
SpecNCheck Page 1 August 2001

Model Checking of SoftwareModel Checking of Software

Patrice Godefroid

Bell Laboratories, Lucent Technologies

SpecNCheck Page 2 August 2001

A Brief History of Model CheckingA Brief History of Model Checking

• Prehistory: transformational programs and theorem proving

• Early 80’s: foundations (the pioneers)

• Late 80’s: first tools… (the first champions)

• Early 90’s: reality check: state spaces explode! (the engineers)

• Late 90’s: the boom… then reality check… (the entrepreneurs)

• Next: can model checking be applied to software?

– Challenges and approaches currently being investigated…

SpecNCheck Page 3 August 2001

Preliminaries: Formal Verification + DisclaimerPreliminaries: Formal Verification + Disclaimer

• What is Verification? 4 elements define a verification framework:

• While testing can only find errors, verification can also prove
their absence (=exhaustive testing).

• Disclaimer: emphasis on technical ideas, not references…

Specification
(what we want)

Implementation
(what we get)

Design Verification

Verification: to check if all possible behaviors of the implementation
are compatible with the specification

SpecNCheck Page 4 August 2001

Prehistory (70’s and before)Prehistory (70’s and before)

• “Transformational” programs:

– Most early computer programs were designed to compute something.

– Examples: accounting, scientific computing, etc.

– Transformation from initial to final state.

– Specification= pre-condition/post-condition

• Formal verification:

– Paper and pencil.

– Using Theorem Proving (first CAV tools)

SpecNCheck Page 5 August 2001

Theorem ProvingTheorem Proving

• Goal: automate mathematical (logical) reasoning.

• Verification using theorem proving:
– Implementation represented by a logic formula I (ex: Hoare’s logic).

– Specification represented by a logic formula S.

– Does “ I implies S” hold?

– Proof is carried out at syntactic level.

• This approach is very general.
– Many programs and properties can be checked this way.

• However, most proofs are not fully automatic.
– A theorem prover is rather a proof assistant and a proof checker.

SpecNCheck Page 6 August 2001

Early 80’s: Foundations (the pioneers)Early 80’s: Foundations (the pioneers)

• From transformational programs to reactive programs:

– A transformational program computes something.

– A reactive program controls something.

– Examples: telephone switch, airplane, ATM, power plant, pacemaker, etc.

• A reactive program continually interacts with its environment.

• Viewed as a FSM (automaton), called the state space.

• Behavior described in terms of sequences of states/transitions.

• Language for temporal properties: Temporal Logic [Pnueli,…]

SpecNCheck Page 7 August 2001

Temporal Logic Model CheckingTemporal Logic Model Checking

• Example: Linear-time Temporal Logic (LTL)

– Specify properties of infinite sequences of states (or transitions).

– Temporal operators include: G (always), F (eventually) and X (next).

– Example: G(p -> Fq)

• “Does M satisfy f ?” = model checking [Clarke, Emerson, Sifakis,…]

– For f in LTL, do all infinite computations of M satisfy f?

– For f in BTL, does the computation tree of M satisfy f?

• Algorithmic issues: efficient decision procedures exist…

– Proof can be carried out at semantic level, via state-space exploration.

– Ex: for CTL, SAT is EXPTIME-complete, but model checking is linear!

s0
p q

SpecNCheck Page 8 August 2001

First ModelFirst Model--Checking FrameworksChecking Frameworks

• 4 components define a model-checking framework:

– Implementation (program) = an FSM.

– Specification (property) = a temporal logic formula.

– Comparison Criteria = defined by semantics of the temporal logic.

– Algorithm = evaluates the formula against the FSM (“model-checking algorithm”)

• Model-Checking Research in the 80’s:

– Various temporal logics: linear-time, branching-time,…

– Relationship between temporal logics and classes of automata (LTL and word
automata; BTL and tree automata…)

– Classes of temporal properties (safety, liveness,…)

– Etc.

• Model checking is automatic but (essentially) restricted to finite-state systems.

• Many reactive systems can be modeled by FSMs! Let’s build tools!

SpecNCheck Page 9 August 2001

Late 80’s: First tools… (the first champions)Late 80’s: First tools… (the first champions)

• Examples: CAESAR, COSPAN, CWB, MURPHI, SPIN, etc.

– Differ by specification language, implementation language, comparison criterion,
and/or verification algorithms,

– but all based on systematic state-space exploration.

• NOTE: using a temporal logic is not mandatory.

– Many “model-checking” tools do not support a full temporal logic.

– From now on, no distinction here between model checking and systematic state-
space exploration.

– Logic is a powerful theoretical tool (characterizes classes of properties).

– Logic can be very useful in practice too (concise and expressive).

• First success stories in analyzing circuit designs, communication protocols,
distributed algorithms!

SpecNCheck Page 10 August 2001

Formal Verification vs. TestingFormal Verification vs. Testing

• Experiments with these tools show that model checking can be
very useful!

– Main strength: model checking can detect subtle design errors.

• In practice, formal verification is actually testing because of
approximations:

– when modeling the system,

– when modeling the environment,

– when specifying properties,

– when performing the verification.

• Therefore “bug hunting” is really the name of the game!

– Main goal: find errors that would be hard to find otherwise.

SpecNCheck Page 11 August 2001

Early 90s: First Reality Check… (the engineers)Early 90s: First Reality Check… (the engineers)

• Model Checking is limited by the state explosion problem.

– FSM (=state space) can itself be the product of smaller FSMs…

– Model checking is usually linear in the size of the state space,

– but the size of the state space is usually exponential (or worse) in the system
description (program).

• State-space exploration is fundamentally hard (NP, PSPACE or
worse).

• Engineering challenge: how to make model checking scalable?

X1=1 X2=1 Xn=1

n! interleavings!

2^n states!

SpecNCheck Page 12 August 2001

Dealing with State ExplosionDealing with State Explosion

• Divide-and-conquer approaches:
– abstraction: hide/approximate details.

– compositionality: check first local properties of individual components,
then combine these to prove correctness of the whole system.

• Algorithmic approaches:
– “symbolic verification” : represent state space differently (BDDs,…).

– state-space pruning techniques: avoid exploring parts of the state space
(partial-order methods, symmetry methods,…).

– Techniques to tackle the effects of state explosion (bit-state hashing, state-
space compression, caching, etc.).

– Etc.

• Several order of magnitudes gained! We are in business!

SpecNCheck Page 13 August 2001

Late 90’s: the boom… then reality check…Late 90’s: the boom… then reality check…

• “Industrial” model-checking tools are developed and gain
acceptance in industry…

– Become routinely used for some applications in some companies.

• Mostly hardware: IBM, Intel, Lucent, Motorola, etc.

• Software designs too (with SDL (Telelogic), VFSM (Lucent),…)

• Several start-ups are trying to emerge!…

– FormalCheck (now Cadence), Verisity, Verysys, Mentor Graphics, 0-in,…

• Making money selling model-checking tools is hard!

– Scalability issues (state explosion…)

– Usability issues (requires training for specification and verification)

SpecNCheck Page 14 August 2001

Applications: HardwareApplications: Hardware

• Hardware verification is an important application of model
checking and related techniques.

– The finite-state assumption is not unrealistic for hardware.

– The cost of errors can be enormous (e.g., Pentium bug).

– The complexity of designs is increasing very rapidly (system on a chip).

• However, model checking still does not scale very well.

– Many designs and implementations are too big and complex.

– Hardware description languages (Verilog, VHDL,…) are very expressive.

– Using model checking properly requires experienced staff.

• Quid for Software?

SpecNCheck Page 15 August 2001

Applications: Software ModelsApplications: Software Models

• Analysis of software models: (e.g., SPIN)

– Analysis of communication protocols, distributed algorithms.

– Models specified in extended FSM notation.

– Restricted to design.

• Analysis of software models that can be compiled: (e.g., SDL,
VFSM)

– Same as above except that FSM can be compiled to generate the core of the
implementation.

– More popular with software developers since reuse of “model” is possible.

– Analysis still restricted to “FSM part” of the implementation.

SpecNCheck Page 16 August 2001

Model Checking of SoftwareModel Checking of Software

• Challenge: how to apply model checking to analyze software?

– “Real” programming languages (e.g., C, C++, Java),

– “Real” size (e.g., 100,000’s lines of code).

• Two main approaches for software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing
(Ver iSoft)

state-space exploration

state-space exploration

abstraction adaptation(Bandera, Feaver , JPF, SLAM,…)

SpecNCheck Page 17 August 2001

Approach: Systematic Testing (Approach: Systematic Testing (VeriSoftVeriSoft))
• Control and observe the execution of concurrent processes of the system under test by

intercepting system calls (communication, “VS_toss(n)”, assertion violations, etc.).

• Systematically drive the system along all the paths (=scenarios) in its state space
(=automatically generate, execute and evaluate many scenarios).

• From a given initial state, one can always guarantee a complete coverage of the state
space up to some depth.

VeriSoft

BA C

System Processes

deadlock

s0

SpecNCheck Page 18 August 2001

VeriSoft StateVeriSoft State--Space SearchSpace Search

• Automatically searches for: (safety properties only!)

– deadlocks,

– assertion violations,

– divergences (a process does not communicate with the rest of the system
during more than x seconds),

– livelocks (a process is blocked during x successive transitions).

• A scenario (path) is reported for each error found.

• How to efficiently explore state spaces without storing any state?

– States of arbitrary (OS) processes are too complex to be represented
explicitly (no hash-tables, BDDs,…).

– For concurrent systems, need partial-order algorithms! [Godefroid,…]

SpecNCheck Page 19 August 2001

The VeriSoft SimulatorThe VeriSoft Simulator

SpecNCheck Page 20 August 2001

VeriSoftVeriSoft Project StatusProject Status

• Development of research prototype started in 1996.

• Examples of applications in Lucent Technologies:

– 4ESS Heart-Beat Monitor debugging and unit testing (Switching, switch maint.)

– WaveStar 40G R4 integration and system testing (Optical, network management)

– CDMA Call Processing Library testing (Wireless, call processing)

• VeriSoft 2.0 available outside Lucent since January 1999:

– 100’s of non-commercial licenses in 25+ countries; 10’s of commercial
licenses; several industrial users (Lucent, Cisco, Motorola, Philips,…)

• Examples of related research issues:

– How to automatically close open reactive programs? [Colby, Godefroid,
Jagadeesan,..]

– How to analyze effectively partial state-spaces? [Bruns, Godefroid,…]

– How to apply and optimize this approach to multi-threaded programs? [Stoller,…]

SpecNCheck Page 21 August 2001

Approach: Automatic AbstractionApproach: Automatic Abstraction

• Main ideas and issues:

– 1. Abstract: extract a model out of concrete program via static analysis.
• Which programming languages are supported? ((subset of) C, Java, Ada,DSL?)

• Additional assumptions? (Pointers? Recursion? Concurrency?…)

• What is the target modeling language? ((C)(E)FSMs, PDAs,…)

• Can/must the abstraction be guided by the user? How?

– 2. Model check the abstraction.
• What properties can be checked? (Safety? Liveness?,…)

• How to model the environment? (Closed or open system ?…)

• Which model-checking algorithm? (New algorithms for PDAs, HSMs,…)

• Is the abstraction “conservative”?

– 3. Map abstract counter-examples back to code.
• Behaviors violating the property may have been introduced during Step 1.

• Hence, need to map scenarios leading to errors back to the code. HOW?

SpecNCheck Page 22 August 2001

Active Area of Research…Active Area of Research…

• Examples of tools:
– Bandera [Dwyer, Hatcliff,…]: Java to SPIN/SMV/* using user-guided

abstraction mapping and slicing/abstract-interpretation/*

– SLAM [Ball, Rajamani,…]: C to “Boolean programs” (=CFG+boolean
variables); automatic abstraction refinement using predicate abstraction…

– JavaPathFinder [Havelund,Penix,Visser,…]: Java model-checking using
special JVM and model-checker…

– Feaver [Holzmann,…]: C to SPIN using user-specified abstraction
mapping…

– Etc! (Tools for Ada, static analysis of concurrent programs,…)

• Examples of frameworks: (automatic abstraction refinement)
– [Graf,Saidi,…], [Clarke,Grumberg,Jha,…], [Ball,Rajamani,Podelski,…],

[Dill,Das,…], [Khurshan,Namjoshi,…], [Dwyer,Pasareanu,Visser,…],
[Bruns,Godefroid,Huth,Jagadeesan,Schmidt…], [Henzinger,…], etc.

SpecNCheck Page 23 August 2001

Summary: Two (Complementary) ApproachesSummary: Two (Complementary) Approaches

• Systematic software testing:
– Idea: control the execution of concurrent processes by intercepting systems

calls related to communication, and automatically drive the entire system
through many scenarios.

– Flexible and scalable approach (code independent).

– Counterexamples arise from code execution (sound).

– Provide complete state-space coverage up to some depth only (incomplete).

• Static analysis for automatic model extraction:
– Idea: parse code to generate an abstract model which is then analyzed by

model-checker; abstraction may/must be guided by the user.

– Coverage can be exhaustive (can be complete).

– Abstraction may cause spurious counterexamples (unsound)…

– Technology less mature, active area of research.

SpecNCheck Page 24 August 2001

ConclusionsConclusions

• Model Checking is a very successful research area:

– New: original approach to check the correctness of reactive systems.

– Non-obvious: rich theory behind it.

– Useful: many applications and success stories, including in industry.

• From a business perspective, the success is mixed…(!?!)

• Can model checking be applied to software?

– Hard problem (model checking + program analysis).

– Good for research!

– Bad for business?

