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Abstract. Dynamic software model checking consists of adapting model check-
ing into a form of systematic testing that is applicable to industrial-size software.
Over the last two decades, dozens of tools following this paradigm have been de-
veloped for checking concurrent and data-driven software. Compared to traditional
software testing, dynamic software model checking provides better coverage, but
is more computationally expensive. Compared to more general forms of program
verification like interactive theorem proving, this approach provides more limited
verification guarantees, but is cheaper due to its higher level of automation. Dy-
namic software model checking thus offers an attractive practical trade-off between
testing and formal verification. This paper presents a brief introduction to dynamic
software model checking.
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1. Introduction

Model Checking was introduced more than 30 years ago [15,61] as an automated veri-
fication technique for checking the correctness of concurrent reactive systems. Its basic
idea is conceptually simple: when designing, implementing and testing a concurrent re-
active system, check its correctness by modeling each component of the system using
some form of (extended) finite-state machine, and then by systematically exploring the
product of such finite-state machines, often called the state space of the system. The state
space is a directed graph whose nodes represent states of the whole system, and whose
edges represent state changes. Branching in the graph represents either branching in in-
dividual state machine components or nondeterminism due to concurrency, i.e., differ-
ent orderings of actions performed by different components. The state space of a system
thus represents the joint behavior of all its components interacting with each other in all
possible ways. By systematically exploring its state space, model checking can reveal
unexpected possible interactions between components of the system’s model, and hence
reveal potential flaws in the actual system.

Model checking thus means to check whether a system satisfies a property by ex-
ploring its state space. Historically, the term “model checking” was introduced to mean
“check whether a system is a model of a temporal logic formula”, in the classic logi-
cal sense. In this paper, we will use the term “model checking” in a broad sense, to de-
note any systematic state-space exploration technique that can be used for verification
purposes when it is exhaustive.



Model checking and testing have a lot in common. In practice, the main value of
both is fo find bugs in programs. And, if no bugs are to be found, both techniques increase
the confidence that the program is correct.

In theory, model checking is a form of formal verification based on exhaustive state-
space exploration. As famously stated by Dijkstra decades ago, “festing can only find
bugs, not prove their absence”. In contrast, verification (including exhaustive testing)
can prove the absence of bugs. This is the key feature that distinguishes verification,
including model checking, from testing.

In practice, however, the verification guarantees provided by model checking are
often limited: model checking checks only a program, or a manually-written model of
a program, for some specific properties, under some specific environment assumptions,
and the checking itself is usually approximate for nontrivial programs and properties
when an exact answer is too expensive to compute. Therefore, model checking should
be viewed in practice more as a form of “super testing” rather than as a form of formal
verification in the strict mathematical sense. Compared to testing, model checking pro-
vides better coverage, but is more computationally expensive. Compared to more general
forms of program verification like interactive theorem proving, model checking provides
more limited verification guarantees, but is cheaper due to its higher level of automation.
Model checking thus offers an attractive practical trade-off between testing and formal
verification.

The key practical strength of model checking is that it is able to find bugs that would
be extremely hard to find (and reproduce) with traditional testing. This key strength has
been consistently demonstrated, over and over again, during the last three decades when
applying model checking tools to check the correctness of hardware and software de-
signs, and more recently software implementations. It also explains the gradual adoption
of model checking in various industrial environments (hardware industry, safety-critical
systems, software industry).

Over the last 20 years, significant progress has been made on how to apply model
checking to software, i.e., precise descriptions of software implementations written in
programming languages (like C, C++ or Java) and of realistic sizes (often hundreds of
thousands lines of code or more). Unlike traditional model checking, a software model
checker does not require a user to manually write an abstract model of the software pro-
gram to be checked in some modeling language, but instead works directly on a program
implementation written in a full-fledged programming language.

As illustrated in Figure 1, there are essentially two main approaches to software
model checking, i.e., two ways to broaden the scope of model checking from model-
ing languages to programming languages. One approach uses adaptation: it consists of
adapting model checking into a form of systematic testing that is applicable to industrial-
size software (e.g., [26,71,53,32]). Another approach uses abstraction: it consists of au-
tomatically extracting an abstract model out of a software application by statically ana-
lyzing its code, and then of analyzing this model using traditional model-checking algo-
rithms (e.g., [3,18,55,44]).

The aim of this paper is to present a brief introduction to the first approach to soft-
ware model checking. We discuss the main ideas and techniques used to systematically
test and explore the state spaces of concurrent and data-driven software. This paper only
provides a brief introduction to this research area, not an exhaustive survey.
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Figure 1. Two main approaches to software model checking.
2. Dynamic Software Model Checking: Dealing with Concurrency

In this section, we present techniques inspired by model checking for systematically test-
ing concurrent software. We discuss nondeterminism due to concurrency before nonde-
terminism due to data inputs (in the next section) for historic reasons. Indeed, model
checking was first conceived for reasoning about concurrent reactive systems [15,61],
and software model checking via systematic testing was also first proposed for concur-
rent programs [26].

2.1. Software Model Checking Using a Dynamic Semantics

Like a traditional model checker explores the state space of a system modeled as the
product of concurrent finite-state components, one can systematically explore the “prod-
uct” of concurrently executing operating-system processes by using a run-time scheduler
for driving the entire software application through the states and transitions of its state
space [26].

The product, or state space, of concurrently executing processes can be defined dy-
namically as follows. Consider a concurrent system composed of a finite set of processes
and a finite set of communication objects. Each process executes a sequence of oper-
ations described in a sequential program written in any full-fledged programming lan-
guage (such as C, C++, etc.). Such sequential programs are deterministic: every execu-
tion of the program on the same input data performs the same sequence of operations.
We assume that processes communicate with each other by performing atomic opera-
tions on communication objects. Examples of communication objects are shared vari-
ables, semaphores, and FIFO buffers. Operations on communication objects are called
visible operations, while other operations are by default called invisible. The execution
of an operation is said to be blocking if it cannot be completed; for instance, waiting
for the reception of a message blocks until a message is received. We assume that only
executions of visible operations may be blocking.

At any time, the concurrent system is said to be in a state. The system is said to be
in a global state when the next operation to be executed by every process in the system is
a visible operation. Every process in the system is always expected to eventually attempt



executing a visible operation.! This assumption implies that initially, after the creation
of all the processes of the system, the system can reach a first and unique global state so,
called the initial global state of the system.

A process transition, or transition for short, is defined as one visible operation fol-
lowed by a finite sequence of invisible operations performed by a single process and
ending just before a visible operation. Let T denote the set of all transitions of the system.

A transition is said to be disabled in a global state s when the execution of its visible
operation is blocking in s. Otherwise, the transition is said to be enabled in s. A transition
t enabled in a global state s can be executed from s. Since the number of invisible oper-
ations in a transition is finite, the execution of an enabled transition always terminates.
When the execution of ¢ from s is completed, the system reaches a global state s’, called
the successor of s by t and denoted by s L2

We can now define the state space of a concurrent system satisfying our assumptions
as the transition system Ag = (S, A, so) representing its set of reachable global states and
the (process) transitions that are possible between these:

e S is the set of global states of the system,
o A C S x Sis the transition relation defined as follows:

(s,8) €Aiff IreT:s 5,

® s is the initial global state of the system.

We emphasize that an element of A, or state-space transition, corresponds to the exe-
cution of a single process transition ¢ € T of the system. Remember that we use here
the term “transition” to refer to a process transition, not to a state-space transition. Note
how (process) transitions are defined as maximal sequences of interprocess “local” oper-
ations from a visible operation to the next. Interleavings of those local operations are not
considered as part of the state space.

It can be proved [26] that, for any concurrent system satisfying the above assump-
tions, exploring only all its global states is sufficient to detect all its deadlocks and asser-
tion violations, i.e., exploring all its non-global states is not necessary. This result justi-
fies the choice of the specific dynamic semantics described in this section. Deadlocks are
states where the execution of the next operation of every process in the system is block-
ing. Deadlocks are a notorious problem in concurrent systems, and can be difficult to
detect through conventional testing. Assertions can be specified by the user in the code of
any process with the special visible operation “assert”. It takes as its argument a boolean
expression that can test and compare the value of variables and data structures local to
the process. Many undesirable system properties, such as unexpected message recep-
tions, buffer overflows and application-specific error conditions, can easily be expressed
as assertion violations.

Note that we consider here closed concurrent systems, where the environment of
one process is formed by the other processes in the system. This implies that, in the case
of a single “open” reactive system, the environment in which this system operates has

I a process does not attempt to execute a visible operation within a given amount of time, an error is
reported at run-time.

2Qperations on objects (and hence transitions) are deterministic: the execution of a transition ¢ in a state s
leads to a unique successor state.
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Figure 2. Overall architecture of a dynamic software model checker for concurrent systems.

to be represented somehow, possibly using other processes. In practice, a complete rep-
resentation of such an environment may not be available, or may be very complex. It is
then convenient to use a simplified representation of the environment, or test driver or
mock-up, to simulate its behavior. For this purpose, it is useful to introduce a special op-
eration to express a valuable feature of modeling languages, not found in programming
languages: nondeterminism. This operation, let us call it nondet?, takes as argument a
positive integer n, and returns an integer in [0,n]. The operation is visible and nonde-
terministic: the execution of a transition starting with nondet (n) may yield up to n+ 1
different successor states, corresponding to different values returned by nondet. This
operation can be used to represent input data nondeterminism or the effect of input data
on the control flow of a test driver. How to deal with input data nondeterminism will be
discussed further in Section 3.

2.2. Systematic Testing with a Run-Time Scheduler

The state space of a concurrent system as defined in the previous section can be sys-
tematically explored with a run-time scheduler. This scheduler controls and observes the
execution of all the visible operations of the concurrent processes of the system (see Fig-
ure 2). Every process of the concurrent system to be analyzed is mapped to an operating-
system process. Their execution is controled by the scheduler, which is another process
external to the system. The scheduler observes the visible operations executed by pro-
cesses inside the system, and can suspend their execution. By resuming the execution of
(the next visible operation of) one selected system process in a global state, the scheduler
can explore one transition in the state space A of the concurrent system.

Combined with a systematic state-space search algorithm, the run-time scheduler
can drive an entire application through all (or many) possible concurrent executions by
systematically scheduling all possible interleavings of their communication operations.
In order to explore an alternative execution, i.e., to “backtrack” in its search, the run-time
scheduler can, for instance, restart the execution of the entire software application in its
initial state, and then drive its execution along a different path in its state space.

Whenever an error (such as a deadlock or an assertion violation) is detected during
the search, a whole-system execution defined by the sequence of transitions that lead to
the error state from the initial state can be exhibited to the user. Dynamic software model

3This operation is called VS_toss in [26].



checkers typically also include an interactive graphical simulator/debugger for replaying
executions and following their steps at the instruction or procedure/function level. Values
of variables of each process can be examined interactively. The user can also explore
interactively any path in the state space of the system with the same set of debugging
tools (e.g., see [27]).

It is thus assumed that there are exactly two sources of nondeterminism in the con-
current systems considered here: concurrency and calls to the special visible operation
nondet used to model nondeterminism as described in the previous section and whose
return values are controled by the run-time scheduler. When this assumption is satisfied,
the run-time scheduler has complete control over nondeterminism. It can thus reproduce
any execution leading to an error found during a state-space search. It can also guarantee,
from a given initial state, complete coverage of the state space up to some depth.

Remember that the ability to provide state-space coverage guarantees, even lim-
ited ones, is precisely what distinguishes verification, including model checking, from
traditional testing, as explained earlier in the introduction. This is why the term “soft-
ware model checking” was applied to this approach of systematic testing with a run-time
scheduler, since eventually it does provide full state space coverage.

Of course, in practice, state spaces can be huge, even infinite. But even then, the state
space can always be explored exhaustively up to some depth, which can be increased
progressively during state-space exploration using an “iterative deepening” search strat-
egy. Efficient search algorithms, based on partial-order reduction, have been proposed
for exhaustively exploring the state spaces of message-passing concurrent systems up to
a “reasonable” depth, say, all executions with up to 50 message exchanges. In practice,
such depths are often sufficient to thoroughly exercise implementations of communica-
tion protocols and other distributed algorithms. Indeed, exchanging a message is an ex-
pensive operation, and most protocols are therefore designed so that few messages are
sufficient to exercise most of their functionality. By being able to systematically explore
all possible interactions of the implementation of all communicating protocol entities up
to tens of message exchanges, this approach to software model checking has repeatedly
been proven to be effective in revealing subtle concurrency-related bugs [27].

2.3. Stateless Vs. Stateful Search

This approach to software model checking for concurrent programs thus adapts model
checking into a form of systematic testing that simulates the effect of model checking
while being applicable to concurrent processes executing arbitrary code written in full-
fledged programming languages (like C, C++, Java, etc.). The only main requirement is
that the run-time scheduler must be able to trap operating system calls related to com-
munication (such as sending or receiving messages) and be able to suspend and resume
their executions, hence effectively controlling the scheduling of all processes whenever
they attempt to communicate with each other.

This approach to software model checking was pioneered in the VeriSoft tool [26].
Because each state of implementations of large concurrent software systems can require
megabytes of storage, VeriSoft does not store states in memory and simply traverse state-
space paths in a stateless manner, exactly as in traditional testing. It is shown in [26]
that in order to make a systematic stateless search tractable, partial-order reduction is
necessary to avoid re-exploring over and over again parts of the state space reachable by
different interleavings of a same concurrent partial-order execution.



However, for small to medium-size applications, computing state representations
and storing visited states in memory can be tractable, possibly using approximations and
especially if the entire state of the operating-system can be determined as is the case when
the operating system is a virtual machine. This extension was first proposed in the Java
PathFinder tool [71]. This approach limits the size and types of (here Java) programs that
can be analyzed, but allows the use of standard model-checking techniques for dealing
with state explosion, such as bitstate hashing, stateful partial-order reduction, symmetry
reduction, and the use of abstraction techniques.

Another trade-off is to store only partial state representations, such as storing a hash
of a part of each visited state, possibly specified by the user, as explored in the CMC
tool [53]. Full state-space coverage with respect to a dynamic semantics defined at the
level of operating-system processes can then no longer be guaranteed, even up to some
depth, but previously visited partial states can now be detected, and multiple explorations
of their successor states can be avoided, which helps focus the remainder of search on
other parts of the state space more likely to contain bugs.

2.4. Systematic Testing for Multi-Threaded Programs

Software model checking via systematic testing is effective for message-passing pro-
grams because systematically exploring their state spaces up to tens of message ex-
changes typically exercises a lot of their functionality. In contrast, this approach is more
problematic for shared-memory programs, such as multi-threaded programs where con-
current threads communicate by reading and writing shared variables. Instead of a few
well-identifiable message queues, shared-memory communication may involve thou-
sands of communicating objects (e.g., memory addresses shared by different threads)
that are hard to identify. Moreover, while systematically exploring all possible executions
up to, say, 50 message exchanges can typically cover a large part of the functionality
of a protocol implementation, systematically exploring all possible executions up to 50
read/write operations in a multi-threaded program typically covers only a tiny fraction
of the program functionality. How to effectively perform software model checking via
systematic testing for shared-memory systems is a harder problem and has been the topic
of recent research.

Dynamic partial-order reduction (DPOR) [23] dynamically tracks interactions be-
tween concurrently-executing threads in order to identify when communication takes
place through which shared variables (memory locations). Then, DPOR computes back-
tracking points where alternative paths in the state space need to be explored because they
might lead to other executions that are not “equivalent” to the current one (i.e., are not
linearizations of the same partial-order execution). In contrast, traditional partial-order
reduction [70,57,25] for shared-memory programs would require a static alias analysis
to determine which threads may access which shared variables, which is hard to com-
pute accurately and cheaply for programs with pointers. DPOR has been extended and
implemented in several recent tools [72,54,42,66].

Even with DPOR, state explosion is often still problematic. Another recent approach
is to use iferative context bounding, a novel search ordering heuristics which explores
executions with at most k context switches, where k is a parameter that is iteratively in-
creased [60]. The intuition behind this search heuristics is that many concurrency-related
bugs in multi-threaded programs seem due to just a few unexpected context switches.
This search strategy was first implemented in the Chess tool [54].



Even when prioritizing the search with aggressive context bounding, state explosion
can still be brutal in large shared-memory multi-threaded programs. Other search heuris-
tics for concurrency have been proposed, which could be called collectively concurrency
fuzzing techniques [20,65,8]. The idea is to use a random run-time scheduler that occa-
sionally preempts concurrent executions selectively in order to increase the likelihood of
triggering a concurrency-related bug in the program being tested. For instance, the exe-
cution of a memory allocation, such as ptr=malloc(...), in one thread could be de-
layed as much as possible to see if other threads may attempt to dereference that address
ptr before it is allocated. Unlike DPOR or context bounding, these heuristic techniques
do not provide any state-space coverage guarantees, but can still be effective in practice
in finding concurrency-related bugs.

Other recent work investigates the use of concurrency-related search heuristics with
probabilistic guarantees (e.g., see [8]). This line of work attempts to develop randomized
algorithms for concurrent system verification which can provide probabilistic coverage
guarantees, under specific assumptions about the concurrent program being tested and
for specific classes of bugs.

The work reported in this paper is only a partial overview of research in this area.
Especially during the last decade, dozens of other tools have been developed for software
model checking via systematic testing for concurrent systems, for various programming
languages and application domains.

3. Dynamic Software Model Checking: Dealing with Data Inputs

In this section, we present techniques inspired by model checking for systematically test-
ing sequential software. We assume that nondeterminism in such programs is exclusively
due to data inputs.

Enumerating all possible data inputs values with a nondet operation as described in
Section 2.1 is tractable only when sets of possible input values are small, like selecting
one choice in a menu with (few) options. For dealing with large sets of possible input data
values, the main technical tool used is symbolic execution, which computes equivalence
classes of concrete input values that lead to the execution of the same program path. We
start with a brief overview of “classical” symbolic execution in the next section, and then
describe recent extensions for systematic software testing.

3.1. Classical Symbolic Execution

Symbolic execution is a program analysis technique that was introduced in the 70s (e.g.,
see [47,6,16,62,45]). Symbolic execution means executing a program with symbolic
rather than concrete values. Assignment statements are represented as functions of their
(symbolic) arguments, while conditional statements are expressed as constraints on sym-
bolic values. Symbolic execution can be used for many purposes, such as bug detection,
program verification, debugging, maintenance, and fault localization [17].

One of the earliest proposals for using static analysis as a kind of systematic sym-
bolic program testing method was proposed by King almost 35 years ago [47]. The idea
is to symbolically explore the tree of all computations the program exhibits when all pos-
sible value assignments to input parameters are considered. For each control path p, that



is, a sequence of control locations of the program, a path constraint ¢, is constructed
that characterizes the input assignments for which the program executes along p. All
the paths can be enumerated by a search algorithm that explores all possible branches at
conditional statements. The paths p for which ¢, is satisfiable are feasible and are the
only ones that can be executed by the actual program. The solutions to ¢, characterize
the inputs that drive the program through p. This characterization is exact provided sym-
bolic execution has perfect precision. Assuming that the theorem prover used to check
the satisfiability of all formulas ¢, is sound and complete, this use of static analysis
amounts to a kind of symbolic testing. How to perform symbolic execution and generate
path constraints is illustrated with an example later in Section 3.4.

A prototype of this system allowed the programmer to be presented with feasible
paths and to experiment, possibly interactively [40], with assertions in order to force new
and perhaps unexpected paths. King noticed that assumptions, now called preconditions,
also formulated in the logic could be joined to the analysis forming, at least in principle,
an automated theorem prover for Floyd/Hoare’s verification method [24,43], including
inductive invariants for programs that contain loops. Since then, this line of work has
been developed further in various ways, leading to various approaches of program veri-
fication, such as verification-condition generation (e.g., [19,4]), symbolic model check-
ing [7] and bounded model checking [14].

Symbolic execution is also a key ingredient for precise test input generation and
systematic testing of data-driven programs. While program verification aims at proving
the absence of program errors, test generation aims at generating concrete test inputs that
can drive the program to execute specific program statements or paths. Work on auto-
matic code-driven test generation using symbolic execution can roughly be partitioned
into two groups: static versus dynamic test generation.

3.2. Static Test Generation

Static test generation (e.g., [47]) consists of analyzing a program P statically, by using
symbolic execution techniques to attempt to compute inputs to drive P along specific
execution paths or branches, without ever executing the program.

Unfortunately, this approach is ineffective whenever the program contains state-
ments involving constraints outside the scope of reasoning of the theorem prover, i.e.,
statements “that cannot be reasoned about symbolically”. This limitation is illustrated by
the following example [28]:

int obscure(int x, int y) {
if (x == hash(y)) abort(); // error
return O; // ok

}

Assume the constraint solver cannot “symbolically reason” about the function hash (per-
haps because it is too complex or simply because its code is not available). This means
that the constraint solver cannot generate two values for inputs x and y that are guaran-
teed to satisfy (or violate) the constraint x == hash(y). In this case, static test genera-
tion cannot generate test inputs to drive the execution of the program obscure through
either branch of the conditional statement: static test generation is helpless for a program
like this. Note that, for test generation, it is not sufficient to know that the constraint x



== hash(y) is satisfiable for some values of x and y, it is also necessary to generate
specific values for x and y that satisfy or violate this constraint.

The practical implication of this fundamental limitation is significant: static test
generation is doomed to perform poorly whenever precise symbolic execution is not
possible. Unfortunately, this is frequent in practice due to complex program statements
(pointer manipulations, floating-point operations, etc.) and calls to operating-system and
library functions that are hard or impossible to reason about symbolically with good
enough precision.

3.3. Dynamic Test Generation

A second approach to test generation is dynamic test generation (e.g., [48,56,41,32,11]):
it consists of executing the program P, typically starting with some random inputs, while
performing symbolic execution dynamically, collecting symbolic constraints on inputs
gathered from predicates in branch statements along the execution, and then using a con-
straint solver to infer variants of the previous inputs in order to steer the next execution
of the program towards an alternative program branch. The conventional stance on the
role of symbolic execution is thus turned upside-down: symbolic execution is now an
adjunct to concrete execution.

A key observation [32] is that, with dynamic test generation, imprecision in sym-
bolic execution can be alleviated using concrete values and randomization: whenever
symbolic execution does not know how to generate a constraint for a program statement
depending on some inputs, one can always simplify this constraint using the concrete
values of those inputs.

Consider again the program obscure given above. Even though it is impossible to
generate two values for inputs x and y such that the constraint x == hash (y) is satisfied
(or violated), it is easy to generate, for a fixed value of y, a value of x that is equal to
hash(y) since the latter can be observed and known at run-time. By picking randomly
and then fixing the value of y, we can first run the program, observe the concrete value
c of hash(y) for that fixed value of y in that run; then, in the next run, we can set the
value of the other input x either to ¢ or to another value, while leaving the value of y
unchanged, in order to force the execution of the then or else branches, respectively,
of the conditional statement in the function obscure.

In other words, static test generation is unable to generate test inputs to control
the execution of the program obscure, while dynamic test generation can easily drive
the executions of that same program through all its feasible program paths, finding the
abort () with no false alarms. In realistic programs, imprecision in symbolic execution
typically creeps in in many places, and dynamic test generation allows test generation
to recover from that imprecision. Dynamic test generation can be viewed as extending
static test generation with additional run-time information, and is therefore more general,
precise, and powerful.

How much more precise is dynamic test generation compared to static test gener-
ation? In [29], it is shown exactly when the “concretization trick” used in the above
obscure example helps, and when it does not help. It is also shown that the main prop-
erty of dynamic test generation that makes it more powerful than static test generation
is only its ability to observe concrete values and to record those in path constraints. In
contrast, the process of simplifying complex symbolic expressions using concrete run-



time values can be accurately simulated statically using uninterpreted functions. How-
ever, those concrete values are necessary to effectively compute new input vectors, a
fundamental requirement in test generation [29].

In principle, static test generation can be extended to concretize symbolic values
whenever static symbolic execution becomes imprecise [46]. In practice, this is prob-
lematic and expensive because this approach not only requires to detect all sources of
imprecision, but also requires one call to the constraint solver for each concretization to
ensure that every synthesized concrete value satisfies prior symbolic constraints along
the current program path. In contrast, dynamic test generation avoids these two limita-
tions by leveraging a specific concrete execution as an automatic fall back for symbolic
execution [32].

In summary, dynamic test generation is the most precise form of code-driven test
generation that is known today. It is more precise than static test generation and other
forms of test generation such as random, taint-based and coverage-heuristic-based test
generation. It is also the most sophisticated, requiring the use of automated theorem prov-
ing for solving path constraints. This machinery is more complex and heavy-weight, but
may exercise more paths, find more bugs and generate fewer redundant tests covering the
same path. Whether this better precision is worth the trouble depends on the application
domain.

3.4. Systematic Dynamic Test Generation

Dynamic test generation was discussed in the 90s (e.g., [48,56,41]) in a property-guided
setting, where the goal is to execute a given specific target program branch or state-
ment. More recently, new variants of dynamic test generation [32,11] blend it with model
checking techniques with the goal of systematically executing all feasible program paths
of a program while detecting various types of errors using run-time checking tools (like
Purify, Valgrind or AppVerifier, for instance). In other words, each new input vector
attempts to force the execution of the program through some new path, but the whole
search is not guided by one specific target program branch or statement. By repeating
this process, such a systematic search attempts to force the program to sweep through
all its feasible execution paths, in a style similar to systematic testing and dynamic soft-
ware model checking [26] as presented in Section 2. Along each execution, a run-time
checker is used to detect various types of errors (buffer overflows, uninitialized variables,
memory leaks, etc.).

Systematic dynamic test generation as described above was introduced first in [32],
as a part of an algorithm for “Directed Automated Random Testing”, or DART for short.
Independently, [11] proposed “Execution Generated Tests” as a test generation technique
very similar to DART. Also independently, [73] described a prototype tool which shares
some of the same features. Subsequently, this approach was adopted and implemented in
many other tools (see Section 3.5), and is also sometimes casually referred to as “concolic
testing” [67], or simply “dynamic symbolic execution” [69].

Systematic dynamic test generation consists of running the program P under test
both concretely, executing the actual program, and symbolically, calculating constraints
on values stored in program variables v and expressed in terms of input parameters.
Side-by-side concrete and symbolic executions are performed using a concrete store M
and a symbolic store S, which are mappings from memory addresses (where program



variables are stored) to concrete and symbolic values respectively [32]. A symbolic value
is any expression e in some theory* .7 where all free variables are exclusively input
parameters. For any program variable v, M (v) denotes the concrete value of v in M, while
S(v) denotes the symbolic value of v in S. For notational convenience, we assume that
S(v) is always defined and is simply M(v) by default if no symbolic expression in terms
of inputs is associated with v in S. When S(v) is different from M(v), we say that that
program variable v has a symbolic value, meaning that the value of program variable
v is a function of some input(s) which is represented by the symbolic expression S(v)
associated with v in the symbolic store.

A program manipulates the memory (concrete and symbolic stores) through state-
ments, or commands, that are abstractions of the machine instructions actually executed.
A command can be an assignment of the form v := e where v is a program variable and
e is an expression, a conditional statement of the form if b then C' else C” where
b denotes a boolean expression, and C’ and C” denote the unique® next command to
be evaluated when b holds or does not hold, respectively, or stop corresponding to a
program error or normal termination.

Given an input vector assigning a concrete value to every input parameter I;, the
program executes a unique finite® sequence of commands. For a finite sequence p of
commands (i.e., a control path p), a path constraint ¢ is a quantifier-free first-order
logic formula over theory 7 that is meant to characterize the input assignments for
which the program executes along p. The path constraint is sound and complete when
this characterization is exact.

A path constraint is generated during dynamic symbolic execution by collecting in-
put constraints at conditional statements. Initially, the path constraint ¢, is defined to
true, and the initial symbolic store Sy maps every program variable v whose initial value
is a program input: for all those, we have Sy(v) = x; where x; is the symbolic variable cor-
responding to the input parameter /;. During dynamic symbolic execution, whenever an
assignment statement v := e is executed, the symbolic store is updated so that S(v) = o' (e)
where o (e) denotes either an expression in .7 representing e as a function of its sym-
bolic arguments, or is simply the current concrete value M(v) of v if e does not have
symbolic arguments or if e cannot be represented by an expression in 7. Whenever a
conditional statement if b then C' else C” is executed and the then (respectively
else) branch is taken, the current path constraint ¢, is updated to become ¢p A c (re-
spectively ¢, A —c) where ¢ = o(b). Note that, by construction, all symbolic variables
ever appearing in @, are variables x; corresponding to whole-program inputs /;.

Given a path constraint ¢p = A <;<, ¢, new alternate path constraints ¢r/> can be de-
fined by negating one of the constraints ¢; and putting it in a conjunction with all the pre-
vious constraints: ¢/, = —¢; A \i<j<ic;. If path constraint generation is sound and com-
plete, any satisfying assignment to ¢//) defines a new test input vector which will drive the
execution of the program along the same control flow path up to the conditional state-
ment corresponding to ¢; where the new execution will then take the other branch. By
systematically repeating this process, such a directed search can enumerate all possible
path constraints and eventually execute all feasible program paths.

4A theory is a set of logic formulas.

5We assume in this section that program executions are sequential and deterministic.

®We assume program executions terminate. In practice, a timeout can prevent non-terminating program
executions and issue a run-time error.



The search is exhaustive provided that the generation of the path constraint (includ-
ing the underlying symbolic execution) and the constraint solver for the given theory
T are both sound and complete, that is, for all program paths p, the constraint solver
returns a satisfying assignment for the path constraint ¢, if and only if the path is feasi-
ble (i.e., there exists some input assignment leading to its execution). If those conditions
hold, in addition to finding errors such as the reachability of bad program statements
(like abort () or assert(false)), a directed search can also prove their absence, and
therefore obtain a form of program verification.

In practice, path constraint generation and constraint solving are usually not sound
and complete. Moreover, in the presence of a single loop whose number of iterations
depends on some unbounded input, the number of feasible program paths becomes infi-
nite. In practice, search termination can always be forced by bounding input values, loop
iterations or recursion, but at the cost of potentially missing bugs.

Example 1 Consider again the function obscure:

int obscure(int x, int y) {
if (x == hash(y)) abort(); // error
return O; // ok

}

Assume we start running this program with some initial random concrete values, say x is
initially 33 and y is 42. During dynamic symbolic execution, when the conditional state-
ment is encountered, assume we do not know how to represent the expression hash (y).
However, we can observe dynamically that the concrete value of hash (42) is, say, 567.
Then, the simplified path constraint ¢p = (x # 567) can be generated by replacing the
complex/unknown symbolic expression hash(y) by its concrete value 567. This con-
straint is then negated and solved, leading to the new input vector (x = 567,y = 42).
Running the function obscure a second time with this new input vector leads to the
abort () statement. When symbolic execution does not have perfect precision, dynamic
test generation can be more precise than static test generation as illustrated with this
example since dynamic test generation is still able to drive this program along all its
feasible paths, while static test generation cannot. l

3.5. Strengths and Limitations

At a high level, systematic dynamic test generation suffers from two main limitations:

1. the frequent imprecision of symbolic execution along individual paths, and
2. the large number of paths that usually need be explored, or path explosion [28].

In practice, however, approximate solutions to the two problems above are sufficient.
To be useful, symbolic execution does not need to be perfect, it must simply be “good
enough” to drive the program under test through program branches, statements and paths
that would be difficult to exercise with simpler techniques like random testing. Even if
a directed search cannot typically explore all the feasible paths of large programs in a
reasonable amount of time, it usually does achieve better coverage than pure random
testing and, hence, can find new program bugs.



Another key advantage of dynamic symbolic execution is that it can be implemented
incrementally: only some program statements can be instrumented and interpreted sym-
bolically, while others can simply be executed concretely natively, including all calls to
external libraries and operating-system functions. A tool developer can improve the pre-
cision of symbolic execution over time, by adding new instruction handlers in a modular
manner. Similarly, simple techniques like bounding the number of constraints injected at
each program location are effective practical solutions to limit path explosion.

When building tools like these, there are many other challenges, which have been re-
cently discussed in the research literature: how to recover from imprecision in symbolic
execution [32,29], how to scale symbolic execution to billions of instructions [34], how to
check efficiently many properties together [12,34], how to synthesize automatically sym-
bolic instruction handlers [39], how to precisely reason about pointers [67,12,21], how to
deal with inputs of varying sizes [74], how to deal with floating-point instructions [31],
how to deal with path explosion using compositional test summaries and other caching
techniques [28,1,5,51,37], which heuristics to prioritize the search in the program’s
search space [12,35,9], how to deal specifically with input-dependent loops [64,36], how
to leverage grammars (when available) for complex input formats [50,30], how to re-use
previous analysis results across code changes [58,33,59], how to leverage reachability
facts inferred by static program analysis [37], etc. Due to space constraints, we do not
discuss those challenges here, but refer instead the reader to the recent references above
where those problems are discussed in detail and more pointers to other related work are
provided.

Despite the limitations and challenges mentioned in the previous section, systematic
dynamic test generation works well in practice: it is often able to detect bugs missed by
other less precise test generation techniques. Moreover, by being grounded in concrete
executions, this approach does not report false alarms, unlike traditional static program
analysis. These strengths explain the popularity of the approach and its adoption in many
recent tools.

Over the last several years, several tools implementing dynamic test generation
have been developed for various programming languages, properties and application do-
mains. Examples of such tools are DART [32], EGT [11], PathCrawler [73], CUTE [67],
EXE [12], SAGE [35], CatchConv [52], PEX [69], KLEE [10], CREST [9], Bit-
Blaze [68], Splat [51], Apollo [2], YOGI [37], Kudzu [63], and S2E [13], among others.

The above tools differ by how they perform dynamic symbolic execution (for lan-
guages such as C, Java, x86, .NET, etc.), by the type of constraints they generate (for the-
ories such as linear arithmetic, bit-vectors, arrays, uninterpreted functions, etc.), and by
the type of constraint solvers they use (such as Ip_solve, CVClite, STP, Disolver, Yikes,
73, etc.). Indeed, like in traditional static program analysis and abstract interpretation,
these important parameters are determined in practice depending on which type of pro-
gram is to be tested, on how the program interfaces with its environment, and on which
properties are to be checked. Moreover, various cost/precision tradeoffs are also possible,
as usual in program analysis.

The tools listed above also differ by the specific application domain they target, for
instance protocol security [32], Unix utility programs [12,10], database applications [22],
web applications [2,63], and device drivers [37,49]. The size of the software applications
being tested also varies widely, from unit testing of small programs [32,12,69,13] to
system testing of very large programs with millions of lines of code [34].



4. Conclusion

We discussed how model checking can be combined with testing to define a dynamic
form of software model checking based on systematic testing, which scales to industrial-
size concurrent and data-driven software. Two main techniques are used to limit state
and path explosion: partial-order reduction when dealing with nondeterminism due to
concurrency, and dynamic symbolic execution when dealing with nondeterminism due
to data inputs. Both techniques partition the set of concrete program executions into
equivalence classes in such a way that equivalent executions are indistinguishable with
respect to the given properties being checked.

Dynamic software model checking was developed over the last 20 years and is still
an active area of research. This approach has been implemented in dozens of tools by
now. The application of those tools have, collectively, found thousands of new bugs,
many of those critical from a reliability or security point of view, in many different
application domains. This paper presents only a partial overview of this research area.
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