
Model Checking with Multi-Valued Logics

Glenn Bruns Patrice Godefroid

Bell Laboratories, Lucent Technologies, fgrb,godg@bell-labs.com

Abstract. In multi-valued model checking, a temporal logic formula

is interpreted relative to a structure not as a truth value but as an

element of a lattice. Applications of multi-valued model checking include

abstraction techniques, temporal logic query checking, and the analysis

of conict in multi-view speci�cations. In this paper we simplify and

extend existing work on algorithms for multi-valued model checking. We

show how to reduce multi-valued model checking with any distributive

DeMorgan lattice to standard, two-valued model checking. From this

reduction we derive complexity bounds for multi-valued model checking

for various temporal logics. We also present a direct, automata-theoretic

algorithm for multi-valuedmodel checking with logics as expressive as the

modal mu-calculus. As part of showing the correctness of this algorithm,

we present new, basic results about extended alternating automata, a

generalization of standard alternating automata.

1 Introduction

Model checking is an e�ective method for checking the correctness of concurrent

reactive systems. Recently, several new applications, such as abstract model

checking [2], temporal logic query checking [4] and the analysis of multi-view

speci�cations [8], have prompted the study of a new type of model checking,

called multi-valued model checking. In multi-valued model checking, one inter-

prets a temporal logic formula on a multi-valued Kripke structure, which is like

a Kripke structure except that an atomic proposition is interpreted at a state as

a lattice element, not a truth value. The meaning of a temporal logic formula at

a state in a multi-valued Kripke structure is then also given as a lattice element.

Each application of multi-valued model checking has a corresponding lattice

or class of lattices. Figure 1 shows some example lattices. Lattice L

2

is a linear

ordering of the standard truth values. Model checking with this lattice gives

ordinary, two-valued model checking. In lattice L

3

, element 1 represents truth,

element 0 represents falsity, and element 1/2 represents \unknown whether true

or false" [15, 22]. The interpretation of a formula as value 1/2 means roughly

that the model did not contain enough information to allow a de�nitely true or

de�nitely false result. Model checking with this lattice can be used to analyze

incomplete models of large or complex systems [2]. Lattice L

fuz

is like L

3

but

more degrees of certainty are captured. Fuzzy logic [19] can be regarded as a

logic over a lattice of this form containing the reals from 0 to 1. In lattice L

2;2

,

an element represents the collective interpretation of two separate parties. A



����

����

����

����

����

����

0

1

1/2

0

1

L fuz

false
(0,0)

(0,1) (1,0)

(1,1)

....

true

b

c d

e

aLL3 2,2L2

Fig. 1. Some Distributive Lattices

model check with result (1; 0) means that the �rst party interprets the formula

as true while the second party interprets the formula as false. Model checking

with lattices like L

2;2

can be used to analyze whether conict will arise when

multiple speci�cations or views are combined [8, 14]. Lattices can also be de�ned

in which each element is a set of propositional formulas. Model checking with

such lattices has been used for temporal logic query checking [5, 4, 9].

There are two main kinds of algorithms for multi-valued model checking. The

�rst uses reduction: a multi-valued model checking problem is reduced to a set

of standard, two-valued model checking problems [3, 16, 14]. For example, in the

case of lattice L

3

, a model checking problem for a Kripke structure over L

3

can

be reduced to two model checking problems for Kripke structures over L

2

. The

second is direct: multi-valued model checking is performed directly using spe-

cialized algorithms. Various model checking algorithms, such as those based on

automata or BDDs, can be adapted to work with multi-valued Kripke structures.

Both approaches have advantages. An advantage of reduction is that exist-

ing model checkers can be easily adapted for the multi-valued case. Also, as

improvements are made to existing model checkers, the bene�ts can immedi-

ately be realized for the multi-valued case. The advantage of the direct approach

is that it works in a more \on-demand" manner than the reduction approach.

This point is discussed further in Section 6.

This paper describes new algorithms for multi-valued model checking, both

by reduction and directly. For checking by reduction, we show that, for a �nite

distributive lattice, the number of standard model checks required is equal to

the number of join-irreducible elements of the lattice in the worst case. From

a multi-valued Kripke structure over a �nite distributive lattice, we show how

a standard Kripke structure can be derived for each join-irreducible element

of the lattice, and how the results of model checking on each of these Kripke

structures can be combined to give a result for the multi-valued model check.

From this general reduction procedure, we also obtain complexity bounds for

the multi-valued model-checking problem for various temporal logics.

For direct checking, we use extended alternating automata (EAA) [4], a gen-

eralization of alternating automata (AA) used in standard model checking. In

model checking applications of AA (e.g., [18]), an input tree of the automaton

has nodes that are labelled with sets of atomic propositions, and a run of the

automaton has no value associated with it. With EAA, the nodes of the input

tree are labelled with functions mapping atomic propositions to elements of a



lattice, and a run has an associated value. We recall the de�nition of EAA, study

their properties, and show how to use EAA for multi-valued model checking.

Our results streamline and signi�cantly extend existing work on multi-valued

model checking. Concerning reduction, our technique works for all �nite, dis-

tributive lattices, while existing work ([3],[16]) covers only selected sub-classes

of DeMorgan lattices, such as binary products of total orders. The main idea

behind our reduction technique was inspired by Fitting's work [13] on the con-

nection between a \multi-expert" and \many-valued" semantics of a proposi-

tional modal logic. However, in Fitting's work negation is treated as pseudo-

complement, which is not appropriate for common multi-valued model checking

problems. Our work supports DeMorgan negation as well as other notions of

negation. Also, we de�ne reduced models using join-irreducible elements rather

than proper prime �lters, thereby getting stronger intuition and simpler proofs.

Existing work on the direct model checking of multi-valued logics handles

either a smaller class of lattices or logics less expressive than the modal mu-

calculus. In [2] an algorithm is de�ned for CTL over L

3

, in [6] an automata-

theoretic algorithm is de�ned for LTL over �nite linear orders, and in [7] a

BDD-based algorithm is de�ned for CTL over DeMorgan lattices.

The contribution of this paper is not only in generalizing and improving ex-

isting work on multi-valued model checking. We prove basic results about EAA

that are interesting independently of this application. For example, in general-

izing AA to EAA, the notion of run is extended so that it has an associated

value. The question arises whether the set of values of all the accepting runs has

a maximal element. This question is answered positively in this paper.

In the following section we briey cover some lattice theory and the modal

mu-calculus. In Section 3, we de�ne our reduction method. In Section 4 we de�ne

extended alternating automata, and in Section 5 we show how to directly model

check with them. We conclude in Section 6 by comparing the reduction and

direct approaches to multi-valued model checking.

2 Background

2.1 Lattices and Negation

Consider the interpretation of boolean connectives in basic propositional logic. If

the truth constants true and false are ordered by true > false, then the standard

meaning of conjunction can be expressed as the minimum of its two arguments,

and similarly for disjunction and maximum. Alternatively, conjunction can be

understood as meet in the sense of lattice theory, and disjunction as join. It

is then obvious to see how to generalize conjunction and disjunction to logics

in which the truth values are the elements of a lattice. For example, consider

lattice L3 of Figure 1. The top element 1 represent truth, the bottom element 0

represents falsity, and the middle element 1/2 represents \unknown whether true

or false". Interpreting conjunction as meet, we get for example that 0^ 1=2 = 0

and 1 ^ 1=2 = 1=2.



In this paper we consider the multi-valued interpretation of temporal logic. In

a two-valued temporal logic, interpreting a formula relative to a Kripke structure

yields a set of states { intuitively the states of the Kripke structure that satisfy

the formula. In our multi-valued interpretation, interpreting a formula yields a

mapping from a state to a lattice element. The value that a state is mapped to

represents the degree to which the state satis�es the formula. Before presenting

a multi-valued temporal logic, we �x the class of lattices that will be used.

Let (A;�) be an ordered set, and let P be a subset of A. An element x of

P is an upper bound of P if x � y for every element y in P . If the set of upper

bounds of P has a least element, it is called the least upper bound. Lower bound

and greatest lower bound are de�ned dually. We write x _ y for the least upper

bound of fx; yg, if it exists, and similarly x ^ y for the greatest lower bound

of fx; yg. We also write

W

P for the least upper bound of P , and

V

P for the

greatest lower bound of P , again assuming they exist.

An ordered set (A;�) is a lattice if x _ y and x ^ y exist for all x; y in A,

and is a complete lattice if

W

P and

V

P exist for all subsets P of A. A lattice is

distributive if x ^ (y _ z) = (x ^ y)_ (x^ z) for all elements x; y; z of the lattice.

A �nite lattice has only �nitely many elements; every such lattice has a greatest

element, called top, and a least element, called bottom (and written ?). Note

that every �nite lattice is complete, and that every complete lattice has top and

bottom elements.

We stated above that conjunction and disjunction can be interpreted as meet

and join. However, we also want to work with logics having a negation opera-

tor, so we need to use lattices in which a sensible notion of negation can be

de�ned. We now consider several classes of lattices and the notion of negation

they support.

Boolean lattices support a strong sense of complement. Every element x in

such a lattice has a unique complement :x such that x _ :x equals the top

element of the lattice and x ^ :x equals the bottom element of the lattice.

Lattice L

2

of Fig. 1 is boolean. However, there are \few" boolean lattices { each

is isomorphic to a lattice formed from a set A by taking all subsets of A as

elements and ordering by set inclusion.

In a DeMorgan (or quasi-boolean) lattice [1], every element x has a unique

complement :x such that ::x = x, DeMorgan's laws hold, and x � y implies

:y � :x. DeMorgan lattices can be characterized as lattices with horizontal

symmetry [7]. Lattice L

3

of Fig. 1 is DeMorgan, but not boolean. Using DeMor-

gan complement we get that :0 = 1, :1=2 = 1=2, and :1 = 0

A Heyting algebra is a lattice in which every element x has a unique relative

pseudo-complement :x de�ned as the greatest value y such that x ^ y equals

the bottom element of the lattice. In the case of �nite lattices, Heyting algebras

and distributive lattices are the same thing [12]. The right-most lattice in Fig.

1 is a Heyting algebra but is not DeMorgan. In this lattice, if we use relative

pseudo-complement as complement, we get :a = e and :b = a. In lattice L

3

we

get :0 = 1, :1=2 = 0, and :1 = 0. Some DeMorgan lattices are not Heyting

algebras. If an extra element b is added to L

2;2

of Fig. 1 such that b is less than



(1; 1), greater than (0; 0), and incomparable to (0; 1) and (1; 0), then one obtains

such a lattice.

Reasoning about partial information with three-valued logic based on L3

is an important application of multi-valued model checking, and since in this

application we want to interpret negation in the DeMorgan sense, we adopt

DeMorgan lattices for multi-valued model checking.

2.2 The Modal Mu-Calculus

The modal mu-calculus [17] (also known as the propositional �-calculus) is a

propositional modal logic extended with �xed-point operators. The logic is very

expressive and includes as fragments linear-time temporal logic (LTL) [20] and

computation-tree logic (CTL) [10].

Without loss of generality, we use a positive form of the modal mu-calculus,

in which negation applies only to atomic propositions. Formulas of the logic have

the following abstract syntax, where p ranges over a set P of atomic propositions

and X ranges over a set V ar of �xed-point variables: � ::= p j :p j �

1

^ �

2

j

�

1

_ �

2

j 2� j 3� j X j �X:� j �X:�. In �xed-point formulas �X:� and �X:�

the operators � and � bind free occurrences of X in �. We refer to this logic as

�L.

Recall that a Kripke structure M = (S; s

0

; �;R) is a tuple in which S is a

set of states, s

0

in S is the initial state, � maps a state to a subset of P (i.e.

the propositions that hold at the state), and R � S � S is a transition relation

assumed to be total. We write s! s

0

if (s; s

0

) 2 R and write succ

R

(s) for the

set fs

0

2 S j s! s

0

g. For a �nite set D � IN we say that M has degrees in D if,

for every state s of S, the value jsucc

R

(s)j is in D.

A Kripke structureM = (S; s

0

; �;R) over a lattice L di�ers from a standard

Kripke structure in that now � maps a state to a mapping from propositions to

elements of L. In what follows, P ! L denotes the set of all possible mappings

from P to L.

A valuation V over a lattice L maps a variable to a mapping from states to

elements of L. We write () for the valuation such that ()(X)(s) = ? for all X

and s (it is required here that L has a bottom element), and write V [X := f ]

for the valuation that is like V except that it maps X to f .

We de�ne the meaning kM;�k

V

of a �L formula relative to a Kripke structure

M = (S; s

0

; �;R) over lattice L as a mapping from S to L. In the following def-

inition the function f : (S ! L)! (S ! L) is de�ned by f(g) = kM;�k

V[X:=g]

,

and �f and �f stand for the greatest and least �xed-points of f . We know f

has greatest and least �xed-points by the Knaster-Tarski �xpoint theorem [23]

because functions in S ! L ordered by g

1

v g

2

= 8s:g

1

(s) � g

2

(s) form a com-

plete lattice with meet and join operators de�ned as (g

1

^ g

2

)(s) = g

1

(s)^ g

2

(s)

and (g

1

_ g

2

)(s) = g

1

(s) _ g

2

(s). Function f preserves v.

De�nition 1. The interpretation kM;�k

V

of a �L formula relative to Kripke

structure M = (S; s

0

; �;R) and valuation V over DeMorgan lattice L is de�ned



as follows:

kM;pk

V

= �s:�(s)(p)

kM;:pk

V

= �s::�(s)(p)

kM;�

1

^ �

2

k

V

= �s:kM;�

1

k

V

(s) ^ kM;�

2

k

V

(s)

kM;�

1

_ �

2

k

V

= �s:kM;�

1

k

V

(s) _ kM;�

2

k

V

(s)

kM;2�k

V

= �s:

^

fkM;�k

V

(s

0

) j s! s

0

g

kM;3�k

V

= �s:

_

fkM;�k

V

(s

0

) j s! s

0

g

kM;Xk

V

= V(X)

kM; �X:�k

V

= �f

kM;�X:�k

V

= �f

If � is a closed formula then we write [(M; s); �] for the value kM;�k

()

(s) of

formula � at state s of Kripke structure M . Given �, (M; s) and L, computing

[(M; s); �] is called the multi-valued model-checking problem. If M is a Kripke

structure over lattice L

2

, then we write (M; s) j= � if [(M; s); �] = true.

Proposition 1. The �L semantics of Def. 1 collapses to the standard two-

valued semantics of �L when lattice L is L

2

of Fig. 1.

3 Reduction to 2-Valued Model Checking

In this section we show how multi-valued model checking of a �L formula �

relative to a Kripke structure M over an �nite distributive lattice L can be per-

formed by model checking � relative to a number of standard Kripke structures.

The main idea in this result comes from Fitting's work in [13] for the case of

Heyting algebras.

The idea is to use the lattice L to de�ne a set E of \experts", and then

to derive from the multi-valued Kripke structure M a standard Kripke M

e

for

each expert. From the set of experts e for which M

e

satis�es � we then derive

the value [(M; s); �]. The key insight is that for a �nite distributive lattice, the

experts correspond to the join-irreducible elements of the lattice.

A special handling of negation is required to adapt Fitting's idea to DeMor-

gan lattices. Let a dual Kripke structure M = (S; s

0

; �;�;R) be a structure for

which (S; s

0

; �;R) and (S; s

0

; �;R) are Kripke structures. To interpret a �L for-

mula over a dual Kripke structure, modify the semantic clauses for propositions

in Section 2.2 as follows:

kM;pk

V

= �s:�(s)(p)

kM;:pk

V

= �s:�(s)(p)

If, given a Kripke structureM = (S; s

0

; �;R), we create a dual Kripke structure

M

0

= (S; s

0

; �;�;R) by de�ning �(s)(p) = :�(s)(p), then clearly kM;�k

V

=

kM

0

; �k

V

for every �L formula �.



Now we can de�ne the set E of experts and the Kripke structure M

e

of an

expert e. Let L be a �nite distributive lattice (not necessarily DeMorgan), and

let M = (S; s

0

; �;R) be a Kripke structure over L. A join-irreducible element x

of L is an element that is not the bottom element and for which x = y_z implies

x = y or x = z. If L is �nite, the join-irreducible elements are easily spotted in

the Hasse diagram for L as elements having exactly one lower cover (i.e. there is

exactly one line connected to the element from below). The darkened elements in

Figure 1 are the join-irreducible ones. The set E of experts are the join-irreducible

elements of L. Borrowing from [13], we say that expert e

1

dominates expert e

2

if e

1

� e

2

.

The dual Kripke structure for an expert e is de�ned asM

e

= (S; s

0

; �

e

; �

e

;R),

where

�

e

(s)(p) = �(s)(p) � e

�

e

(s)(p) = :(�(s)(p)) � e

Intuitively, the expert corresponding to a join-irreducible element x in a lattice

regards elements of value x or greater as true, and all others as false. Thus e � e

0

means that expert e is less likely to believe something to be true than e

0

.

Proposition 2. Let M = (S; s

0

; �;R) be a Kripke structure over a �nite dis-

tributive lattice L, with s in S. Then, ((M

e

; s) j= � and e � e

0

)) (M

e

0

; s) j= �.

The value of a formula relative a Kripke structure over a lattice L can be de-

termined by checking the standard Kripke structures obtained for each of the

experts.

Lemma 1. Let M = (S; s

0

; �;R) be a Kripke structure over a �nite distribu-

tive lattice L, with s in S, and let x be a join-irreducible element of L. Then,

(M

x

; s) j= �, x � [(M; s); �].

From this lemma our main theorem follows easily using Birkho�'s representation

theorem for �nite distributive lattices. Birkho�'s theorem states that a �nite

lattice is distributive just if it is isomorphic to the lattice on sets in which the

elements are down-closed subsets of the join-irreducible elements of the lattice.

The following formulation is taken from [11]. We write J (L) for the set of all

join-irreducible elements of a lattice L, and write O(A) for the lattice having as

elements the down-closed subsets of ordered set A, with set inclusion as ordering.

Theorem 1 (Birkho�'s Representation Theorem). Let L be a �nite dis-

tributive lattice. Then the map � : L! O(J (L)) de�ned by �(a) = fx 2 J (L) j

x � ag is an isomorphism of L onto O(J (L)).

The inverse mapping from O(J (L)) to L maps a down-closed set fx

1

; : : : ; x

n

g

of join-irreducible elements to their join

W

fx

1

; : : : ; x

n

g. So any element a of a

�nite distributive lattice can be represented as the join of all the join-irreducible

elements less than or equal to a in the lattice.

Theorem 2. Let M = (S; s

0

; �;R) be a Kripke structure over a �nite distribu-

tive �nite lattice L, with s in S. Then, [(M; s); �] =

W

fe 2 E j (M

e

; s) j= �g.



A := E ;

B := ;;

while A 6= ; f

let e be a maximal element of A;

if (M

e

; s) j= � f

C := fe

0

2 Eje

0

� eg;

B := B [ C;

A := A � C;

g else f

A := A � feg;

g

return B

Fig. 2. A procedure for computing fe 2 E j (M

e

; s) j= �g

Proof. Proofs are omitted in this extended abstract due to space limitations.

In computing

W

fe 2 E j (M

e

; s) j= �g, if one �nds that (M

e

1

; s) j= �, and it is

the case that e

1

� e

2

, then it must be that (M

e

2

; s) j= �, so M

e

2

need not be

checked. Figure 2 is an algorithm for computing fe 2 E j (M

e

; s) j= �g that uses

this idea. The set A is the set of experts for which checking remains to be done.

Consider the application of this algorithm to model checking over lattice L

3

of Fig. 1. The join-irreducible elements are 1=2 and 1, so our experts are e

1

= 1

and e

2

= 1=2, where e

1

dominates e

2

. The intuition is that e

1

is a pessimist who

regards only value 1 as true, while e

2

is an optimist who regards both 1=2 and

1 as true.

Thanks to our general reduction from multi-valued model checking to tradi-

tional model checking and since traditional model checking is a special case of

multi-valued model checking, we immediately obtain the following complexity

bounds for the multi-valued model-checking problem.

Theorem 3. Let L be a �nite distributive DeMorgan lattice with n join-irreducible

elements, and let TL denote �L or any of its fragments. Then, the multi-valued

model-checking problem for TL with respect to L can be solved in time linear in

n. Moreover, the complexity of multi-valued model checking for TL has the same

time and space complexity, both in the size of the Kripke structure and of the

formula, as traditional two-valued model checking for TL.

The linear complexity in the number n of join-irreducible elements of the lattice L

given in the previous theorem can be improved for speci�c classes of lattices. For

instance, when a lattice L has all its join-irreducible elements linearly ordered,

the precedure of Fig. 2 can be modi�ed to perform a binary search (i.e., checking

�rst the join-irreducible element in the middle of the lattice, then checking the

join-irreducible element in the middle of the upper or lower half, etc.) instead of

a linear search, hence providing a decision procedure for the multi-valued model-

checking problem for L with a worst-case time complexity of O(log(n)) instead

of O(n).



Our reduction theorem generalizes existing work on reducing multi-valued

model checking to two-valued model checking. In [3] a reduction is given for

three-valued model checking. In [16], reductions are given for three classes of

DeMorgan lattices: total orders, binary products of total orders, and the lattice

2�2+2, which can be obtained from the third lattice of Fig. 1 by adding a new

top element f that is greater that element e.

In [13], Fitting de�nes two kinds of models for propositional modal logic. A

many-valued modal model is like a Kripke structure over a lattice except that

transitions are also multi-valued. The lattice must have a bottom element and

pseudo-complements must exists. A multiple-expert modal model is like a stan-

dard Kripke structure except that it includes a set of experts and a binary dom-

inates relation over experts. The transition relation is parameterized by experts,

and satis�es the condition that if a e

1

transition exists and expert e

1

dominates

e

2

, then a corresponding e

2

transition must also exist. The truth assignment is

also parameterized by experts, and satis�es a similar condition.

Fitting shows that one can derive a multi-expert model from a many-valued

model such that a formula � holds in the derived model, relative to an expert e,

exactly when the value of � in the multi-valued model is an element of the set

that was used to de�ne the expert e. The key idea is that the set of experts of

the derived multi-expert model can be de�ned as the proper prime �lters of the

lattice. Fitting also shows how one can derive a many-valued model from any

multi-expert model.

Our work di�ers from Fitting's in several ways. First, we use �L rather than

propositional modal logic. Second, we de�ne our derived two-valued models using

join-irreducible elements rather than proper prime �lters. This simpler approach

works because for �nite distributive lattices, a set of lattice elements is a proper

prime �lter just if it is equal to the up-closed set of a join-irreducible element.

Finally, Fitting treats negation as pseudo-complement, while our reduction is

parametric with respect to negation, and therefore supports any form of negation

that can be de�ned on a subclass of �nite distributive lattices. The price paid

for this generality is that we require that M

e

have both � and an additional

second mapping � for the interpretation of atomic propositions. We do require

that DeMorgan's laws hold in translating a �L formula with negation to one in

which negation appears only on atomic propositions.

[14] concerns AC-lattices, which can be thought of as pairs of graph-isomorphic

lattices in which the order relation of one is the inverse of the other. Negation in

an AC-lattice is captured as two maps, each mapping an element of one lattice

to the isomporphic image in the other. The motivation for these lattices is to

allow for an analysis of \conict" between multiple requirements. A notion of

expert similar to Fitting's is used. It is shown, for �nite models, that for each of

the two \modes" captured by the two lattices in an AC-lattice, the set of views

for which a modal mu-calculus formula holds is equal to the set obtained by a

interpretation of the formula as a view set. The result di�ers from ours in that

it is based on AC-lattices, in its treatment of negation, and in that it relates



view sets rather than lattice elements directly. Also, by using Birkho�'s theorem

along with Lemma 1, we obtain a simpler proof.

4 Extended Alternating Automata

In this section, we recall the de�nition of Extended Alternating Automata (EAA)

on trees as introduced in [4] and present new results concerning their properties.

4.1 De�nition

Alternating automata on trees (e.g., see [18]) generalize traditional nondeter-

ministic tree automata by allowing several successor states of the automaton

to go down along the same branch of the input tree. For example, consider an

alternating automaton in state s that is reading node x of an input tree such

that x is labeled with T (x) and has k successors. The transition function � of

the automaton can specify that �(s; T (x); k) = ((1; s

0

) ^ (1; s

00

)) _ (2; s

0

); this

intuitively means that the automaton can either split into two copies, one of

which will move to state s

0

and will read next the �rst successor of x, while the

second will move to state s

00

and will also read next the �rst successor of x, or

the automaton can instead move to state s

00

without splitting and read next the

second successor of x. Constants true and false can also appear in an expression

mapped to by the transition function.

Extended alternating automata [4] generalize alternating automata by allow-

ing the expressions speci�ed in the transition function to include meet and join

operations of a lattice, and any values of the lattice as constants. A standard

alternating automaton is thus an EAA based on the lattice (ftrue; falseg;�).

Semantically, EAA generalize the notion of a run in alternating automata.

A run of an alternating automaton on an input tree is itself a tree, with each

node of the run labeled by a node of the input tree. The labels on a node of

the run and its children must satisfy the automaton's transition function. In an

EAA, each node of the run is additionally labeled with a value of the underlying

lattice, and the values labeling a node of a run and its children must again satisfy

the transition function. Every run itself has a value, which is the value labeling

the root node. A run is accepting if it satis�es the acceptance condition of the

EAA and also has no node labeled with the bottom element of the lattice. In

a standard alternating automaton each node of a run is implicitly labeled with

value true.

We now formalize the above discussion. A tree � is a subset of IN

�

such that

if x � c 2 � then x 2 � and x � c

0

2 � for all 1 � c

0

< c. The elements of � are

called its nodes, with � called the root. Given a node x of � , values of the form

x � i in � are called the children or successors of x. The number of successors of

x is called the degree of x. A node with no successors is called a leaf. Given a set

D � IN , a D-tree is a tree in which the degree of every node is in D. A �-labeled

tree is a pair (�; T ) in which � is a tree and T : IN

�

! � is a labeling function.



Let L = (B;^;_) be a complete lattice, and let B

+

(X) stand for the set

of terms built from elements in a set X using ^ and _. A tree EAA over L

is a tuple A = (�;D; S; s

0

; �; F ), where � is a nonempty �nite alphabet, S is

a nonempty �nite set of states, s

0

2 S is the initial state, F is an acceptance

condition, D � IN is a �nite set of arities, and � : S���D! B

+

((IN�S)[B)

is a transition function, where �(s; a; k) 2 B

+

((f1; : : : ; kg�S)[B) is de�ned for

each s in S, a in �, and k in D. Various types of acceptance conditions F can

be used with EAA, just as in alternating automata, and are discussed below.

A v-run of a tree EAA A on a �-labeled leaess D-tree (�; T ) is an IN

�

�

S � B-labeled tree (�

�

; T

�

). A node in �

�

labeled by (x; s; v) describes a copy

of automaton A that reads the node x of �

�

in the state s of A and has value

v 2 B associated with it. Formally, a v-run (�

�

; T

�

) is an IN

�

� S � B-labeled

tree, de�ned as follows.

{ T

�

(�) = (�; s

0

; v)

{ Let y 2 �

�

, T

�

(y) = (x; s; v

0

), arity(x) = k, and �(s; T (x); k) = �. Then there

is a (possibly empty) set Q = f(c

1

; s

1

; v

1

); : : : ; (c

n

; s

n

; v

n

)g � f1; : : : ; kg �

S �B such that

� for all 1 � i; j � n, c

i

= c

j

and s

i

= s

j

implies v

i

= v

j

,

� Eval(Q; �) = v

0

, and

� for all 1 � i � n, we have y � i 2 �

�

and T

�

(y � i) = (x � c

i

; s

i

; v

i

)

Eval(Q; �) denotes the value of the expression � obtained by replacing each term

(c

i

; s

i

) in � by v

i

if (c

i

; s

i

; v

i

) 2 Q and replacing each term (c

i

; s

i

) in � by ? if

(c

i

; s

i

; v

i

) 62 Q.

A v-run � is accepting if (1) the value associated with each node of the run is

not ? and (2) all in�nite branches of the run satisfy the acceptance condition F .

As with traditional alternating automata, various types of acceptance conditions

can be used. For instance, a path w satis�es a parity acceptance condition F =

fF

1

; F

2

; : : : ; F

n

g with F

1

� F

2

� : : : � F

n

if the minimal index i for which some

state s in F

i

appears in�nitely often along w is even.

Note that an accepting run can have �nite branches: if, for some y 2 �

�

,

T

�

(y) = (x; s; v) and �(s; T (x); arity(x)) = v with v 2 L and v 6= ?, then y does

not need to have any successor.

A tree EAA A accepts a �-labeled leaess D-tree (�; T ) with value v if there

exists an accepting v-run of A on that tree. We de�ne the language L

v

(A) as

follows (for v 6= ?): L

v

(A) = f(�; T ) j A accepts (�; T ) with value vg. For nota-

tional convenience, we de�ne L

?

(A) as f(�; T ) j A has no accepting run on (�; T )g.

When D is a singleton, A runs over trees with a �xed branching degree. In

particular, a word EAA is simply a tree EAA in which D = f1g.

4.2 Properties

We now establish two fundamental properties of EAA. Our �rst and main result

states that, for any EAA and any input tree, there always exists a maximum

value v of L for which the EAA has an accepting v-run on the input tree.



Theorem 4 (Maximum-value theorem). Let A be a tree EAA over a com-

plete lattice L, and let (�; T ) be a �-labeled leaess D-tree. Then the subset

fv j (�; T ) 2 L

v

(A)g of L has a unique maximum value, which we denote by

Max(A; (�; T )).

Note that it is not generally true that if an EAA has an accepting v

1

-run and an

accepting v

2

-run on an input tree then the EAA has an accepting (v

1

_v

2

)-run on

the input tree. In what follows, we will simply write Max(A) for Max(A; fa

!

g)

when A is a word EAA on a 1-letter alphabet fag.

Given any EAA A = (�;D; S; s

0

; �; F ) on a DeMorgan lattice L, its dual

automaton

~

A = (�;D; S; s

0

; ~�; F ) is de�ned as the EAA over L obtained by

dualizing the transition function � of A (i.e., replacing ^ by _, _ by ^ and every

constant c in L by :c) and by complementing the acceptance condition F of A

(i.e., if F and F denote the subset of S

!

that satis�es the acceptance condition

F and F respectively, then F = S

!

nF). Our second result relates an EAA and

its dual.

Theorem 5 (Complementation theorem). Let A be an EAA over a De-

Morgan lattice L, let

~

A be its dual EAA, and let (�; T ) be a �-labeled leaess

D-tree. Then we have Max(

~

A; (�; T )) = :Max(A; (�; T )):

This result generalizes the traditional complementation theorem on AAs [21].

5 Model Checking with EAA

The model-checking procedure for multi-valued logics using EAAs generalizes the

automata-theoretic approach to 2-valued model checking with AAs of [18]. Our

procedure computes the value [(M; s); �] de�ned by a �L formula � evaluated in

state s of a Kripke structure M over a DeMorgan lattice L. First, we translate

� to an EAA A

�

. Then we build a product automaton from A

�

and M in such

a way that the maximum value that labels an accepting run of the product

automaton is [(M; s); �]. We now present these steps in detail.

We begin with a translation of �L formulas to EAAs. The property we want

of the translation is that the value of the maximum accepting run of the EAA

for formula � and an input tree (�; T ) agrees with the value [(�; T ); �] de�ned

by the semantics of �L (with (�; T ) viewed as a Kripke structure over L).

De�nition 2. Let � denote a �L formula and let L denote a DeMorgan lattice.

Let cl(�) denote the set of all subformulas of �, and let P be the set of atomic

propositions appearing in cl(�). Given a set D � IN , we de�ne a parity EAA

A

D;�

= (P ! L;D; cl(�); �; �; F ) where the transition function � and the parity

acceptance condition F are de�ned as follows:

{ For all � : P ! L and k 2 D, we de�ne:

� �(p; �; k) = �(p).

� �(:p; �; k) = :�(p).

� �(�

1

^ �

2

; �; k) = split(�(�

1

; �; k) ^ �(�

2

; �; k)).

� �(�

1

_ �

2

; �; k) = split(�(�

1

; �; k) _ �(�

2

; �; k)).



� �(2�; �; k) = split(

V

k

c=1

(c; �)).

� �(3�; �; k) = split(

W

k

c=1

(c; �)).

� �(�X:f(X); �; k) = split(�(f(�X:f(X)); �; k)).

� �(�X:f(X); �; k) = split(�(f(�X:f(X)); �; k)).

where the function split : B

+

(IN � cl(�)) ! B

+

(IN � cl(�)) is de�ned re-

cursively by split(v) = v for v 2 L, split(�

1

^ �

2

) = split(�

1

) ^ split(�

2

),

split(�

1

_ �

2

) = split(�

1

) _ split(�

2

), split((c; �

1

^ �

2

)) = split((c; �

1

)) ^

split((c; �

2

)), split((c; �

1

_�

2

)) = split((c; �

1

))_split((c; �

2

)), and split((c; �))

= (c; �) when � is of the form p, :p, 2�

0

, 3�

0

, �X:f(X) or �X:f(X).

{ F is de�ned exactly as in [18]: if d � 1 denotes the maximal alternation

level of subformulas of �, G

i

denotes the set of all the �-formulas in cl(�) of

alternation level i � d, and B

i

denotes the set of all the �-formulas in cl(�)

of alternation level i � d, then F = fF

1

; F

2

; : : : ; F

2d

g where F

0

= ; and for

all 1 � i � d, F

2i�1

= F

2i�2

[ B

i

and F

2i

= F

2i�1

[G

i

.

This translation is nearly identical to the translation from �L to alternating

automata given in [18]. The only di�erence is the translation of formulas of the

form p and :p where � represents in our case a mapping from atomic propositions

to elements in the lattice L. (De�nition 2 is included here to make our paper

self-contained.) The correctness of this translation is established by the following

theorem.

Theorem 6. Let � denote a �L formula and let L denote a DeMorgan lattice.

Then a parity EAA A

D;�

for � can be constructed in linear time such that

[((�; T ); �); �)] =Max(A

D;�

; (�; T )) for every leaess D-tree (�; T ) on L.

In the next step of the procedure, we compute the product of a Kripke structure

and an EAA representing a �L formula. The product construction de�ned here

is again nearly identical to that given for alternating automata in [18].

De�nition 3. Let � be a �L formula over a DeMorgan lattice L, M = (S; s

0

; �;

R) be a Kripke structure over L with degrees in D, and A

D;�

= (P ! L;D;Q

�

; q

0

;

�

�

; F ) be a parity EAA representing �. Then the product automaton A

M;�

=

(fag; S�Q

�

; (s

0

; q

0

); �; F ) of M and A

D;�

is a parity word EAA over a 1-letter

alphabet with at most O(jSj � jQ

�

j) states, where � and F are de�ned as follows:

{ For all q 2 Q

�

, s 2 S, if succ

R

(s) = (s

1

; : : : ; s

n

) and �

�

(q; �(s); n) = �,

then �((s; q); a) = �

0

where �

0

is obtained from � by replacing each atom

(c; q

0

) in � by (s

c

; q

0

).

{ If F

�

= fF

1

; F

2

; : : : ; F

m

g is a parity acceptance condition, then so is F =

f(S � F

1

); (S � F

2

); : : : ; (S � F

m

)g.

The product automaton A

M;�

is used to prove the following.

Theorem 7. Let � be a �L formula, M = (S; s

0

; �;R) be a Kripke structure

over a DeMorgan lattice L with degrees in D, and s be a state in S. Then, there

exists a parity word EAA A

M;�

over a 1-letter alphabet such that [(M; s); �)] =

Max(A

M;�

):



0

0 1(  , (s  , q  ), 1/2)1 1 2 0(  , (s  , q  ), 1)

0ε(  , (s  , q  ), 1/2)

s

s0

p = 1/2 p = 1

p = 0

21s

Fig. 3. Example Kripke structure M and accepting run

In the �nal step of the model-checking procedure, we compute the valueMax(A

M;�

)

of the product EAA.

Theorem 8. Given a parity word EAA A

M;�

over L with a 1-letter alphabet,

computing Max(A

M;�

) has the same complexity as checking whether the lan-

guage accepted by a parity word AA with a 1-letter alphabet is nonempty, i.e.,

can be done in nondeterministic polynomial time.

Algorithms for computing Max(A) of a word EAA A over a 1-letter alphabet

are similar to algorithms for checking emptiness of AAs over a 1-letter alphabet.

The only di�erence is that the algorithms dealing with EAAs propagates values

in L instead of values in the set ftrue; falseg as with traditional AAs. Since

the best known upper bound for the traditional (2-valued) �L model-checking

problem is that it is in NP\co-NP, this bound carries over to the multi-valued

case. However, computing Max(A

M;�

) can be done more e�ciently for some

subclasses of �L. For instance, the EAA corresponding to a CTL formula is

weak [18], and computing the value Max(A

M;�

) of the product of a weak EAA

with a Kripke structure can be done in linear time [4].

Example 1. Consider the �L formula �X:p _ 2X , which is equivalent to the

CTL formula AFp. By applying the construction of De�nition 2, we obtain a

tree EAA with a single state q

0

, an acceptance condition F = ; and the following

transition function:

�(q

0

; �; k) = �(p) _

k

^

c=1

(c; q

0

)

We next take the product of this automaton with the Kripke structureM over L

3

shown on the left of Figure 3. The �gure is labeled to show the value of the atomic

proposition p at each state. Using the product construction of De�nition 3, we

obtain a (weak) word EAA over a 1-letter alphabet with no accepting states and

the following transition function:

�((s

0

; q

0

); a; 1) = 0 _ ((s

1

; q

0

) ^ (s

2

; q

0

))

�((s

1

; q

0

); a; 1) = 1=2 _ (s

1

; q

0

)

�((s

2

; q

0

); a; 1) = 1 _ (s

2

; q

0

)

This EAA has an accepting 1/2-run, which is shown on the right in Figure 3.

The value 1/2 is the greatest value v for which there is an accepting v-run, so

by Theorem 7, we know that [(M; s

0

); �X:p _ 2X ] = 1=2:



6 Discussion

It was mentioned in the introduction that, depending on the circumstances,

multi-valued model checking may best be done directly or by reduction. Having

de�ned each approach we now reconsider this question.

One issue is whether the lattice being used is in�nite. This issue might seem

to favor the direct approach, since reduction would require in�nitely many two-

valued model checks. However, in a �nite-state Kripke structure with �nitely-

many di�erent atomic propositions, at most �nitely-many lattice elements will

appear. From these, by closing under meet and join, one obtains a �nite sublattice

of the original lattice. This �nite lattice can be used in place of the original one

for multi-valued model checking. This idea can be used independently of whether

model checking is to be performed directly or by reduction. Also, the idea can

be used to attempt to reduce the size of a �nite lattice.

More important is the degree to which the two approaches can work in an

\on-the-y" fashion, computing whatever information is necessary to solve the

problem at hand on a demand-driven basis. The multi-valued model checking

problem has as inputs a lattice, a Kripke structure, and a temporal-logic for-

mula. In the reduction approach, only the lattice and Kripke structure are used

in building the two-valued Kripke structures, each of which can then be model

checked possibly on-the-y, thus using the formula to guide the veri�cation needs.

In contrast, the direct approach can make use of all three inputs together to

further limit computational resources. For instance, consider a lattice of n in-

comparable elements plus a top and bottom element, and suppose the formula

we wish to model check is simply the atomic proposition p. In the reduction

approach we must then perform n model checks. In the direct approach we will

perform a single model check that examines only the initial state of the multi-

valued Kripke structure and reads only the value of p, which requires reading

only log(n) bits.

References

1. L. Bolc and P. Borowik. Many-Valued Logics. Springer Verlag, 1992.

2. G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued

Temporal Logics. In Proceedings of the 11th Conference on Computer Aided Veri�-

cation, volume 1633 of Lecture Notes in Computer Science, pages 274{287, Trento,

July 1999. Springer-Verlag.

3. G. Bruns and P. Godefroid. Generalized Model Checking: Reasoning about Partial

State Spaces. In Proceedings of CONCUR'2000 (11th International Conference on

Concurrency Theory), volume 1877 of Lecture Notes in Computer Science, pages

168{182, University Park, August 2000. Springer-Verlag.

4. G. Bruns and P. Godefroid. Temporal Logic Query Checking. In Proceedings of

LICS'2001 (16th IEEE Symposium on Logic in Computer Science), pages 409{417,

Boston, June 2001.

5. W. Chan. Temporal-Logic Queries. In Proceedings of the 12th Conference on

Computer Aided Veri�cation, volume 1855 of Lecture Notes in Computer Science,

pages 450{463, Chicago, July 2000. Springer-Verlag.



6. M. Chechik, B. Devereux, and A.Gur�nkel. Model-Checking In�nite State-Space

Systems with Fine-Grained Abstractions Using SPIN. In Proceedings of SPIN

Workshop on Model-Checking Software, 2001.

7. M. Chechik, B. Devereux, S. Easterbrook, and A. Gur�nkel. Multi-valued sym-

bolic model checking. Technical Report 448, Computer Systems Research Group,

University of Toronto, 2001.

8. M. Chechik and W. Easterbrook. A framework for multi-valued reasoning over

inconsistent viewpoints. In Proceedings of International Conference on Software

Engineering (ICSE'01), May 2001.

9. M. Chechik, W. Easterbrook, and A. Gur�nkel. Model exploration with temporal

logic query checking. In Proceedings of FSE '02, November 2002.

10. E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skele-

tons using Branching-Time Temporal Logic. In D. Kozen, editor, Proceedings of the

Workshop on Logic of Programs, Yorktown Heights, volume 131 of Lecture Notes

in Computer Science, pages 52{71. Springer-Verlag, 1981.

11. B.A. Davey and H.A. Priestly. Introduction to Lattices and Order. Cambridge

University Press, 1990.

12. M. Fitting. Many-Valued Modal Logics I. Fundamenta Informaticae, 15:235{254,

1992.

13. M. Fitting. Many-Valued Modal Logics II. Fundamenta Informaticae, 17:55{73,

1992.

14. M. Huth and S. Pradham. Lifting assertion and consistency checkers from single

to multiple viewpoints. Technical report, Dept. of Computing, Imperial College,

London, 2002.

15. Stephen Cole Kleene. Introduction to Metamathematics. North Holland, 1987.

16. B. Konikowska andW. Penczek. Reducing model checking frommulti-valued CTL*

to CTL*. In Proceedings of CONCUR 2002, LNCS 2421, 2002.

17. D. Kozen. Results on the Propositional Mu-Calculus. Theoretical Computer Sci-

ence, 27:333{354, 1983.

18. O. Kupferman, M. Y. Vardi, and P. Wolper. An Automata-Theoretic Approach

to Branching-Time Model Checking. Journal of the ACM, 47(2):312{360, March

2000.

19. Z. Lot�. Fuzzy Sets. Information and Control, 8:338{353, 1965.

20. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Speci�cation. Springer-Verlag, 1992.

21. D. E. Muller and P. E. Schupp. Simulating alternating tree automata by non-

deterministic automata: New results and new proofs of the theorems by Rabin,

McNaughton and Safra. Theoretical Computer Science, 141(1{2):69{108, 1995.

22. K. Segerberg. Some Modal Logics Based on a Three-Valued Logic. Theoria, 33:53{

71, 1967.

23. A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c J. of

Maths, 5:285{309, 1955.


