unknown
functions or instructions during symbolic execution, records un-
interpreted function samplescapturing concrete input-output pairs
observed at execution time for those functions, and generates new
test inputs fromvalidity proofsof first-order logic formulas with
uninterpreted functions. We then show (in Section 5) that higher-
order test generation can not only fully “simulate” concretization
when the latter is done in a sound manner, but that it is also more
general and powerful. We discuss how to implement this approach
in practice in Section 6, and present an application (in Section 7)
which requires the power of higher-order test generation: parsers
with input lexers using hash functions for fast keyword recognition.
We conclude (in Section 9) by clarifying in what sense dynamic test
generation is more powerful than static test generation.

2. Background: Systematic Dynamic Test
Generation

Dynamic test generation (see [15] for further details) consists of
running the programP under test both concretely, executing the
actual program, and symbolically, calculating constraints on values
stored in program variablesv and expressed in terms of input pa-
rameters. Side-by-side concrete and symbolic executions are per-
formed using a concrete storeM and a symbolic storeS, which
are mappings frommemory addresses(where program variables
are stored) to concrete and symbolic values respectively. Asym-
bolic value is any expressione in some theoryT where all free
variables are exclusively input parameters. For any program vari-
ablev, M(v) denotes theconcrete valueof v in M , while S(v)
denotes thesymbolic valueof v in S. For notational convenience,
we assume thatS(v) is always defined and is simplyM(v) by de-
fault if no symbolic expression in terms of inputs is associated with
v in S. WhenS(v) is different fromM(v), we say that that pro-
gram variablev is “symbolic”, meaning that the value of program
variablev is a function of some input(s) which is represented by the
symbolic expressionS(v) associated withv in the symbolic store.
We also extend this notation to allowM(e) to denote the concrete
value of symbolic expressione when evaluated with the concrete
storeM . The notation+ for mappings denotes updating; for ex-
ample,M ′ = M + [m 7→ e] is the same map asM , except that
M ′(m) = e.

The programP manipulates the memory (concrete and sym-
bolic stores) through statements, orcommands, that are abstrac-
tions of the machine instructions actually executed. We assume a
command can be anassignmentof the formv := e (wherev is a
program variable ande is an expression), aconditional statement
of the formif e then C′ else C′′ wheree denotes a boolean
expression, andC′ andC′′ denote the unique1 next command to
be evaluated whene holds or does not hold, respectively, orstop
corresponding to a program error or normal termination.

Given an input vectorI assigning a concrete valueIi to the i-
th input parameter, the evaluation of a program defines a unique

finite2 program executions0
C1→ s1 . . .

Cn→ sn that executes the
finite sequenceC1 . . . Cn of commands and goes through the finite
sequences1 . . . sn of program states. Eachprogram stateis a tuple
〈C, M, S, pc〉whereC is the next command to be evaluated, andpc
is a special meta-variable that represents the current pathconstraint.
For a finite sequencew of commands (i.e., a control pathw), apath
constraintpcw is a quantifier-free first-order logic formula over
theoryT that is meant to characterize the input assignments for
which the program executes alongw. The path constraint issound
and completewhen this characterization is exact, i.e., when the two
following conditions are satisfied.

DEFINITION 1. A path constraintpcw is soundif every input as-
signment satisfyingpcw defines a program execution following
pathw.

DEFINITION 2. A path constraintpcw is completeif every input
assignment following pathw is a satisfying assignment, ormodel,
of pcw.

Path constraints are generated during dynamic symbolic exe-
cution by collecting input constraints at conditional statements, as
illustrated in Figure 2. Figure 1 illustrates how to symbolically
evaluate expressionse occurring in individual program instructions
(line 14 should be ignored for now). The notation&v denotes the

1 We assume program executions are sequential and deterministic.
2 We assume program executions terminate. In practice, a timeout prevents
non-terminating program executions and issues a runtime error.



1 e va lSymbo l i c (e ) =
2 match (e ) :
3 c a s e v : / / Program v a r i a b l ev

4 r e t u r n S(&v)
5 c a s e +(e1 , e2 ) : / / Add i t i on
6 f1 = e va lSymbo l i c (e1 )
7 f2 = e va lSymbo l i c (e2 )
8 i f f1 and f2 a re c o n s t a n t s
9 r e t u r n e v a l C o n c r e t e (e )

10 e l s e
11 r e t u r n c r e a t e E x p r e s s i o n (′+′ ,f1 ,f2 )
12 e t c .
13 d e f a u l t : / / d e f a u l t f o r unhand led e x p r e s s i o n
14 / / pc = pc ∧

V

xi∈e
(xi = Ii)

15 r e t u r n e v a l C o n c r e t e (e )

Figure 1. Symbolic expression evaluation.

1 Procedure e xe c u te Symbo l i c (P ,I ) =
2 i n i t i a l i z e M0 and S0

3 pa th c o n s t r a i n tpc = t r u e
4 C = getNextCommand ( )
5 wh i l e (C 6= s t o p )
6 match (C ) :
7 c a s e (v := e ) :
8 M = M + [&v 7→e v a l C o n c r e t e(e)]
9 S = S + [&v 7→e va lSymbo l i c(e)]

10 c a s e ( i f e t he n C′ e l s e C′′ ) :
11 b =e v a l C o n c r e t e(e)
12 c =e va lSymbo l i c(e)
13 i f b t he n pc = pc ∧ c

14 e l s e pc = pc ∧ ¬c

15 C = getNextCommand ( ) / / end of wh i l e loop

Figure 2. Symbolic execution.

address at which the value of program variablev is stored. To sim-
plify the presentation, we assume that all program variables have
some unique initial concrete value in the initial concrete storeM0,
and that the initial symbolic storeS0 identifies the program vari-
ablesv whose values are program inputs (for all those, we have
S0(v) = xi wherexi is the symbolic variable corresponding to
the input parameterIi). Initially, pc is defined totrue. By con-
struction, all symbolic variables appearing inpc are variablesxi

corresponding to program inputsIi.
Systematic dynamic test generation [15] consists of systemati-

cally exploring all (or in practice many) feasible control-flow paths
of the program under test by using path constraints and a constraint
solver. Given a program states = 〈C, M, S, pc〉 and a constraint
solver for theoryT , if C is a conditional statement of the form
if e then C′ else C′′, any satisfying assignment of the for-
mulapc ∧ c (respectivelypc ∧ ¬c) wherec = evalSymbolic(e) in
states, defines program inputs that will lead the program to exe-
cute thethen (resp.else) branch of the conditional statement. By
systematically repeating this process, such adirected searchcan
enumerate (in theory) all possible path constraints and eventually
execute all feasible program paths.

The search is exhaustive provided that the generation of thepath
constraint (including the underlying symbolic execution)and the
constraint solver for the given theoryT are bothsound and com-
plete, that is, for all program pathsw, the constraint solver returns
a satisfying assignment for the path constraintpcw if and only if
the path is feasible (i.e., there exists some input assignment lead-
ing to its execution). If those conditions hold, in additionto find-
ing errors such as the reachability of bad program statements (like
assert(false)), a directed search can also prove their absence,
and therefore obtain a form of programverification.

THEOREM1. (adapted from [15]) Given a programP as defined
above, a directed search using a path constraint generationand a
constraint solver that are both sound and complete exercises all
feasible program paths exactly once.

Thus, if a program statement has not been executed when the search
is over, this statement is not executable in any context. In practice,
path constraint generation and constraint solving are usually not
sound and complete.

Note that the above formalization and theorem do apply to
programs containing loops or recursion, as long as all program
executions terminate. However, in the presence of a single loop
whose number of iterations depends on some unbounded input,
the number of feasible program paths becomes infinite. In practice,
search termination can always be forced by bounding input values,
loop iterations or recursion, at the cost of potentially missing bugs.

3. Sound and Unsound Concretization
3.1 Concretization and Must Abstraction

When a program expression cannot be expressed in the given theory
T decided by the constraint solver, it can be simplified using
concrete values of sub-expressions, or replaced by the concrete
value of the entire expression. This case corresponds to line 13
of Figure 1. Let us callconcretizationthe process of replacing a
symbolic expression by its current concrete value during dynamic
symbolic execution.

In the presence of concretizations, path constraint generation is
in general no longer “sound and complete” since constraintsbe-
come approximate and path constraints no longer capture accu-
rately program path feasibility. (In the original DART algorithm
of [15], some completeness flag would then be set off and the outer
loop in Figure 2 of [15] would run forever.) Moreover, Theorem 1
no longer holds since its assumptions are no longer satisfied.

Loosely speaking, concretizing a symbolic expression under-
approximates its set of possible values by a singleton set containing
its unique current runtime value. In that sense, concretization can
be viewed as a“must abstraction”which issound for bug-finding.
Must abstractions capture existential reachability properties that
hold onsomebut not all program executions.

A sound path constraint (see Definition 1) is an example of
must abstraction [17]. Note that, if a sound path constraintpcw is
satisfiable,thenthe corresponding program pathw is feasible. But
the converse does not necessarily hold: an algorithm for generating
sound path constraints may fail to generate path constraints for
some feasible program paths, and hence may fail to exercise some
code and may miss bugs.

3.2 Unsound Concretization

Strictly speaking, however, concretization alone does notguarantee
a sound path constraint generation. Consider the followingprogram
example.

int foo(int x, int y) {
if (x == hash(y)) {
...
if (y == 10) return -1; // error

}
...

}

Assume that the functionhash is “unknown”, that the program
is run with the input valuesx=567 and y=42, that hash(42) is
567, and hence that the execution takes thethen branch of the first
conditional statement. The path constraint generated by the DART
algorithm of Figures 1 and 2 (i.e.,without line 14 of Figure 1) is

x = 567 ∧ y 6= 10



Indeed, the expressionhash(y) which (we assume) is outside
T is replaced by its concrete value 567 by line 15 of Figure 1.
But the algorithm does not “record” this concretization at the first
conditional statement, and allows a symbolic constrainty 6= 10 to
be generated ony later on. This path constraint correctly captures
the current concrete execution (sincex is indeed 567 andy is
indeed different from 10 for this run), but it isnot sound: for x equal
to 567 and some value ofy different from 10, the input assignment
satisfies the path constraint but does not define a program execution
following the same execution path ifhash(y) is not 567.

By negating the last constraint of this unsound path constraint
and solving the new path constraint

x = 567 ∧ y = 10

one gets a new test input that should drive the program towards the
error, but results instead in adivergence[15], i.e., an unexpected
program path being taken ifhash(10) is different from 567.

The risk of divergences in the presence of unsound path con-
straints is not a new observation: it is discussed in [15] andmoti-
vates the need for comparing the actual path taken by the program
under test with the expected pathw derived from each path con-
straintpcw. When additional constraints are automatically injected
in path constraints for checking additional program properties such
as the absence of buffer overflows, every new test input generated
violating such injected constraints should be executed to confirm
the bug before reporting it to the user, in order to avoid reporting
false alarms due to divergences from unsound path constraints.

3.3 Sound Concretization

To generate sound path constraints, we propose the following new
variant of the DART algorithm: whenever a symbolic expression e
is concretized during symbolic execution, for all symbolicvariables
xi occurring ine, a newconcretization constraintxi = Ii is added
to the path constraint, as illustrated in line 14 of Figure 1,which
we now assume is un-commented. This implies that the value of
each such symbolic variablexi is fixed to a constant equal to the
corresponding current input valueIi below in the path constraint.
Let us call this proceduresound concretization.

Indeed, we now show that sound concretization results in sound
path constraints.

THEOREM 2. The algorithm of Figures 1 and 2with sound con-
cretization, i.e., including line 14 of Figure 1, generatessound path
constraints.

Proof: The proof relies on the assumption that all sources of impre-
cision in symbolic execution are detected and trigger thedefault
case in the procedureevalSymbolic shown in Figure 1. In ev-
ery such case, line 14 is executed and a concretization constraint is
injected in the path constraint. Otherwise, in all other cases, sym-
bolic execution of individual instructions (assignments or condi-
tional statements) is assumed to be precise, i.e., both sound and
complete.

Consider a path constraintpcw generated by this algorithm
during the execution of a program pathw with an input vector
I = 〈Ii|∀i〉. For every symbolic variablexi (generalizing program
input Ii) occurring inpcw, two cases are possible. Either there
is a concretization constraint forcingxi to be equal toIi. Or all
constraints onxi in pcw are both sound and complete (symbolic
execution is precise so far for all individual instructionsinvolving
xi). Either way, all values ofxi satisfyingpcw satisfy all the tests
on inputs alongw and hence lead to a program execution following
the same pathw. Since the same argument holds for all symbolic
variablesxi, pcw is sound.

Unlike ordinary constraints derived from conditional statements
executed by the program under test, concretization constraints

should not be negated later in the directed search, because negating
these constraints will not define alternate path constraints corre-
sponding to new program paths. The only purpose of concretization
constraints is to guarantee soundness of path constraints.

EXAMPLE 1. Consider again the example of functionfoo shown
in Section 3.2. Assume again we run with program with inputs
x=567 and y=42, and thathash(42) is 567. With sound con-
cretization, a concretization constrainty = 42 is generated when
symbolically evaluatinghash(y) in the first conditional statement,
and dynamic symbolic execution generates the sound path con-
straint

y = 42 ∧ x = 567 ∧ y 6= 10

After negating the last constraint, the resulting constraint

y = 42 ∧ x = 567 ∧ y = 10

is not satisfiable, and no new test is generated to try to coverthe
then branch of the second conditional statement.

Sound concretization generates sound path constraints andelim-
inates divergences. But in practice, sound concretizationis not nec-
essarily “better” than DART’s default unsound concretization, for
two reasons.

First, a drawback of sound concretization is that it reducesthe
ability to generate new tests.

EXAMPLE 2. Consider the following program using the same
hash function:

int foo-bis(int x, int y) {
if (x != hash(y)) {
...
if (y == 10) return -1; // error

}
...

}

Assume the program is run with inputsx=33 andy=42, and that
hash(42) is 567. Sound concretization generates the sound path
constraint

y = 42 ∧ x 6= 567 ∧ y 6= 10

After negating the last constraint, the resulting constraint

y = 42 ∧ x 6= 567 ∧ y = 10

is not satisfiable, no new test is generated to try to cover the
then branch of the second conditional statement, and the error
is missed. In contrast, unsound concretization would generate the
path constraint

x 6= 567 ∧ y 6= 10

After negating the last constraint, a constraint solver would easily
solve the (unsound) path constraint

x 6= 567 ∧ y = 10

and generate a new test that islikely (but not guaranteed) to hit the
error, assuminghash(10) is likely different from the value ofx
whatever its value is. This is an example of a“good divergence”.

Second, and perhaps most importantly, sound concretization is
much harder to implementthan unsound concretization, since it
requires detecting explicitlyall sources of imprecision in sym-
bolic execution — including conservatively estimating allpos-
sible inputs and outputs of all individual instructions andall
unknown/library/operating-system functions used by the program
under test —, while unsound concretization can simply be imple-
mented by handling some program instructions and ignoring the
others.



Finally, note that adding line 14 of Figure 1 is just one way toin-
ject concretization constraints and that other variants are possible.
For instance, the injection of concretization constraintsfor sym-
bolic variablesxi occurring in a concretized expressione could be
delayed during symbolic execution untile is actually being used
in some constraint (if any) in the path constraintpcw. This way,
examples such as

...
x := hash(y);
if (y == 10) return -1; // error
...

could be handled with sound concretization by postponing injecting
a concretization constraint fory from whenhash(y) is computed
to when program variablex is being tested (if at all), and a con-
straint to cover the other branch of the test(y == 10) could be
generated and solved.

4. Higher-Order test Generation
We now introduce a more general form of test generation, which we
call higher-orderbecause it uses a higher-order logic representa-
tion of path constraints. Higher-order test generation requires three
steps:

1. uninterpreted functions are used to represent unknown func-
tions or instructions during symbolic execution;

2. new test inputs are derived from validity proofs of first-order
logic formulas with uninterpreted functions;

3. concrete input-output value pairs need be recorded as uninter-
preted function samples that are used when generating new con-
crete test inputs.

We now discuss these three steps in detail one by one.

4.1 Symbolic Execution with Uninterpreted Functions

Another well-known approach for reasoning about unknown func-
tions is to represent those usinguninterpreted functions. Figure 3
presents a more general algorithm for dynamic symbolic execution
where unknown functions or instructions are representedexplicitly
using uninterpreted function symbols. This algorithm extends the
standard symbolic execution procedure of Figure 2 with the new
lines marked with*. Whenever an unknown function or instruction
f is encountered during symbolic execution (line 10 of Figure3),
an uninterpreted function symbolf uniquely representing the func-
tion/instruction is used to represent the symbolic return value of
the function call, which is defined as the application of the func-
tion to its symbolic input arguments (line 12). Symbolic execution
resumes after the function returns.

By unknown function, we mean any function whose code is not
available or not precisely representable by a symbolic expression of
the theoryT handled by the constraint solver for whatever reason
(such as hash or crypto functions, operating-system functions, en-
vironment/library functions outside of the main scope of analysis,
etc.). Similarly, by unknown instruction, we mean any atomic pro-
gram instruction not handled by the symbolic evaluation procedure,
i.e., involving some symbolic expression previously concretized in
line 13 of Figure 1. For simplicity, we represent such unknown in-
structions by uninterpreted functions as well; line 13 of Figure 1 is
thus no longer reachable, by construction, with the new algorithm.3

In Figure 3,args denotes a list of arguments. Each argument
is a variablev whose value is an input to the function call (we
consider a call-by-value function model here, for simplicity).

3 Any symbolic expressione including an unknown function/instruction ap-
plicationf(args) as sub-expression is equivalent tovf(args) := f(args)

followed bye wheref(args) is replaced byvf(args).

Consider again the example of functionfoo shown in Sec-
tion 3.2. When symbolically executing the first conditionalstate-
ment(x == hash(y)), a fresh uninterpreted function symbolh
is introduced to represent the unknown functionhash. If the then
branch of the first conditional statement is taken, the path constraint
generated is then

x = h(y)

The new symbolic execution performed by the algorithm of Fig-
ure 3 typically generates more symbolic values than the standard
symbolic execution procedure of Figure 2, since it represents un-
known functions with “symbolic” uninterpreted functions instead
of using concretization and falling back on concrete values. There-
fore, the new algorithm typically generates more symbolic con-
straints in the path constraintpc (lines 17 and 18). We can prove
that those path constraints are always sound.

THEOREM3. The algorithm of Figure 3 generates sound path con-
straints.

Proof: The proof relies on the assumption that all sources of im-
precision in symbolic execution are detected in line 10 of the pro-
cedureexecuteSymbolic in Figure 3 and are representable by un-
interpreted functions (line 12), which implies that every unknown
function/instruction is deterministic and with a known input-output
signature. For all other cases, symbolic execution of individual in-
structions (assignments or conditional statements) is assumed to be
precise, i.e., both sound and complete.

Consider a path constraintpcw generated by this algorithm
during the execution of a program pathw with an input vector
I = 〈Ii|∀i〉. At any time during the symbolic execution along
w, all direct dependencies on inputs are tracked precisely via the
symbolic store, either in sound and complete manner via the pro-
cedureevalSymbolic of Figure 1, or using uninterpreted function
applications. Therefore, at every conditional statementC executed
alongw, if a constraintc involving some symbolic variablexi is
added inC to the path constraintpcw, all input values ofxi satis-
fying c take the same branch as the current concrete valueIi of xi.
Since the same argument holds for all symbolic variablesxi and all
symbolic constraints inpcw, every input assignmentI ′ satisfying
the path constraintpcw defines a program execution following the
given pathw, which means thatpcw is sound.

The previous theorem states that,if an input assignment satisfies
a path constraintpcw generated by the algorithm of Figure 3,
then the corresponding program execution will follow pathw.
For instance, considering again our running example, any input
assignment to the variablesx andy that satisfies the path constraint
x = h(y) will take thethen branch of the conditional statement
in function foo. But this result alone does not prescribehow to
compute such values and generate tests from path constraints with
uninterpreted function symbols. This problem is discussednext.

4.2 Generating Tests from Validity Proofs

When uninterpreted functions are used in path constraints to model
imprecision in symbolic execution, test generation from such path
constraintsmustbe performed fromvalidity proofs, instead of sat-
isfiability proofs, as will be shown shortly. This requires path con-
straints to bepost-processedbefore calling the validity checker:
every ordinary symbolic variable representing a program input is
existentially quantified, resulting in a first-order logic formula of
the form

∃x : φ(f, x)

while every uninterpreted function symbolf is implicitly left uni-
versally quantifiedin the validity check. Remember that first-order
logic does not allow explicit quantification over functions: univer-
sal function quantification is implicit when checking validity, while



1 Procedure e xe c u te Symbo l i c (P ,I ) =
2 i n i t i a l i z e M0 and S0

3 pa th c o n s t r a i n tpc = t r u e
4 C = getNextCommand ( )
5 wh i l e (C 6= s t o p )
6 match (C ) :
7 c a s e (v := e ) :
8 M = M + [&v 7→e v a l C o n c r e t e(e)]
9 S = S + [&v 7→e va lSymbo l i c(e)]

10 ∗ c a s e (v := f(args) ) : / / f i s an unknown f u n c t i o n or i n s t r u c t i o n
11 ∗ M = M + [&v 7→e v a l C o n c r e t e(f(args))]

12 ∗ S = S + [&v 7→ c r e a t e E x p r e s s i o n (′f ′ , e va lSymbo l i c (args ) ) ]
13 ∗ Add (M(&v), c r e a t e E x p r e s s i o n (′f ′ , e v a l C o n c r e t e (args ) ) ) t o IOF ;
14 c a s e ( i f e t he n C′ e l s e C′′ ) :
15 b =e v a l C o n c r e t e(e)
16 c =e va lSymbo l i c(e)
17 i f b t he n pc = pc ∧ c

18 e l s e pc = pc ∧ ¬c

19 C = getNextCommand ( ) / / end of wh i l e loop

Figure 3. Symbolic execution with uninterpreted functions.

existential function quantification is implicit when checking satis-
fiability.4

We emphasize that representing unknown functions by uninter-
preted function symbols in validity queries isnot new in program
verification. Indeed, forverification, the set of possible behaviors
of unknown functions needs to beover-approximatedto guaran-
tee amayabstraction that can be used to provecorrectness, hence
the use of (implicit)universal quantification. However, what is new
here (to the best of our knowledge) is our use of (implicit)univer-
sal quantificationfor uninterpreted function symbols fortest gen-
eration, instead of (implicit)existential quantificationwith satisfi-
ability queries as usual in the context of test input generation. We
discuss this further in Section 8.

We now illustrate this important difference, and why we need
it. Consider again the example of theobscure function used in the
introduction:

int obscure(int x, int y) {
if (x == hash(y)) return -1; // error
return 0; // ok

}

Let us assume again that the functionhash is “unknown”, that the
program is run first with the input valuesx=33 andy=42, and that
hash(42) is 567 and hence that the first execution takes theelse
branch of the conditional statement. With the standard symbolic
execution of Figure 2, the single constraint appearing in the path
constraintpc is

x 6= 567

Next, thesatisfiabilityof the negation of this constraint, namely

x = 567

is checked by the constraint solver. Since it is satisfiable,the sat-
isfying assignment returned by the constraint solver is transformed
into a new input vector, namelyx=567 andy=42, that will drive the
next execution of the program along thethen branch of the condi-
tional statement. Note how input variablex is existentially quanti-
fied in thesatisfiability checkperformed by the constraint solver.

In contrast, with the new symbolic execution procedure of Fig-
ure 3, the single constraint appearing in the path constraint is now

x 6= h(y)

4 A logic formula is satisfiableif there exists a variable assignment that
makes the formula true, and it isvalid if all variable assignments make the
formula true.

whereh denotes the uninterpreted function symbol representing the
unknown functionhash. After post-processing, thevalidity of the
formula

∃x, y : x = h(y)

is checked by the constraint solver (i.e., for allh). If the formula is
valid, a test-generation strategyis derived from thevalidity proof
of the formula, viewed as a strategy for making the formula always
true. In this case, the formula is valid and the strategy is

“fix y, then setx to the valueh(y)”.

In other words, with the new algorithm, new tests are derivedfrom
validity proofs, instead ofsatisfying assignmentsas usual.

Indeed, we have no choice: if uninterpreted functions are used
to model imprecision in symbolic execution, test generation can
no longer be performed from satisfiability checks. In the above
example, checking the satisfiability of the formula

x = h(y)

(whereh, x andy are thus all implicitly quantified existentially)
may return satisfying assignments that are unusable for test gen-
eration since the existential quantifier overh allows the constraint
solver toinventsome specific arbitrary functionh that helps it prove
satisfiability. For instance, the constraint solver may define function
h such thath(0) = 0 and then returnx=0 andy=0 as satisfying
assignments. Since such a functionh may differ from the specific
unknown functionhash called in the program under test, sound test
generation is not possible when existentially quantifyingh.

4.3 The Need for Uninterpreted Function Samples

Test strategies derived from validity proofs arenecessary but not
sufficient to compute concrete input vectors, which is required
in test generation. For instance, with the above test strategy, the
“value h(y)” is not derived from the validity proof: a concrete
value for x can be obtained only when some values fory and
h(y) are known. In general, the value ofh(y) for a giveny can
only be known at runtime. (Unless the functionh is completely
known and not too complex to be represented as a logic formula;
then a constraint solver using constant propagation starting from
some concrete input valuey could simulate the execution ofh with
valuey as argument and compute the valueh(y); however, even in
this case, constant propagation is orders of magnitude slower and
less scalable than simply running the actual code implementing the
functionh with valuey as argument.)



In the above example, we need to know that ify is set to 42,
thenh(y) is 567 in order to setx to that value following the test-
generation strategy derived from the validity proof.

In other words, the new symbolic execution algorithm using un-
interpreted functions also needs torecord runtime concrete values
to allow for test generation of specific concrete input values. Let us
call this stepuninterpreted function sampling.

Specifically, we can record the concrete value of any function
application such ash(y) during dynamic symbolic execution as
well as the concrete value of each of its arguments, as shown in
line 13 of Figure 3: a pair(c, f(evalConcrete(args))) is recorded
for each function application where evalConcrete(args) denotes
the list of concrete values of each function argument andc denotes
the concrete return value of the function applied to those concrete
argument values. In the above example, the record pair is thus
(567, h(42)), meaning that567 = h(42).

These pairs(c, f(evalConcrete(args))) of recorded values
have two purposes.

• They are used tointerpret a test generation strategy derived
from a validity proof in order to assign concrete values to
function applications (such ash(y)) appearing in the strategy
and generate concrete values to new input tests.

• They can also be used to generate additional constraints of
the formc = f(evalConcrete(args)) as anantecedentto the
path constraint that is passed to the constraint solver. Such
constraints restrict the possible interpretations for uninterpreted
function symbolf , and increases the chance of validity.

The latter can be more powerful and is necessary for higher-order
test generation to always subsume sound concretization, aswill be
shown in the next section. Therefore, we adopt this second option
in what follows.

To sum up, given a path constraintpc using a setX of sym-
bolic variables, a setF of uninterpreted functions and a setIOF

of recorded input-output function samples, the post-processed for-
mulaPOST (pc) obtained by post-processingpc in high-order test
generation is the first-order logic formula defined by

POST (pc) = ∃X : A ⇒ pc

where ∃X denotes that all symbolic variablesxi ∈ X are ex-
istentially quantified,⇒ denotes logical implication, andA is the
conjunction of equality constraintsc = f(evalConcrete(args)) for
all (c, f(evalConcrete(args))) ∈ IOF . In what follows, we callA
theantecedentof POST (pc).

For instance, consider again our running example with a path
constraintpc containing a single constraintx = h(y) and a single
recorded pair(567, h(42)). ThenPOST (pc) is

∃x, y : (567 = h(42)) ⇒ (x = h(y))

Sometimes, the antecedent does not help the validity proof it-
self, as in the previous example, and only helps for generating ac-
tual concrete test values. But sometimes, the antecedent isneces-
sary to prove validity, as shown in Section 5.3.

In practice, recordingall concrete arguments and return values
of all uninterpreted function applications used in a path constraint
can be prohibitively expensive for long program executions. More-
over, it is unfortunately hard to predict which concrete values will
be needed later in the path constraint, i.e., which concretevalues are
concretizations of symbolic expressions with uninterpreted func-
tions on which there are testsbelow in the path constraint. How-
ever, it is possible to track onlysomesources of imprecision and
only represent those using uninterpreted functions, and totrack and
represent onlysomeinput-output pairs for tracked functions. Imple-
mentability issues will be discussed further in Section 6.

5. Comparison
In this section, we compare the test-generation power of higher-
order test generation (Section 4) with sound and unsound con-
cretization (Section 3).

5.1 Higher-Order Test Generation and Unsound
Concretization are Incomparable

As discussed at the end of Section 3.3, sound and unsound con-
cretization are incomparable in general, since unsound concretiza-
tion can lead to (bad or good) divergences that will not occurwith
sound concretization. Similarly, by Theorem 3, higher-order test
generation generates sound path constraints and is thus incompara-
ble to unsound concretization in general, for the same reasons.

EXAMPLE 3. Consider the function

int bar(int x, int y) { // x,y are inputs
if ((x == hash(y)) AND (y == hash(x))) {
... // error

}
. ..

}

Given random inputsx = 33 and y = 42 and assuming
hash(42)=567 andhash(33)=123, unsound concretization will
generate an unsound path constraint

x 6= 567 ∨ y 6= 123

whose negationx = 567 ∧ y = 123 is satisfiable and generates a
new test input pair〈x = 567, y = 123〉 which will likely lead to a
divergence. In contrast, higher-order test generation will generate a
sound path constraint

x 6= h(y) ∨ y 6= h(x)

After post-processing, the validity of the formula∃x, y : x =
h(y)∧y = h(x) will be checked. But no new test will be generated
since this formula is invalid (in general, unless we learn some
additional property ofh such as there exists anx such asx =
h(h(x)), for instance).

5.2 Higher-Order Test Generation is as Powerful as Sound
Concretization

In the remainder of this section, we will therefore restrictthe
comparison of higher-order test generation to sound concretization.
Both algorithms generate sound path constraints (see Theorems 2
and 3). We now show that high-order test generation is at least as
powerful as test generation with sound concretization.

Given a path constraintpc =
V

1≤i≤n
ci, let ALT (pc) denote

the newalternatepath constraint defined by the conjunction of the
negation of the last constraintcn of pc with all previous constraints
cj with j < i in pc. We thus have

ALT (pc) = ¬cn ∧
^

1≤i≤(n−1)

ci

Remember that, as explained in Section 2, all nonempty prefixes of
a path constraint are also path constraints (except those ending with
a concretization constraint).

Let pcSC
w denote a path constraint generated for a program path

w with sound concretization (Section 3.3) and whose last constraint
is not a concretization constraint. LetpcUF

w be the path constraint
generated with higher-order test generation (Section 4.1)for the
same program pathw. Given any theoryT , let T ∪ TEUF denote
the theory combiningT with the theory of equality with uninter-
preted functions (EUF). IfpcSC

w andALT (pcSC
w ) are quantifier-

free formulas overT , thenpcUF
w andALT (pcUF

w ) are quantifier-



free formulas overT ∪ TEUF , while POST (ALT (pcUF
w )) is a

first-order logic formula overT ∪ TEUF , by construction.

THEOREM 4. (Simulation Theorem)
If ALT (pcSC

w ) is satisfiable, thenPOST (ALT (pcUF
w )) is valid.

Proof:
We show how to derive a validity proof forPOST (ALT (pcUF

w ))
from any satisfying assignment forALT (pcSC

w ).
Whenever a complex/unknown expressione(xi) 6∈ T occurs

during symbolic execution with sound concretization, a concretiza-
tion constraintxi = Ii is introduced inpcSC

w , e(xi) becomese(Ii),
and all future expressionse′(xi) depending onxi becomee′(Ii).
In contrast, in higher-order test generation, every occurrence of a
complex/unknown expressione(xi) 6∈ T becomesfe(xi) where
fe is an uninterpreted function symbol representinge, and the pair
(evalConcrete(e(Ii)), fe(Ii)) is being recorded.

Consider any symbolic variablexi ∈ X for which there is a
concretization constraintxi = Ii in ALT (pcSC

w ). Consider any
expressione(xi) 6∈ T concretized intoe(Ii) and occurring in
ALT (pcSC

w ). In POST (ALT (pcUF
w )), e(xi) is represented by

fe(xi) and evalConcrete(e(Ii)) = fe(Ii) is in the antecedent.
In POST (ALT (pcUF

w )), repeat the following process for
all the symbolic variablesxi with a concretization constraint in
ALT (pcSC

w ) and for all the functionsfe using those variables as
arguments: substitute all the occurrences ofxi by Ii and then all the
occurrences of any functionfe(Ii) by evalConcrete(e(Ii)). (Note
that this last step would not be possible if evalConcrete(e(Ii)) =
fe(Ii) was not present, i.e., known and recorded, in the antecedent
of POST(ALT(pcUF )).)

At the end, we are left with a formulaφ(X ′) whereX ′ denotes
the set of all remaining symbolic variablesx′

i ∈ X for which there
are no concretization constraints inALT (pcSC

w ). Therefore, we
know that all expressions of the forme(x′

i) in φ(X ′) are inT ,
that they did not introduce imprecision in symbolic execution, and
that they are represented in the exact same way inALT (pcSC

w ).
Thus, by construction, the consequent ofφ(X ′) is syntacti-

cally equivalent toALT (pcSC
w ) when all its concretization con-

straints are removed. Since all occurrences of all uninterpreted
function symbolsfe have been eliminated from the consequent of
φ(X ′), the universal quantification over those functions inφ(X ′)
becomes void intuitively. The same holds for the existential quan-
tification for all symbolic variablesxi 6∈ X ′ that no longer ap-
pear inφ(X ′). Since the consequent ofφ(X ′) is logically equiv-
alent toALT (pcSC

w ), if the latter is satisfiable, then∃X ′ : A ⇒
ALT (pcSC

w ) is valid. This implies that∃X : A ⇒ ALT (pcUF
w ) is

valid (by setting the value of each variablexi ∈ X \ X ′ to Ii).
We emphasize that the previous theorem holdsonly if uninter-

preted function samples are used. Otherwise, higher-ordertest gen-
eration may not be able to simulate sound concretization, asillus-
trated by the following example.

EXAMPLE 4. Consider the function

int pub(int x, int y) { // x,y are inputs
if ((hash(x) > 0) AND (y == 10)) return -1 // error
...

}

Given random inputsx = 1 andy = 2 and assuminghash(1)=5,
sound concretization will generate a sound path constraint

x = 1 ∧ y 6= 10

(after simplifying5 > 0 to true). The alternate path constraint
x = 1 ∧ y = 10 is satisfiable and generates a new test input
pair 〈x = 1, y = 10〉 to cover thethen branch of the conditional

statement. In contrast, higher-order test generationwithoutuninter-
preted function samples will generate a sound path constraint

h(x) > 0 ∧ y 6= 10

However, after post-processing of the alternate path constraint at-
tempting to cover thethen branch, the validity of the formula

∃x, y : h(x) > 0 ∧ y = 10

will be checked. But no new test will be generated since this
formula is invalid (to see this, consider the functionh such that
h(x) = 0 for all x, for instance). If instead we consider higher-
order test generationwith uninterpreted function samples, we then
obtain after post-processing the formula

∃x, y : (h(1) = 5) ⇒ (h(x) > 0 ∧ y = 10)

which is valid (by setting〈x = 1, y = 10〉).

An important remark is that Theorem 4 only compares the path-
constraint generation capabilities of higher-order test generation
and sound concretization. But it doesnot state that if there exists
a constraint solver that can prove the satisfiability ofALT (pcSC

w ),
then there exists a constraint solver that can prove the validity
of POST (ALT (pcUF

w )). Thus, when we say that “higher-order
test generation is as powerful as sound concretization”, weassume
we are givenperfectconstraint solvers for both satisfiability and
validity checking.

5.3 Higher-Order Test Generation is More Powerful Than
Sound Concretization

The previous theorem states that higher-order test generation is at
least as powerful as sound concretization. Is it more powerful? The
answer is yes, for three reasons.

First, since higher-order test generation usesT ∪ TEUF , it can
infer test strategies thanks to axioms included in the theory of
equality with uninterpreted functions (EUF), which are notavail-
able to sound concretization, which only usesT .

EXAMPLE 5. Higher-order test generation can generate tests from
validity proofs of post-processed path constraints such as

∃x, y : f(x) = f(y)

thanks to the theory of equality with uninterpreted functions. (So-
lution strategy: setx = y). In contrast, sound concretization would
force the concretization ofx, y, f(x) andf(y), and would not be
able to generate a test to cover a path with such a path constraint.

Second, higher-order test generation can sometimes leverage
concrete input-output pairs that are part of the antecedentof a post-
processed path constraint in order to prove the validity of formulas
that would otherwise be invalid.

EXAMPLE 6. Consider the post-processed path constraint

∃x, y : f(x) = f(y) + 1

This formula is in general invalid (to see this, consider a function
f that always returns 0). However, assume that it is dynamically
observed thatf(0) = 0 andf(1) = 1. Then these recorded pairs
can be part of the antecedent of the post-processed path constraint,
which becomes

∃x, y : (f(0) = 0 ∧ f(1) = 1) ⇒ f(x) = f(y) + 1

This formula is valid (solution strategy: setx = 1 andy = 0). In
either case, sound concretization would force the concretization of
x, y, f(x) andf(y) and would not be able to generate new tests.

Third, higher-order test generation can sometimes generate test
strategies that involves asequence of new tests, whose purpose is to



collectadditional function samplesin a targeted manner, instead of
a single new test as usual. Let us call this new type of test generation
multi-step test generation.

EXAMPLE 7. Consider again the example of functionfoo of Sec-
tion 3.2, reproduced here for convenience:

int foo(int x, int y) {
if (x == hash(y)) {

...
if (y == 10) return -1; // error

}
...

}

Starting withx = 33 andy = 42 and assuminghash(42)=567,
this first test takes the else branch of the first conditional statement.
After negating the last constraint, we obtain the post-processed
alternate path constraint

∃x, y : (h(42) = 567) ⇒ x = h(y)

This formula is valid and we generate a new input vector〈x =
567, y = 42〉. We run this new test and we now take the then branch
of the first conditional statement followed by the else branch of the
second conditional statement. After negating the last constraint, we
obtain the post-processed alternate path constraint

∃x, y : (h(42) = 567) ⇒ (x = h(y) ∧ y = 10)

This formula is valid, and a test strategy derived from the validity
proof is “sety = 10, setx = h(10)”. However, since the value of
h(10) has never been sampled, it is currently unknown!

A new intermediatetest with, say,〈x = 567, y = 10〉 is
necessary to learn the value ofh(10), say 66. Only then can a
second input vector〈x = 66, y = 10〉 be generated to finish
interpreting the previous test strategy, to exercise thethen branch
of the second conditional statement and hit theerror.

This is an example of two-step test generation. Of course, such
examples can easily be generalized tok-step test generation for
anyk bounded by the number of program inputs.

Another related yet orthogonal suggestion would be to include
in the antecedent of post-processed alternate path constraints gener-
ated with higher-order test generation, not only all the input-output
value pairs observed for the current run, but also all value pairs
observed duringall previousruns.

6. Discussion: Implementability
As explained in the introduction, the main purpose of this paper
is to carefully study the power of recent test generation techniques
such as DART which are quickly gaining popularity. It is alsoto
understand the fundamental difference between static and dynamic
test generation. In the process, we proposed higher-order test gen-
eration as a powerful test generation technique generalizing sound
concretization. How practical is higher-order test generation?

For large applications such as those targeted by whitebox
fuzzing [16], exhaustively trackingall sources of imprecision dur-
ing symbolic execution is problematic. Such imprecision can be
due to unhandled individual instructions (for instance, the complete
x86 instruction set contains hundreds of instructions described in
a 1,000+ pages manual with exotic bit-manipulations, floating-
point/SSE instructions, etc.), operating-system calls (should kernel
execution be symbolic and if so up to what depth?), complex func-
tions (for hashing, encrypting, compressing, encoding, CRC-ing
data), etc. For instance, a single symbolic execution of Excel with
45K input bytes executes nearly a billion x86 instructions (see Fig-
ure 6 of [16]), including many input-tainted unhandled onesand
many system calls. Moreover, some of this imprecision is hard to

capture using uninterpreted functions because the real functions
may look nondeterministic and/or with complex or unknown input-
output signatures (such as malloc, rand, fork, etc. which take as
inputs large/unknown parts of the operating-system state and may
have many hidden side effects). Finally, capturing at execution time
all observed input-output value pairs is problematic as well. For
large applications, all this would slow down an already slowsym-
bolic execution and generate gigantic path constraints that would
overwhelm even the best engineered constraint solvers.

Therefore, we envision a morefocused rolefor higher-order test
generation in practice, targeted at reasoning about specific user-
identified complex or unknown functions that must be dealt with
in order to properly test an application. One such application is
presented in the next section.

Another obstacle to the implementability of higher-order test
generation is the relative lack of support for generating validity
proofs by existing constraint solvers such as SMT solvers. Indeed,
a first-order logic formula∃X : φ(F, X) can be proved valid by
checking whether its negation∀X : ¬φ(F, X) is unsatisfiable
with a Satisfiability-Modulo-Theories solver. For first-order logic
formulas like those considered here, validity (equivalently unsatis-
fiability) is usually proved using saturation techniques [3]. Better
tool support for generating saturation-based proofs (not just mod-
els for satisfiable instances) that are parsable by other tools would
help extracting a test generation strategy from such proofs. More
work is needed in this area. In fact, our paper can be viewed as
a “requirement specification” for next-generation SMT solvers for
test generation, a growing application area for those, by presenting
higher-order test generation as a new possible applicationfor those
tools.

7. Application
In this section, we present an application which requires the power
of high-order test generation: test generation for parserswith input
lexers using hash functions for fast keyword recognition.

As observed in [14], dynamic test generation can be ineffective
when testing applications with highly-structured inputs.Examples
of such applications are compilers and interpreters. Theseappli-
cations process their inputs in stages, such as lexing, parsing and
evaluation. Unfortunately, lexers often detect language keywords
by comparing their pre-computed hash values with the hash val-
ues of strings read from the input. This effectively prevents sym-
bolic execution and constraint solving from ever generating input
strings that match those keywords since hash functions cannot be
inversed (i.e., given a constraintx == hash(y) and a value forx,
one cannot compute a value fory that satisfies this constraint). In
those cases, test generation is defeated already in the firstprocess-
ing stages.

A typical code pattern is shown in Figure 4 in the appendix.
This C code is an excerpt from the open-source flex lexer. Initially,
the functionaddsym is called with every input-language keyword
so that each of those are hashed (with functionhashfunct) and
stored in a hash tabletable. Once the hash table is populated, the
parsing of the input starts. The input is being divided into chunks
delimited by blank-spaces/tabs/etc. Each of those chunks are then
parsed and the functionfindsym is called to check whether a chunk
matches a keyword.

Because of the presence of functionhashfunct, dynamic test
generation may not be able to generate input strings (“chunks”)
matching specific keywords. In [14], it is shown how such a prob-
lematic lexer can be bypassed altogether for test generation of the
subsequent input-processing stages by (1) instrumenting the lexer
so that its returnsymbol values become symbolic inputs during
symbolic execution, and (2) lifting the input space from charac-
ter strings to sequences of symbols (token ids) using a grammar



specification of the input language being parsed. Unfortunately, in-
strumenting a lexer this way can be problematic for complex lexers,
and this approach requires a user-supplied input-grammar specifi-
cation.

In contrast, higher-order test generation provides a more auto-
mated approach to test generation through such lexers. The key but
only thing the user is required to specify is the name of the func-
tion hash (like hashfunct or possibly a hash-function wrapper
like findsym in the example of Figure 4) whose calls are then
tracked during symbolic execution and represented using anun-
interpreted function exactly as described in Section 4. During ini-
tialization, all the pairs〈hashvalue, hash(keyword)〉 are being
recorded to be included in the antecedent of post-processedpath
constraints. Whenever test generation needs a specific symbol to
drive the parser through a new specific program branch, the the-
ory of equality with uninterpreted functions combined withall the
input-output value pairs recorded forhash makes it possible to
effectively “inverse” this hash function for the finitely many key-
words of the input language, which is sufficient for test generation
for such applications. For instance, when an assignment statement
of the formsymbol = hash(inputChunk) is followed by a con-
ditional statement of the formif (symbol == 52) ..., observ-
ing thathash(’while’) = 52 is sufficient for higher-order test
generation to generate aninputChunk equal towhile in order to
exercise thethen branch of the conditional statement.

Note that, in some lexers, hash values are pre-computed and
hard-coded in the source code. Then, it is not possible to observe
at execution time all relevant input-output value pairs forsuch hash
functions at the beginning of each execution. However, suchinput-
output pairs could still be “learned” over time by starting the testing
session with a representative set of well-formed inputs, observing
the hash values of all the language keywords those inputs contain,
and then using all pairs recorded in all previous executionsin
subsequent symbolic executions.

We have performed preliminary experiments with higher-order
test generation in such a targeted manner in conjunction with the
whitebox fuzzer SAGE [16] and using the Z3 SMT solver [9]. Since
Z3 does not support the generation of saturation-based proofs, these
experiments were conducted with an ad-hoc pre-processing step to
eliminate uninterpreted functions in path constraints before calling
Z3 for a satisfiability check as usual: (1) all uninterpretedfunc-
tion samplesh(c1) = c2 are collected in a tableIOF (wherec1

andc2 denote constants), and then (2) whenever a constraint of the
form h(x) = c2 occurs in a path constraint, it is replaced by a
disjunction of constraintsx = c1 for all c1 such thath(c1) = c2

(to handle hash collisions). This procedure is simple to implement
but handles only limited cases and is far from simulating thefull
reasoning power ofT ∪ TEUF . Nevertheless, experiments with a
simple parser including a lexer similar to Figure 4 show thatthis
partial implementation of higher-order test generation issufficient
to accurately drive program executions through the lexer. In con-
trast, regular dynamic test generation is no better than blackbox
random testing because it is not able to drive executions through
tests involving the hash function in the lexer.

8. Other Related Work
Abstracting program functions using uninterpreted functions is a
well-known technique in verification-condition generation for pro-
gram verification of universal properties (e.g., [4]). In that context,
the set of all program behaviors is over-approximated in presence
of program-analysis imprecision, and verification is established by
checking the validity of a logic formula representing the entire pro-
gram (or module). Uninterpreted function symbols in the formula
are therefore implicitly universally quantified as in our work.

In the context of test generation, uninterpreted functionshave
been used for representing symbolic test summaries in composi-
tional symbolic execution [1, 17]. There, a function summary is
represented by a first-order logic formula using an uninterpreted
function symbol representing the function. A function summary is
defined as a disjunction (i.e., a set) of intraprocedural path con-
straints expressed in terms of the function inputs and outputs. Func-
tion summaries can be computed incrementally, to include more
and more intraprocedural path constraints as they are discovered
during a directed search. Test generation with function summaries
is performed as usual by a satisfiability check, where all uninter-
preted functions are therefore implicitly existentially quantified.
This use of uninterpreted functions for function summariesis thus
different from their use in higher-order test generation where un-
interpreted functions represent imprecision in symbolic execution
in individual path constraints. Both types of uninterpreted func-
tions could actually be used simultaneously, as they are orthogonal,
for “higher-order compositional test generation”. Note that func-
tion summaries do not have to be represented using uninterpreted
functions, and can be encoded directly in propositional logic in-
stead [11].

We do not know of any other work where tests are derived from
validity proofs, or where uninterpreted functions are usedto model
imprecision in symbolic executionfor test generation.

The (implicit) alternation of universal function quantifiers and
existential variable quantifiers in our post-processed path con-
straints can be viewed as a game between an unknown environ-
ment (controlling the unknown functions) and a test generator
(controlling test inputs). To view test generation as a gameis not
new [5, 25]. Model-driven test generation for conformance test-
ing, i.e., checking whether a blackbox implementation conforms
to a whitebox specification, can be viewed as a game and, under
specific assumptions, can be encoded logically using quantifier
alternation, for instance using Quantified Boolean Formulas. How-
ever, we are not aware of any work on model-based test generation
using uninterpreted functions or validity proofs of first-order logic
formulas as in our work.

Given a program and a set of input parameters, test genera-
tion refers to the problem of generating input tests in orderto ex-
ercise a specific program path, branch or statement. In contrast,
static, dynamic and higher-order test generation denote specific ap-
proaches to solving the test generation problem. Test generation is
only one way of proving existential reachability properties of pro-
grams, where specific concrete input values are generated toexer-
cise specific program paths. More generally, such properties can be
proved using so-calledmust abstractionsof programs, without nec-
essarily generating concrete tests. A must abstraction is defined as
a program abstraction that preserves existential reachability proper-
ties of the program. For instance, in predicate abstraction[13, 17],
a must transitionfrom an abstract stateA1 to an abstract stateA2

implies that

∀c1 ∈ A1 : ∃c2 ∈ A2 : c1 → c2

that is, for every concrete statec1 abstracted byA1, there exists
a program execution fromc1 to a concrete statec2 such thatc2

is abstracted byA2. Must transitions can be chained together to
prove existential reachability properties of programs, i.e.,find bugs
in a sound manner. Sound path constraints are particular cases of
must abstractions [17]. Note the analogy between the alternation
of universal and existential quantifiers in the definition ofmust
transition and in our post-processed path constraints.

Other related work includes [8, 18] where must abstractions
are built backwards from error states using static program analy-
sis. This approach can detect program locations and states prov-
ably leading to error states (no false alarms), but may fail to prove
reachability of those error states back from whole-programinitial



states, and hence may miss bugs or report unreachable error states.
Imprecision in symbolic reasoning, e.g., due to system calls or un-
known functions, is modeled by assigning nondeterministicvalues
to all possible modified (output) variables, which is less precise
than using uninterpreted functions yet still assumes all unknown
functions have known sets of possible outputs/side-effects. Build-
ing must abstractions statically can be fast but requires symbolic
reasoning about the whole program. On the other hand, dynamic
test generation is slower but more precise by allowing symbolic ex-
ecution to degrade gracefully using concrete runtime values when-
ever symbolic reasoning is difficult.

Static test generation can be extended to concretize symbolic
values whenever static symbolic execution becomes imprecise [19].
This approach not only requires to detect all sources of imprecision,
but also one call to the constraint solver for each concretization to
ensure that every synthesized concrete value satisfies prior sym-
bolic constraints along the current program path. For the reasons
discussed in Section 6, such requirements are not practicalfor large
applications. In contrast, dynamic test generation avoidsthese two
limitations by leveraging a specific concrete execution as an auto-
matic fall back for symbolic execution [15].

Dynamic test generation is currently an active area of research
and many other extensions and applications have been proposed,
such as [2, 6, 10, 23, 24] to name just a few (see [7] for a recent
survey). This other related work does not specifically focuson how
to deal with imprecision in symbolic execution and could benefit
from the techniques introduced in our work.

9. Conclusion
We presented higher-order test generation, a powerful new form of
test generation, which can also be expensive as it requires tracking
explicitly sources of imprecision in symbolic execution, using un-
interpreted functions, recording input-output function samples, and
checking validity of first-order logic formulas. We showed how this
approach can perform novel forms of test generation, such asmulti-
step test generation, and drive the executions of input parsers with
lexers using hash functions for fast keyword recognition.

We also showed that the key property of dynamic test genera-
tion that makes it more powerful than static test generationis only
its ability to observe concrete values and to record those inpath
constraints. In contrast, the process of simplifying complex sym-
bolic expressions using concrete runtime values can be accurately
simulated using uninterpreted functions. However, those concrete
values are necessary to effectively compute new input vectors, a
fundamental requirement in test generation.

Acknowledgments. I thank Leonardo de Moura for several insight-
ful discussions related to this work. I also thank Nikolaj Bjorner,
Yuri Gurevich and Mihalis Yannakakis for helpful comments,and
Andreas Podelski and the anonymous reviewers for their construc-
tive comments to improve the presentation.

References
[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-Driven Compo-

sitional Symbolic Execution. InProceedings of TACAS’2008, vol-
ume 4963 ofLecture Notes in Computer Science, pages 367–381, Bu-
dapest, April 2008. Springer-Verlag.

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. M. Paradkar, and
M. D. Ernst. Finding Bugs in Web Applications Using Dynamic Test
Generation and Explicit-State Model Checking.IEEE Trans. Software
Eng., 36(4):474–494, 2010.

[3] L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In
Handbook of Automated Reasoning, pages 19–99. 2001.

[4] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs.

In Proceedings of FMCO’2005, volume 4111 ofLecture Notes in
Computer Science, pages 364–387. Springer-Verlag, September 2006.

[5] A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Playto Test.
In Proceedings of FATES’2005, Edinburgh, July 2005.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically Generating Inputs of Death. InACM CCS, 2006.

[7] C. Cadar, P. Godefroid, S. Khurshid, C.S. Pasareanu, K. Sen, N. Till-
mann, and W. Visser. Symbolic Execution for Software Testing in
Practice – Preliminary Assessment. InProceedings of ICSE’2011,
Honolulu, May 2011.

[8] S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: A Powerful
Approach to Weakest Preconditions. InProceedings of PLDI’2009,
Dublin, June 2009.

[9] L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. InPro-
ceedings of TACAS’2008, volume 4963 ofLecture Notes in Computer
Science, pages 337–340, Budapest, April 2008. Springer-Verlag.

[10] M. Emmi, R. Majumdar, and K. Sen. Dynamic Test Input Generation
for Database Applications. InProceedings of ISSTA’2007, pages 151–
162, 2007.

[11] P. Godefroid. Compositional Dynamic Test Generation.In Proceed-
ings of POPL’2007, pages 47–54, Nice, January 2007.

[12] P. Godefroid. Software Model Checking Improving Security of a
Billion Computers. InProceedings of SPIN’2009, volume 5578 of
Lecture Notes in Computer Science, page 1, Grenoble, June 2009.
Springer-Verlag.

[13] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based Model
Checking using Modal Transition Systems. InProceedings of CON-
CUR’2001, volume 2154 ofLecture Notes in Computer Science, pages
426–440, Aalborg, August 2001. Springer-Verlag.

[14] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-basedWhitebox
Fuzzing. InProceedings of PLDI’2008, pages 206–215, Tucson, June
2008.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated
Random Testing. InProceedings of PLDI’2005, pages 213–223,
Chicago, June 2005.

[16] P. Godefroid, M.Y. Levin, and D. Molnar. Automated Whitebox Fuzz
Testing. InProceedings of NDSS’2008, pages 151–166, San Diego,
February 2008.

[17] P. Godefroid, A.V. Nori, S.K. Rajamani, and S.D. Tetali. Composi-
tional May-Must Program Analysis: Unleashing The Power of Alter-
nation. InProceedings of POPL’2010, pages 43–55, Madrid, January
2010.

[18] J. Hoenicke, K. R. M. Leino, A. Podelski, M. Schaf, and Th. Wies. It’s
doomed; we can prove it. InProceedings of 2009 World Congress on
Formal Methods, 2009.

[19] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. General-
ized Symbolic Execution for Model Checking and Testing. InPro-
ceeding of TACAS’2003, April 2003.

[20] J. C. King. Symbolic Execution and Program Testing.Journal of the
ACM, 19(7):385–394, 1976.

[21] B. Korel. A Dynamic Approach of Test Data Generation. InIEEE
Conference on Software Maintenance, pages 311–317, San Diego,
November 1990.

[22] D. Molnar, X. C. Li, and D. Wagner. Dynamic test generation to find
integer bugs in x86 binary linux programs. InProc. of the 18th Usenix
Security Symposium, Aug 2009.

[23] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A Symbolic Execution Framework for JavaScript. InIEEE Symposium
on Security and Privacy, pages 513–528, 2010.

[24] N. Tillmann and J. de Halleux. Pex - White Box Test Generation for
.NET. In Proceedings of TAP’2008, volume 4966 ofLecture Notes in
Computer Science, pages 134–153. Springer-Verlag, April 2008.

[25] M. Yannakakis. Testing, Optimization, and Games. InProceedings of
LICS’2004, pages 78–88, Turku, July 2004.



/∗ addsym− add symbol and d e f i n i t i o n s to symbol t a b l e
∗
∗ −1 i s r e t u r n e d i f t he symbol a l r e a d y e x i s t s , and the change no tmade .
∗ /

s t a t i c i n t addsym ( sym , s t rd e f , i n t d e f , t a b l e , t a b l e s i z e )
r e g i s t e r c ha r sym [ ] ;
c ha r ∗ s t r d e f ;
i n t i n t d e f ;
h a s h t a b l e t a b l e ;
i n t t a b l e s i z e ;

{
i n t h a s h v a l = h a s h f u n c t ( sym , t a b l es i z e ) ;
r e g i s t e r s t r u c t h a s he n t r y ∗s ym e n t ry = t a b l e [ h a s hv a l ] ;
r e g i s t e r s t r u c t h a s he n t r y ∗ne w e n t ry ;
r e g i s t e r s t r u c t h a s he n t r y ∗ s u c c e s s o r ;

wh i l e ( s ym e n t ry ) {
i f ( ! s t rcmp ( sym , syment ry−>name ) ) { /∗ e n t r y a l r e a d y e x i s t s∗ /

r e t u r n −1;
}

s ym e n t ry = sym ent ry−>ne x t ;
}

/∗ c r e a t e new e n t r y∗ /
ne w e n t ry = ( s t r u c t h a s he n t r y ∗)

f l e x a l l o c ( s i z e o f ( s t r u c t h a s he n t r y ) ) ;

i f ( ne w e n t ry == NULL)
f l e x f a t a l ( ( ” symbol t a b l e memory a l l o c a t i o n f a i l e d ” ) ) ;

i f ( ( s u c c e s s o r = t a b l e [ h a s hv a l ] ) != 0) {
new ent ry−>ne x t = s u c c e s s o r ;
s uc c e s s o r−>prev = ne w e n t ry ;

}
e l s e

new ent ry−>ne x t = NULL;

new ent ry−>prev = NULL;
new ent ry−>name = sym ;
new ent ry−>s t r v a l = s t r d e f ;
new ent ry−>i n t v a l = i n t d e f ;

t a b l e [ h a s h v a l ] = ne w e n t ry ;

r e t u r n 0 ;
}

/∗ f indsym − f i n d symbol i n symbol t a b l e ∗ /

s t a t i c s t r u c t h a s he n t r y ∗ f indsym ( sym , t a b l e , t a b l es i z e )
r e g i s t e r c o n s t c ha r∗sym ;
h a s h t a b l e t a b l e ;
i n t t a b l e s i z e ;

{
s t a t i c s t r u c t h a s he n t r y e mp ty e n t r y = {

( s t r u c t h a s he n t r y ∗) 0 , ( s t r u c t h a s he n t r y ∗) 0 ,
( c ha r ∗) 0 , ( c ha r ∗) 0 , 0 ,

} ;
r e g i s t e r s t r u c t h a s he n t r y ∗s ym e n t ry = t a b l e [ h a s h f u n c t ( sym , t a b l es i z e ) ] ;

wh i l e ( s ym e n t ry ) {
i f ( ! s t rcmp ( sym , syment ry−>name ) )

r e t u r n s ym e n t ry ;
s ym e n t ry = sym ent ry−>ne x t ;

}

r e t u r n &e mp ty e n t r y ;
}

Figure 4. Code excerpt from the flex lexer (file sym.c, flex-2.5.35, February 2008).


