Model Checking of Software

Patrice Godefroid

Bell Laboratories, Lucent Technologies

SpecNCheck Page 1 August 2001

A Brief History of Model Checking

o Prehistory: transformational programs and theorem proving

« Early 80's: foundations (the pioneers)

 Late80's: first tools... (the first champions)

o Early 90’s: reality check: state spaces explode! (the engineers)
e Late 90's: the boom... then reality check... (the entrepreneurs)

* Next: can model checking be applied to software?
— Challenges and approaches currently being investigated...

SpecNCheck Page 2 August 2001

Preliminaries; Formal Verification + Disclamer

e What is Verification? 4 e ements define a verification framework:

Specification
(what we want)

Design

>

| mplementation
(what we get)

Verification

Verification: to check if all possible behaviors of the implementation

are compatible with the specification

* Whiletesting can only find errors, verification can aso prove
their absence (=exhaustive testing).

» Disclaimer: emphasis on technical ideas, not references. ..

SpecNCheck

Page 3

August 2001

Prehistory (70’s and before)

e “Transformational” programs:
— Most early computer programs were designed to compute something.

— Examples. accounting, scientific computing, etc.
— Transformation from initial to final state.
— Specification= pre-condition/post-condition

 Formal verification:
— Paper and pencil.
— Using Theorem Proving (first CAV tools)

SpecNCheck Page 4 August 2001

Theorem Proving

e (Goal: automate mathematical (logical) reasoning.

 Veification using theorem proving:
— Implementation represented by alogic formulal (ex: Hoare’ slogic).
— Specification represented by alogic formula S.
— Does“l implies S’ hold?
— Proof is carried out at syntactic levd.

e Thisapproach isvery generdl.
— Many programs and properties can be checked this way.

 However, most proofs are not fully automatic.
— A theorem prover israther aproof assistant and a proof checker.

SpecNCheck Page 5 August 2001

Early 80's. Foundations (the pioneers)

From transformational programs to reactive programs:
— A transformational program computes something.
— A reactive program contr ols something.
— Examples: telephone switch, airplane, ATM, power plant, pacemaker, etc.

A reactive program continually interacts with its environment.

Viewed as a FSM (automaton), called the state space.

Behavior described in terms of sequences of states/transitions.

L anguage for temporal properties. Temporal Logic [Pnudli,...]

SpecNCheck Page 6 August 2001

Temporal Logic Model Checking

 Example: Linear-time Temporal Logic (LTL)
— Specify properties of infinite sequences of states (or transitions).
— Temporal operatorsinclude: G (always), F (eventually) and X (next).
— Example: G(p -> Fq)
0 | P

q

o “DoesM satisfy f 7’ = model checking [Clarke, Emerson, Sifakis,...]
— For finLTL, do dl infinite computations of M satisfy f?
— For f in BTL, does the computation tree of M satisfy f?

o Algorithmic issues: efficient decision procedures exist...

— Proof can be carried out at semantic level, via state-space exploration.
— Ex: for CTL, SAT isEXPTIME-complete, but model checking islinear!

SpecNCheck Page 7 August 2001

First Model-Checking Frameworks

* 4 components define a model-checking framework:
— Implementation (program) = an FSM.
— Specification (property) = atemporal logic formula.
— Comparison Criteria = defined by semantics of the temporal logic.
— Algorithm = evaluates the formula against the FSM (“model-checking algorithm™)

» Model-Checking Research inthe 80's:
— Various temporal logics: linear-time, branching-time,...

— Relationship between temporal logics and classes of automata (LTL and word
automata; BTL and tree automata...)

— Classes of temporal properties (safety, liveness,...)
— Etc.

 Mode checking is automatic but (essentially) restricted to finite-state systems.

* Many reactive systems can be modeled by FSMs! Let’s build tools!

SpecNCheck Page 8 August 2001

Late 80's: First tools... (the first champions)

« Examples: CAESAR, COSPAN, CWB, MURPHI, SPIN, etc.

— Differ by specification language, implementation language, comparison criterion,
and/or verification algorithms,

— but all based on systematic state-space exploration.

 NOTE: using atemporal logic is not mandatory.
— Many “model-checking” tools do not support a full temporal logic.

— From now on, no distinction here between model checking and systematic state-
space exploration.

— Logicisapowerful theoretical tool (characterizes classes of properties).

— Logic can be very useful in practice too (concise and expressive).

* First success storiesin analyzing circuit designs, communication protocols,
distributed algorithms!

SpecNCheck Page 9 August 2001

Formal Verification vs. Testing

e Experiments with these tools show that model checking can be
very useful!

— Main strength: model checking can detect subtle design errors.

* |In practice, formal verification is actually testing because of
approximations:

— when modeling the system,
— when modeling the environment,
— when specifying properties,

— when performing the verification.

o Therefore “bug hunting” isreally the name of the game!

— Main goal: find errors that would be hard to find otherwise.

SpecNCheck Page 10 August 2001

Early 90s: First Reality Check... (the engineers)

 Model Checking islimited by the state explosion problem.
X1=1 X2=1| - Xn=1 2"n states!
l l l n! interleavings!

— FSM (=state space) can itself be the product of smaller FSMs...
— Model checking isusually linear in the size of the state space,

— but the size of the state space is usually exponential (or worse) in the system
description (program).

o State-space exploration is fundamentally hard (NP, PSPACE or
Worse).

* Engineering challenge: how to make model checking scalable?

SpecNCheck Page 11 August 2001

Dealing with State Explosion

* Divide-and-congquer approaches:
— abstraction: hide/approximate details.

— compositionality: check first local properties of individual components,
then combine these to prove correctness of the whole system.

« Algorithmic approaches:
— “symbolic verification”: represent state space differently (BDDs,...).

— state-gpace pruning technigues. avoid exploring parts of the state space
(partial-order methods, symmetry methods,...).

— Techniquesto tackle the effects of state explosion (bit-state hashing, state-
Space compression, caching, etc.).

— Etc.

o Severa order of magnitudes gained! We are in business!

SpecNCheck Page 12 August 2001

Late 90’ s: the boom... then reality check...

“Industrial” model-checking tools are developed and gain
acceptance in industry...

— Become routinely used for some applications in some companies.
Mostly hardware: IBM, Intel, Lucent, Motorola, etc.
Software designs too (with SDL (Telelogic), VFSM (Lucent),...)

Severd start-ups are trying to emerge! ...
— FormaCheck (now Cadence), Verisity, Verysys, Mentor Graphics, O-in,...

Making money selling model-checking tools is hard!
— Scalability issues (state explosion...)

— Usahility issues (requires training for specification and verification)

SpecNCheck Page 13 August 2001

Applications: Hardware

 Hardware verification is an important application of model
checking and related techniques.

— Thefinite-state assumption is not unrealistic for hardware.
— The cost of errors can be enormous (e.g., Pentium bug).

— The complexity of designsisincreasing very rapidly (system on achip).

 However, model checking still does not scale very well.
— Many designs and implementations are too big and complex.
— Hardware description languages (Verilog, VHDL,...) are very expressive.
— Using model checking properly requires experienced staff.

e Quid for Software?

SpecNCheck Page 14 August 2001

Applications: Software Models

* Analysisof software models. (e.g., SPIN)

— Analysis of communication protocols, distributed algorithms.
— Models specified in extended FSM notation.
— Restricted to design.

* Analysis of software models that can be compiled: (e.g., SDL,
VFSM)

— Same as above except that FSM can be compiled to generate the core of the
Implementation.

— More popular with software devel opers since reuse of “model” is possible.
— Analysis still restricted to “FSM part” of the implementation.

SpecNCheck Page 15 August 2001

Model Checking of Software

« Challenge: how to apply model checking to analyze softwar €?
— “Real” programming languages (e.g., C, C++, Java),
— “Red” size (e.g., 100,000’ s lines of code).

« Two main approaches for software model checking:

_ state-space exploration _
Modeling languages » Model checking

A

abstraction ((Bander a, Feaver, JPF, SLAM,...) adaptation

_ state-space exploration v _
Programming languages » Systematic testing

(VeriSoft)

SpecNCheck Page 16 August 2001

Approach: Systematic Testing (V eri Soft)

» Control and observe the execution of concurrent processes of the system under test by
Intercepting system calls (communication, “VS toss(n)”, assertion violations, etc.).

o Systematically drive the system along all the paths (=scenarios) in its state space

(=automatically generate, execute and evaluate many scenarios).

« Fromagiveninitial state, one can always guarantee a complete coverage of the state

space up to some depth.

V eri Soft
System Processes l __________________________________
i \ 4
N R » |- >
| A <- B <
SpecNCheck Page 17

v <0

deadlock 5
4 v
o

August 2001

Ver1Soft State-Space Search

o Automatically searchesfor: (safety properties only!)
— deadlocks,
— assertion violations,

— divergences (a process does not communicate with the rest of the system
during more than x seconds),

— livelocks (a process is blocked during x successive transitions).
« A scenario (path) isreported for each error found.

* How to efficiently explore state spaces without storing any state?

— States of arbitrary (OS) processes are too complex to be represented
explicitly (no hash-tables, BDDs,...).

— For concurrent systems, need partial-order algorithms! [Godefroid,...]

SpecNCheck Page 18 August 2001

The VeriSoft S mulator

Go To End

Quit

File Reset Hext Event Move
Process_1 | | Process_2 |
VS_togs(3)=1

send_to_gueuwe(§,10 room_is_hot)

rey_from_gueve(],10)=room_is_hot

Assertion violation!

Home

Zoom In

Zoom Qut Labels Quit

Move the pointer over a node to see which state it represents.

ey: ERERGERORE] veccocks: 0 Aot 0

(initial _state)

Vs toss(F)=1

send_to_guene(1,

rov_from_quewve(d,

Dismiss
E]
Step Hext Continue Print Quit
{ Text Regular Expression:
c]
Tney " . -
Step Hext Continue Print Quit AND
wH — — Labels
13_goor_closed=L; send_to_queue(1,10, roon_is_hot) w1
| 1faéf§7r°°m—h°t) send_to_queue(1,10, roon_is_cool) | = m 2
Vs o Isend_to_queue(1,10,open_door)
: send_to_queue(1,10,close_door)
it test +/ rev_fron_queue(1,10)=roon_is_hot|
if (is room hot &% is_door_closed) rev_fron_queue(1,10)=roon_is_coo
S 3 ﬂ
comeback $ verisoft main,c -simul errorl,path
H goe —IAhome/god/verizoftsbin shome/god verizoft/bindverizoft_simul_Sun05_5,5,1,0 -
void Envirorme IVERIFY -g main.c
shonesgod/verizoft/bindsinul , tel errorl,path
i Loading s==,M5 for state space wiew {please waitl,..
Dione,
SpecNCheck Page 19

0, room_is_hot)

o) =roon_is_hot

Match

Processes

Clear

buttons: L=go to state; M=center view; R=examine

]

Quit

August 2001

VeriSoft Project Status

* Development of research prototype started in 1996.

» Examples of applicationsin Lucent Technologies:
— 4ESS Heart-Beat Monitor debugging and unit testing (Switching, switch maint.)
— WaveStar 40G R4 integration and system testing (Optical, network management)
— CDMA Call Processing Library testing (Wireless, call processing)

* VeriSoft 2.0 available outside Lucent since January 1999:

— 100’ s of non-commercial licenses in 25+ countries; 10’s of commercia
licenses; several industrial users (Lucent, Cisco, Motorola, Philips,...)

o Examples of related research issues:

— How to automatically close open reactive programs? [Colby, Godefroid,
Jagadeesan,..]

— How to analyze effectively partia state-spaces? [Bruns, Godefroid,...]
— How to apply and optimize this approach to multi-threaded programs? [Stoller, .. .]

SpecNCheck Page 20 August 2001

Approach: Automatic Abstraction

e Main ideas and Issues:

— 1. Abstract: extract amodel out of concrete program via static analysis.
» Which programming languages are supported? ((subset of) C, Java, Ada,DSL?)
« Additional assumptions? (Pointers? Recursion? Concurrency?...)
* What isthetarget modeling language? ((C)(E)FSMs, PDAS,...)
« Can/must the abstraction be guided by the user? How?

— 2. Model check the abstraction.
» What properties can be checked? (Safety? Liveness?,...)
* How to model the environment? (Closed or open system ?...)
* Which model-checking algorithm? (New algorithms for PDAs, HSMs,...)
 |sthe abstraction “conservative’?

— 3. Map abstract counter-examples back to code.
» Behaviorsviolating the property may have been introduced during Step 1.
» Hence, need to map scenarios leading to errors back to the code. HOW?

SpecNCheck Page 21 August 2001

Active Area of Research...

e Examples of tools:

Bandera [Dwyer, Hatcliff,...]: Javato SPIN/SMV/* using user-guided
abstraction mapping and slicing/abstract-interpretation/*

SLAM [Ball, Rgamani,...]: Cto “Boolean programs’ (=CFG+boolean
variables); automatic abstraction refinement using predicate abstraction...

JavaPathFinder [Havelund,Penix,Visser,...]: Java model-checking using
specia JVM and model-checker...

Feaver [Holzmann,...]: C to SPIN using user-specified abstraction
mapping...
Etc! (Toolsfor Ada, static analysis of concurrent programs,...)

o Examples of frameworks. (automatic abstraction refinement)

SpecNCheck

[Graf,Saidl,...], [Clarke,Grumberg,Jna,...], [Ball,Rgjamani,Podel ski,...],
[Dill,Das,...], [Khurshan,Namjoshi,...], [Dwyer,Pasareanu,Visser,...],
[Bruns,Godefroid,Huth,Jagadeesan,Schmidt...], [Henzinger,...], €tc.

Page 22 August 2001

Summary: Two (Complementary) Approaches

« Systematic software testing:

— ldea: control the execution of concurrent processes by intercepting systems
callsrelated to communication, and automatically drive the entire system
through many scenarios.

— Flexible and scalable approach (code independent).
— Counterexamples arise from code execution (sound).
— Provide complete state-space coverage up to some depth only (incomplete).

o Static analysis for automatic model extraction:

— ldea: parse code to generate an abstract model which isthen analyzed by
model -checker; abstraction may/must be guided by the user.

— Coverage can be exhaustive (can be complete).
— Abstraction may cause spurious counterexamples (unsound)...
— Technology less mature, active area of research.

SpecNCheck Page 23 August 2001

Conclusions

 Model Checking isavery successful research area:
— New: original approach to check the correctness of reactive systems.
— Non-obvious: rich theory behind it.
— Useful: many applications and success stories, including in industry.

* From abusiness perspective, the successis mixed...(!1?)

« Can model checking be applied to software?
— Hard problem (model checking + program analysis).
— Good for research!

— Bad for business?

SpecNCheck Page 24 August 2001

