
Three-Valued Abstractions of Games: Uncertainty, but with Precision

Luca de Alfaro� Patrice Godefroidy Radha Jagadeesanz

Abstract We present a framework for abstract-
ing two-player turn-based games that preserves
any formula of the alternating�-calculus (AMC).
Unlike traditional conservative abstractions which
can only prove the existence of winning strategies
for only one of the players, our framework is based
on 3-valued games, and it can be used to prove
and disprove formulas of AMC including arbitrar-
ily nested strategy quantifiers.

Our main contributions are as follows. We de-
fine abstract 3-valued games and an alternating re-
finement relation on these that preserves winning
strategies for both players. We provide a logical
characterization of the alternating refinement rela-
tion. We show that our abstractions are as precise
as can be via completeness results. We present
AMC formulas that solve 3-valued games with!-
regular objectives, and we show that such games
are determined in a 3-valued sense. We also dis-
cuss the complexity of model checking arbitrary
AMC formulas on 3-valued games and of check-
ing alternating refinement.

1 Introduction

Abstraction is key to extend the scope of formal verifi-
cation to systems with infinite or very large state spaces,
as illustrated by recent work on “software model checking”
(e.g., [4, 9, 17]). The relation between the concrete system
and an abstraction is usually a simulation relation [31, 28];
this approach enables the verification of universal (8-CTL�)
properties [7]. These abstraction techniques have been ex-
tended to games [18, 36] to handle the verification of con-
trollers in open systems. In the context of games, the re-
lation between the concrete and abstract games is usually
alternating simulation [3]. While this approach enables
the verification of a universal fragment of alternating tem-
poral logic [2], it is unsound for game properties speci-
fied using existential path quantifiers and arbitrarily nested
path/strategy quantifiers in general.
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There are at least four practical motivations to study ab-
straction frameworks for games that can handle arbitrarily
nested strategy quantifiers.

� Compositional verification is one of the motivations
for the study of games [13]. In this context, one is
interested in the symmetric treatment of all players,
and the specification of interesting game-properties re-
quires the full generality of the logic.

� Some applications require nested strategy quantifiers
for both players, such as formulas specifying the cor-
rectness of security protocols [21, 22].

� Another motivation is to develop a sound theoretical
basis for abstraction-based software model-checking
tools suitable for both proving and disproving that an
open program satisfies a property no matter what its
environment does (calledmodule checkingin [23]). In
this context, abstractions are automatically generated
from a static analysis of an open program using ab-
straction techniques such as predicate abstraction [15].

� Even in the traditional framework of conservative ab-
straction for transition systems, the ability to con-
sider both existential and universal formulas serves
as a good foundation for the detection of feasible
counter-examples [33]1 and in counter-example refine-
ment [34].

An outline of our approach. In the traditional frame-
work for constructing conservative abstractions using a sim-
ulation relation, a transition is present between two abstract
states iff there is at least one corresponding transition be-
tween related concrete states in the concrete system. This
framework is suited only to the verification of universal
properties. Modal Transitions Systems (MTS) [25, 24] en-
able the verification of both universal and existential prop-
erties by including two types of transitions:may-transitions
andmust-transitions. Typically, a may-transition between
abstract statest

1

andt
2

indicates that there is at least one
transition from some concrete state related tot

1

to some

1Though the presentation of the paper itself is not phrased inthese log-
ical terms.
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concrete state related tot
2

, while a must-transition between
abstract statest

1

andt
2

indicates that there is a transition
fromeveryconcrete state related tot

1

to some concrete state
related tot

2

. In an MTS, a universal property is verified by
checking the may transitions, and an existential property is
verified by checking the must transitions.

When using MTSs to represent abstractions, however,
there is an inherent loss of precision in the representation
of must-transitions. This loss of precision may prevent the
verification of existential properties. To illustrate the prob-
lem, consider the following transition system over proposi-
tionsp; q; r, where each state has a superscript with the set
of propositions that hold in the state.
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The CTL formula9 ([p_:q]^9 r) holds at statess
1

; s

2

.
For simplicity in this discussion, view abstractions as being
described by equivalence classes of states, writing[s

1

; s

2

]

for the abstract state which is the equivalence class con-
taining s

1

; s

2

. Consider abstractions that identifys
1

; s

2

and track the predicatesp; q; r to prove this formula. The
mismatch of propositions ins

3

; s

4

and the need to validate
p _ :q mean thats

3

ands
4

cannot be in the same equiv-
alence class. Thus, in standard MTSs, there is no must-
transition from[s

1

; s

2

] in the abstraction since there is no
single equivalence class that can be reached from boths

1

and s
2

. On the other hand, if we allow must-transitions
to havesetsas destinations, the abstraction can include a
must-transition from[s

1

; s

2

] to thesetf[s
3

]; [s

4

]g. We view
these sets conjunctively, i.e., to use a must transition from
[s

1

; s

2

] to f[s
3

]; [s

4

]g as a witness to existentially achieve
a formula, both[s

3

]; [s

4

] have to satisfy the formula. The
need for must-transitions whose targets can be a set of states
was first pointed out in [26], and it has been independently
advocated in [35, 12].

Motivated by the above discussion, we define in this pa-
per an expressive variant of MTSs, which we callabstract
transition structures, and study its properties. We show that
for any given relation between concrete and abstract states,
our abstract transition structures are as precise as possible,
amongall possible abstractions, regardless of their repre-
sentation. This precision leads to acompositional frame-
work for the construction of abstractions. It also enables us
to show for a logic of branching-time safety properties that,
if such a branching-time safety property holds at a state of
a possibly-infinite concrete system, then there is afiniteab-
stract system that can prove this.

We then generalize these basic ideas in a natural way to

two-player turn-based games2. We define an alternating re-
finement relation between states of an abstract game. Must
and may-transitions for the two players give rise tomust-
strategies,that are guaranteed to exist in all refinements,
andmay-strategies,that may exist in a refinement. In con-
trast to alternating simulation, our definition issymmetric
between the players, and focuses on the increase in must-
transitions and decrease in may-transitions. However, it
shares some of the structural features of alternating simula-
tion — e.g., if a states0 is refined bys, every must-strategy
(for any subset of players) is preserved froms0 to s, and
every may-strategy (for any subset of players) is preserved
from s to s

0. Thus, our definition of alternating refinement
preserves winning must-strategies forall players.

The determinacy of standard two-player games is re-
placed by three-valued determinacy. We show that for any
objective� there are three possibilities: (a) player1 can
achieve� with a must-strategy, (b) player2 can achieve
:� with a must-strategy, or (c) both players may be able
to achieve their respective, and complementary, objectives
using may-strategies. The last unusual case indicates that
the abstract system under consideration can potentially be
refined in two different ways (wrt. the control-objective�)
— one in which player1 achieves� and a second in which
player2 achieves:�.

As a computational logic for encoding properties and al-
gorithms, we provide a 3-valued (true, false, unknown) se-
mantics for alternating�-calculus (AMC). We show that all
AMC formulas are preserved under refinement. We also
provide a logical characterization of the alternating refine-
ment relation in terms of a 3-valued interpretation of AMC
formulas. This framework permits the use of existing ab-
straction techniques for (closed) transition systems [10, 11]
in the context of abstraction of games. Our framework is
flexible enough to show thatanyclassical abstract interpre-
tation of data values extends to an alternating refinement of
abstract games that preserves all AMC-formulas.

We also show that, given an LTL or!-regular objective,
the sets of states where a player has must or may-strategies
can be computed using AMC formulas. These formulas
can thus be used to solve verification and control problems
on abstract transition structures and abstract games. We fi-
nally discuss the complexity of 3-valued model-checking of
AMC formulas on abstract transition structures and abstract
games, as well as of checking alternating refinement.

2. Abstract Game Structures

Given a setS, we writeP(S) for the powerset ofS.
We consider a fixed set� of propositions. We consider

2Our ideas work for multi-player turn-based games, but are not directly
applicable to concurrent games.
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3-valued logic, where the three truth valuesT; F;? are or-
dered according to the information ordering:?< T and
?< F, while T and F are incomparable. The boolean op-
erations are defined as follows:x _ y is true if either is
true, false if both are false and? otherwise. Negation in-
terchanges true and false, but leaves? untouched. We will
useu;t for the greatest lower bound and the least upper
bounds with respect to this information ordering. For two
functionsf; g : � 7! fT; F;?g, we write f � g (resp.
f < g) if f(q) � g(q) (resp.f(q) < g(q)) for all q 2 �. A
two-player, turn-based abstract game structure is defined as
follows.

Definition 2.1 (abstract game structure). A
two-player turn-based abstract game structure
G = hS; �; �may; �must; Ii consists of:

� A (possibly infinite) state spaceS.

� � : S 7! f1; 2g indicates which player is to move at a
state. We write1 = 2; 2 = 1.

� A transition function�may : S 7! P(S), which asso-
ciates with every states 2 S a nonempty set of possi-
blemay-destination states�may(s) � S.

� A transition function�must : S 7! P(P(S)), which as-
sociates with every states 2 S a nonempty set of pos-
sible must-destination state-sets�must(s) � 2

S that
satisfies the following constraint:

(8s 2 S) (8U 2 �must(s)) U \ �may(s) 6= ;

� Two predicate valuationsImay; Imust : � 7! P(S),
associating with each propositional symbolq the set of
statesImay(q) whereq mayhold, and the set of states
Imust(q) whereq must hold. They satisfyImust(q) �
Imay(q).

An abstract transition structureis the special case of ab-
stract game structure where�(s) = 1 for all s 2 S. Given
a setA � f1; 2g of players, we define:A = f1; 2g nA.

An abstract game structure isfinite-branchingif for all
s 2 S, the sets�may(s), �must(s), and all the sets in
�must(s), are finite. An abstract game structure isconcrete
if for all statess 2 S, we have�must(s) = fftg j t 2

�may(s)g, and if for allq 2 �, we haveImay(q) = Imust(q).
In contrast to other existing models with 3-valued propo-

sitions and transition functions [11, 5, 19], this definition
follows [26] in the type of the must-transition function,
which associates to a state a set of successorstate-sets,
rather than states. In the context of abstract transition
systems, this definition has been independently explored
in [35] and with fairness considerations in another paper in
this volume [12].

May and must-transitions can be understood as follows.
In a may-transition froms 2 S, we can choose the desti-
nation statet 2 �may(s): hence, to achieveT � S at the
next state, it suffices that�may(s)\T 6= ;. Must-transitions
can be interpreted as a game between the system and non-
determinism: the system choosesU 2 �must(s), and the
nondeterminism choosest 2 U . To achieveT � S at the
next state, there must beU 2 �must(s) with U � T .

In view of this interpretation, for each states we need
to represent only the elements of�must(s) that are minimal
with respect to set inclusion. Precisely, ifT; T 0

2 �must(s)

with T � T

0, then we can removeT 0 from �must(s) without
affecting the ability of either player to win the game: in
fact, the player that moves ats will always prefer moveT
to T

0. We will make this remark precise below, showing
that removingT 0 preserves game similarity.

The condition on the may/must-transition relations can
be viewed as an analogue of the consistency condition of
modal transition systems. To see this, change the type of the
may-transition function to�umay(s) � P(S), let �umay(s) =
fftg j t 2 �may(s)g and�umust(s) = �must(s), and “upward
close” both transition functions, i.e., for alls 2 S, all 
 2
fmay;mustg and allT 2 �

u




(s), if T � T

0

� S, then add
alsoT 0 to �

u




(s). In such a setting, the condition between
the may and must-transition functions can equivalently be
written as�umust(s) � �

u

may(s).
The predicate valuationsImay andImust can be equiv-

alently represented in the style of Partial Kripke struc-
tures [5, 6], by defining a single 3-valued valuationI3val :

S ! (� ! fT; F;?g), defined for alls 2 S andq 2 �

by I3val(q)(s) = T if s 2 Imust(q); I3val(q)(s) = F if
s 62 Imay(q); andI3val(q)(s) =? otherwise.

Definition 2.2 (strategies).Given A � f1; 2g, a may-
strategy(resp.must-strategy) �

i

for teamA is a function
�

i

: S

+

7! (P(S) n ;) such that, for all~s 2 S

� and all
s 2 S we have:

� if �(s) 2 A, then�
i

(~ss) � �may(s)

(resp.�
i

(~ss) 2 �must(s));

� if �(s) 62 A, then�
i

(~ss) = S.

We denote by�A

may (resp.�A

must) the set of all may (resp.
must) strategies for teamA.

Two strategies, one for teamA and one for team:A, to-
gether with an initial state, determine a set of infinite paths,
calledoutcomes,as follows.

Definition 2.3 (outcomes).For all teamsA � f1; 2g, ini-
tial statess 2 S, modalities


A

; 


:A

2 fmay;mustg
and strategies� 2 �

A




A

and�0 2 �

:A




:A

, we define the
setOutcomes(s; �; �

0

) as the set of infinite sequences of
statest

0

t

1

t

2

� � � such thatt
0

= s and, for all k � 0,
t

k+1

2 �(t

0

� � � t

k

) \ �

0

(t

0

� � � t

k

).
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2.1 Alternating Refinement

Alternating simulation was introduced independently for
turn-based games [1] and general concurrent games [3]. In-
formally, for the special case of turn-based games, alternat-
ing simulation provides a way to specify that the possible
moves for a player are increased while those for the other
player are decreased. In contrast, the alternating refinement
that we define below issymmetricbetween the players, and
focuses on the increase in must-transitions and decrease in
may-transitions of both players. Thus, if a states

0 is refined
by s, every must-strategy (for any subset of players) is pre-
served froms0 to s; every may-strategy (for any subset of
players) is preserved froms to s0.

Our definition of refinement is a two-player version of
the definition of [26]. Intuitively, if a states refiness0, then
s

0 has all the may transitions ofs. For must-transitions, on
the other hand, we need to take into account the semantics
of transitions from a state to a set of states. The defini-
tion reflects the view of must transition as games between
the system and nondeterminism. Informally, ifs refiness0,
then for every abstract moveU 0

2 �must(s
0

) there is a re-
lated system moveU 2 �must(s), such that for every non-
deterministic counter-movet 2 U , there ist0 2 U

0 with t

refining t0. This ensures that, if the system has a winning
strategy against nondeterminism in the abstract system, it
has such a strategy also in the refined system, ensuring thus
the preservation of must strategies.

Definition 2.4 (alternating refinement and bisimula-
tion). Consider two abstract game structuresG =

hS; �; �may; �must; Ii. andG0 = hS

0

; �

0

; �

0

may; �
0

must; I
0

i. A
relationR � S � S

0 is a refinement if, for alls 2 S and
s

0

2 S

0, we have:

� sR s

0 implies thatI3val(s) � I

0

3val(s
0

);

� �(s) = �(s

0

);

� 8t 2 �may(s) : 9t
0

2 �

0

may(s
0

) : t R t

0;

� 8U

0

2 �

0

must(s
0

) : 9U 2 �must(s) : 8t 2 U : 9t

0

2

U

0

: t R t

0.

Given two game structuresG andG0, there is a maximum
refinement preorder that we term3

�

(G;G

0

)

. We omit the
subscript(G;G0) when clear from the context, and in partic-
ular, whenG andG0 are the same game structure.

If s �
(G;G

0

)

s

0 we say thats0 alternatingly abstractss
or s alternatingly refiness0. For finite-branching transition
relations,�

(G;G

0

)

is the maximum fixed point of a monotone
function with closure ordinal!, ie. �

(G;G

0

)

= \

j

�

j

(G;G

0

)

,

3Note that, writings � s

0, s is the refinement, ands0 the abstraction:
the symbol� is used in the opposite direction as it is customary in the
discussion of, for instance, trace inclusion.

where�0

(G;G

0

)

= S �S and�j+1

(G;G

0

)

is defined from�j

(G;G

0

)

using the above definition.

2.2 Alternating-�-calculus

Syntax. The formulas of the logic AMC (alternating-time
�-calculus) [2] add next-time operators parameterized by a
subset of players to the traditional�-calculus. Let� be a set
of predicate symbols, andV be a set of variables. The set of
�-calculus formulas is generated by the following grammar
whereA � f1; 2g:

� ::= p j x j :� j � _ � j hhAii � j �x:�;

for predicatesp 2 � and variablesx 2 V . In the quan-
tifications�x:� and its dual�x:�, we require again that all
occurrences ofx in � have even polarity.[[A]] � is defined
as the DeMorgan dual ofhhAii �. Let a�calc denote the
set of all AMC formulas, andcl-a�calc the set of all closed
AMC formulas.

Semantics. We define two semantics for AMC, themay
semanticsG[[�]]may and themustsemanticsG[[�]]must. Infor-
mally, for a closed formula�, a game structureG, and a state
s of G, we haves 2 G[[�]]must if � holds at all refinements
of s, ands 2 G[[�]]may when there may be a refinement ofs

at which� holds. In the following, we write simply[[�]]may,
[[�]]must for G[[�]]may, G[[�]]must whenever the game structure
is obvious from the context.

Fix a game structureG = hS; �; �may; �must; Ii. A vari-
able environmentis a functione : V 7! 2

S that associates
a subset of states to each variable. The basic lookup of
propositional information and the monotone boolean oper-
ators work as usual:

[[p]]

e




= I




(p) [[�

1

_ �

2

]]

e




= [[�

1

]]

e




[ [[�

2

]]

e




[[x]]

e




= e(x):

Following [20, 27], negation connects the two semantics.

[[:�]]

e

may = S n [[�]]

e

must [[:�]]

e

must = S n [[�]]

e

may

The semantics of the fixpoint operator is defined as usual:
for 
 2 fmay;mustg,

[[�x:�]]

e




=

\

fT � S j T = [[�]]

e[x:=T ]




g

We address the strategy quantifiers below.
Recall that in the case of concrete games a state satis-

fies the formulahhAii � if the players inA can force� in
the next state [2]. In a state of an abstract game structure
where a player fromA is to make a move, the formula is
true in the must-semantics at a stateswith �(s) 2 A if there
is a must-transition to a set of states, all of which make�
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true. Informally, this witnessing must-transition cannot be
removed in any refinement ofs, and thus theA-team will
continue to have a strategy to validate�. In a state where
a player not fromA is to make a move, the formula is true
in the must-semantics if all may-transitions lead to states
that satisfies�. Informally, any refinement ofs has fewer
may-transitions, and thus the player not inA will continue
to remain unable to invalidate�. The complete semantics
for both strategy quantifiers is described below.

s 2[[hhAii �]]

e

must if

9a 2 �must(s) : a � [[�]]

e

must; if �(s) 2 A

8a 2 �may(s) : a 2 [[�]]

e

must; if �(s) 62 A

s 2[[hhAii �]]

e

may if

9a 2 �may(s) : a 2 [[�]]

e

may; if �(s) 2 A

8a 2 �must(s) : a \ [[�]]

e

may 6= ;; if �(s) 62 A

The may and must-semantics are consistent.

Theorem 2.1 (Consistency).For all AMC-formulas�, for
all variable environmentse, [[�]]emust � [[�]]

e

may.

The consistency theorem enables us to define the 3-valued
semantics of AMC, namely[[�]]

e

, as a function from formu-
las tofT; F;?g as follows:

[[�]]

e

3val(s) =

8

<

:

T; if s 2 [[�]]

e

must

F; if s 62 [[�]]

e

may

?; otherwise.

We show that refinement preservesall alternating-�-
calculus formulas. In contrast, alternating-simulation only
preserves a class of positive formulas of ATL? [3]. The
next theorem ensures that when a states

0 is refined by a
states, every formula� that is true (resp. false) ins0 is
also true (resp. false) ins. Thus, in the3-valued view, the
only change that can happen in moving froms0 to s is that
� evaluates to? in s

0, and either true or false ins. Thus,
must-strategies that achieve an alternating�-calculus goal
of both players are preserved froms0 to s. Also, if there
is a must-strategy for playeri that achieves at states an
AMC-goal � in the next state, we are at least guaranteed
that there exists a may-strategy for the same playeri from
s

0 that achieves the goal� in the next state, when working
against any must-strategy of player�

i.

Theorem 2.2 (Soundness and Completeness).Consider
a finitely-branching abstract game structureG, and lets; s0

be states ofG. The following are equivalent.

1. s � s

0

2. 8� 2 cl-a�calc : [[�]]3val(s) � [[�]]3val(s
0

)

3. 8� 2 cl-a�calc : s 2 [[�]]may ) s

0

2 [[�]]may

4. 8� 2 cl-a�calc : s 2 [[�]]must ( s

0

2 [[�]]must

The fixpoint free fragment of the logic suffices for com-
pleteness, eg. for the implication(2) ) (1), it suffices to
consider� without fixpoints. The proof of this theorem fol-
lows the outline of [25], with extra quantifiers accounting
for the conjunctive-must transitions.

We can now make precise our remark on the minimal-
element representation of the must-transition function.
Given a must-transition function�must : S 7! P(P(S)), we
denote by# �must : S 7! P(P(S)) the transition relation
defined by

# �must(s) = fT 2 �must(s) j 8T
0

2 �must(s):T
0

6� Tg:

Theorem 2.3. For any game structure G =

hS; �; �may; �must; Ii, let G0 = hS; �; �may; # �must; Ii.
Then, for everys 2 S, we haves �

(G;G

0

)

s ands �
(G

0

;G)

s.
Thus, for all� 2 cl-a�calc and
 2 fmay;mustg we have
G[[�]]




= G

0

[[�]]




.

2.3 Games with Linear-Time Objectives

When considering games, it is often natural to consider
linear-time objectives, where a player must ensure that all
resulting linear sequences of states satisfy given properties
[38]. These linear-time properties can be expressed, for in-
stance, by linear-time temporal logic [29] formulas or!-
automata [37]. We will consider here linear-time properties
expressed byparityacceptance conditions on the state space
of the game structure. Any!-regular property can be speci-
fied by a deterministic!-automaton with a parity accepting
condition [37]; by taking the product between this automa-
ton and the game structure, one obtains a game structure
with a parity condition defined over the state space.

Given an abstract game structureG =

hS; �; �may; �must; Ii, consider a tuple � =

hT

1

; T

2

; : : : ; T

m

i whereT
1

; : : : ; T

m

is a partition ofS into
disjoint subsets. Given a trace� = s

0

; s

1

; s

2

; : : : 2 S

!,
we denote by Index(�;�) the largesti 2 f1; : : : ;mg

such that s
k

2 T

i

for infinitely many k 2 IN.
Then, the parity property parity(�) is defined by
parity(�) = f� 2 S

!

j Index(�;�) is eveng. Note
that the complement of parity properties is given by
S

!

n parity(hT

1

; : : : ; T

m

i) = parity(h;; T

1

; : : : ; T

m

i);
we indicate it by: parity(hT

1

; : : : ; T

m

i). We define the
winning states with respect to a parity condition as follows.

Definition 2.5 (winning states).The sets[hhAii�]may and
[hhAii�]must of may and must-winning states for a team
A � f1; 2g with respect to a parity property� � S

! are
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given by:

s 2 [hhAii�]may iff 9� 2 �

A

may : 8�
0

2 �

:A

must :

Outcomes(s; �; �

0

) � �

s 2 [hhAii�]must iff 9� 2 �

A

must : 8�
0

2 �

:A

may :

Outcomes(s; �; �

0

) � �

To express the 3-valued determinacy of games over abstract
game structures, let:A = f1; 2g nA and:� = S

!

n�.

Theorem 2.4 (3-valued determinacy).For all parity con-
ditions� = parity(hT

1

; : : : ; T

m

i) and allA � f1; 2g:

[hhAii�]must = S n [hh:Aii:�]may:

When teamA must-wins for�, team:A cannot may-win
for :�. Similarly for team:A and:�. Thus, given a
linear-time goal� and a teamA, at each states exactly one
of the following three cases holds:

� teamA must-wins for�,
and team:A does not maybe-win for:�;

� teamA maybe-wins for�, but does not must-win for
�,
and team:A maybe-wins for:�, but does not must-
win for :�;

� teamA cannot may-win for�,
and team:A must-wins for:�.

To obtain an AMC formula for computing the set of winning
states, we assume that there are propositionsq

1

; : : : ; q

m

such that, for1 � i � m, [[q
i

]]may = [[q

i

]]must = T

i

. Essen-
tially, this means that the condition is specified directly on
the state space, as is the case when it is obtained through the
product construction with an alternating automaton. Theo-
rem 2.2 ensures that it is possible to evaluate these alternat-
ing�-calculus solution formula on abstractions of the given
game structure, obtaining may and must-approximations for
the set of winning states.

Given a parity property� = parity(hT

1

; : : : ; T

m

i) and
a teamA � f1; 2g, we indicate by�[hq

1

; : : : ; q

m

i; A] the
alternating�-calculus formula

�[hq

1

; : : : ; q

m

i; A] = �

m

X

m

: � � ��

1

X

1

:

m

_

i=1

(q

i

^ hhAii X

i

);

where�
m

is � if m is even, and is� otherwise. The next
result generalizes to 3-valued games a result of [14], and en-
ables the computation of the may and must-winning states.

Theorem 2.5 (3-valued control for linear objectives).
For all parity properties� = parity(hT

1

; : : : ; T

m

i), if
there are propositionsq

1

; : : : ; q

m

such that, for1 � i � m,

[[q

i

]]may = [[q

i

]]must = T

i

, then for all
 2 fmay;mustg
and for all teamsA � f1; 2gwe have:

[hhAii�]




= [[�[hq

1

; : : : ; q

m

i; A]]]




:

The following theorem states that the above solution for-
mula, when evaluated over abstractions of the game struc-
ture on which the goal is defined, still gives rise to 3-valued
determinacy. The result follows from by reasoning on the
form of �[�; A], and from the duality of AMC operators.

Theorem 2.6. For all m � 0, propositionsq
1

; : : : ; q

m

,
teamsA � f1; 2g, and
 2 fmay;mustg, we have:

[[�[hq

1

; : : : ; q

m

i; A]]]




= S n [[�[hF; q
1

; : : : ; q

m

i;:A]]]




wheremay is must, must is may, and[[F]]may = ;.

3. Abstraction

We construct game abstractions usingplayer-preserving
abstractions, that maintain the distinction of which player
can play at a state. Given a game structureG =

hS; �; �may; �must; Ii and a set of statesT , we say that a
relation� � S � T is player-preserving forG if, for all
(s; s

0

); (t; s

0

) 2 �, we have that�(s) = �(t). Given a
relation � � S � T and U � S, V � T , we write
U � � = fs

0

2 T j 9s 2 U : (s; s

0

) 2 �g and� � V =

fs 2 S j 9s

0

2 V : (s; s

0

) 2 �g. We say that� is total and
surjectiveif S � � = T andS = � � T . Given an abstract
game structureG with state spaceS, and a total and surjec-
tive relation� � S�T , we can construct theabstraction of
G by�, denotedAbstr(G; �).

Definition 3.1 (Abstraction construction). Consider an
abstract game structureG = hS; �; �may; �must; Ii , together
with a setT and a total and surjective relation� � S � T

that is player-preserving forG. We defineAbstr(G; �) =

hT; �

0

; �

0

may; �
0

must; I
0

i as follows. For allt 2 T and all
q 2 �:

�

0

(s

0

) = �(s); if s � s0

�

0

may(s
0

) = �may(s) � �

�

0

must(s
0

) = fU

0

� T j 8s 2 � � fs

0

g : 9U 2 �must(s) :

U � � � U

0

g

I

0

may(q) = Imay(q) � �

I

0

must(q) = fs

0

2 T j � � fs

0

g � Imust(q)g:

Abstraction construction for transition structures can be de-
fined simply by omitting the definition of�0. In the spirit of
the definitions of [36], the abstractions for the states of each
player are performed separately following our treatment of
abstract transition systems. For each player, the two com-
ponents of the definition follow [10, 11].
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The following theorem serves as a “sanity check” and
ensures that Definition 3.1 yields abstractions that are sound
w.r.t. refinement.

Theorem 3.1. Consider an abstract game structureG =

hS; �; �may; �must; Ii. Let T be a set of states and let
� � S � T be a total and surjective relation that is player-
preserving forG. LetG0 = Abstr(G; �). Then, for alls�t,
we haves �

(G;G

0

)

t.

Abstract interpretation is a rich source of examples for the
relations required to use the schema presented by the above
definition. The following example, based on [16], illustrates
how predicate abstraction fits into this framework.

Example 3.1 (Predicate abstraction).LetR be a concrete
transition structure, whose infinite state spaceS is given by
all possible valuations of three integer variablesx, y, and
z. Any statec is of the formfx 7! i; y 7! j; z 7! kg,
for some integersi; j; k. Let us assume that the transi-
tions are those induced by the single assignment statement
x = z, e.g. there is a transition from statec above to
statec0 = fx 7! k; y 7! j; z 7! kg. The predicates
�

1

= odd(x); �

2

= (y > 0), and�
3

= (z < 0) induce
an equivalence relation on the states ofA

1

: two states are
equivalent if they agree on all three predicates. LetT be
the set of all equivalence classes of states ofR. Define
� � S � P(S) as the relation associating each state of
S to the equivalence class to which it belongs. By defini-
tion of abstraction, there is a may-transition froma to a

0 in
Abstr(R; �) iff there arec 2 a andc0 2 a

0 such thatc has a
transition toc0 in R. Dually, there is a must-transition from
a toA iff, for all c 2 a, there existsa0 2 A andc0 2 a

0 such
thatc has a transition toc0 inR. For instance, there is a may-
transition from the state�

1

^ �

2

^ �

3

to each of the states
�

1

^�

2

^�

3

and:�
1

^�

2

^�

3

. There is amust-transition
from�

1

^�

2

^�

3

to the setf(�
1

^�

2

^�

3

;:�

1

^�

2

^�

3

g

that captures the “absence of effect” of the statement ony
andz.

The must-transition of the above example, which leads to a
set of states, was missing in our earlier treatment of abstrac-
tion via MTSs [16]. We showed in that paper that the ab-
sence of this transition causes the framework to be unable to
support incremental abstractions. In this paper, we do have
the required compositionality to ensure that abstractions can
be built incrementally.

Theorem 3.2 (Compositionality of abstractions). Let
G = hS; �; �may; �must; Ii be anabstract game structure.
LetT; U be sets of states and� � S � T and�0 � T � U

be total and surjective, such that both� and�0�� are player-
preserving forG. Then,

Abstr(G; �

0

� �) = Abstr(Abstr(G; �); �

0

)

An equivalent result for transition structures can be obtained
simply by omitting the player-preserving requirement from
the above definition.

3.1 Precision of abstraction

We now explore the precision of the abstraction defined
in definition 3.1. For notational simplicity, our results are
phrased in terms of abstract transition structures, but analo-
gous results hold for abstract game structures.

The basic algorithmic problem in the evaluation of�-
calculus formulas consists in computing the predecessor
operators9 pre




. must be possible to compute in the the
operators system. Specifically, we show that once the ab-
stract state space and the abstraction relation� are chosen,
the three-valued abstractions proposed in this paper, with
conjunctive representation for must-transitions, enable the
computation of the predecessor operators on the abstract
system in a way that is “as precise as possible”, for the cho-
sen abstract state space and abstraction relation.

We consider a concrete abstract transition structureR =

hS; �may; �must; Ii, together with a setT , and a surjective
and total relation� � S � T . The idea underlying the
construction of abstractions via� is that, when the abstract
structure is at a statet 2 T , the concrete structure can be at
any state in� � ftg. To take into account this uncertainty,
given a setU � T and
 2 fmust;mayg, we relate the
computation of9 pre




(U) to the following game, played
from a statet 2 T . The game involves two players: Propo-
nent, that tries to reachU from t in one step (as called for by
9 pre




(U)), and Spoiler, that tries to prevent this. Spoiler
plays first, and chooses a states 2 � � ftg in the concrete
structure that is related tot. Then, Proponent (if
 = may)
or Spoiler (if 
 = must) chooses a movea 2 �




(s). If

 = must, Spoiler choosess0 2 a; otherwise, if
 = may,
Spoiler choosess0 = a. Finally, Spoiler chooses a state
t

0

2 fsg � �. Thus, Spoiler represents both the imprecision
involved in moving between the concrete system and the ab-
straction, and the conjunctive nature of the must-transitions.

We say that an abstraction via� of R is preciseif for
all 
 2 fmust;mayg and U � S, we can compute
9 pre




(U) on the abstraction such that fort 2 T , we have
t 2 9 pre




(U) iff Proponent has a strategy to reachU from
t in the above game. For a formalization of precision us-
ing the language of abstract interpretation see [10, 11] —
the notable difference in our results is the difference in the
types of may and must transition relations.

Theorem 3.3 (Precision of abstraction).Given an ab-
stract transition structureR with state spaceS and a total
and surjective function� � S � T for someT , the abstrac-
tionAbstr(R; �) is a precise abstraction ofR via �.

The above theorem differs from the results of [8] on optimal
abstractions. In [8], the structure of the abstraction is fixed
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(both may and must-transitions have typeS 7! P(S), and
are thus non-conjunctive);among abstractions having that
structure,it is proved that the abstraction constructed there
is as precise as possible. In contrast, in our result the struc-
ture of the abstraction is unconstrained — the abstraction
of R by � constructed byAbstr(R; �) is themost precise
possibleof all abstractions ofR by �. Similar results hold
for the abstraction of abstract game structures.

3.2 Completeness of abstraction

Consider AMC with only greatest fixed points.

� ::= p j :p j x j � _ � j � ^ �

j hhAii � j [[A]] � j �x:�

This is a logic of safety properties. In the special case
of abstract transition structures, the logic includes both
universal-safety and existential-safety properties in the ter-
minology of [30].

The following theorem shows that, for any possibly-
infinite concrete game structureG and any formula� of this
logic, there exists afinite abstraction of this game structure
that preserves the truth value (T or F) of � interpreted onG.

Theorem 3.4. Let a concrete game structureG =

hS; �; �; Ii, s 2 S and a formula� in above logic be such
that s 2 [[�]]must. Then, there is afinite setT and a total
and surjective� � S � T yielding a finite abstract game
structureAbstr(G; �) satisfying :

(8a 2 A) [s � a) a 2 [[�]]must]

The abstraction relation� required for the proof of the
above theorem is obtained from an equivalence relation that
relates concrete states if they are not distinguished by any
subformulas of�.
This completeness result is clearly “foretold” in the com-
pleteness results of [32]; indeed, elsewhere in this vol-
ume [12] uses the techniques of [32] to show that the addi-
tion of fairness constraints to abstract transition structures
permits the above theorem to be proved for arbitrary�-
calculus formulas.

4 Model Checking and Refinement Checking

In this section, we discuss the complexity of the model
checking4 and refinement checking problems for abstract
transition and game structures via a reduction from abstract
game structures to the traditional (concrete, turn-based)
game structures of [2].

4Symbolic model-checking algorithms can be obtained directly from
the semantics of the�-calculus on abstract transition structures in Section 2
and of the alternating�-calculus on abstract game structures in Section 3.

Given an abstract game structureG =

hS; �; �may; �must; Ii over a set of propositions�, we define
a concrete 2-valued game structureG

0

= hS

0

; �

0

; �

0

; I

0

i over
a set of propositions�0

= �[f�p j p 2 �g[fp

must

; p

1

; p

2

g

as follows.

� S

0

= S[fhT; ii j 9s 2 S : T 2 �must(s)^ i = �(s)g.

� �

0

: S

0

7! f1; 2g is defined as�0(s) = �(s) for s 2 S

and as�0(hT; ii) = i for T 2 P(S).

� The transition function�0 : S0 7! S

0 is defined, for all
s 2 S, by:

�

0

(s) = �may(s) [ fhT; ii j T 2 �must(s) ^ i = �(s)g

and for all states of the formhT; ii in S

0, by
�

0

(hT; ii) = fs

0

j s

0

2 Tg.

� The interpretation functionI 0 : S ! [�

0

! fT; Fg] is
defined, fors 2 S, p 2 �

0, i 2 f1; 2g by:

I

0

(s)(p) = (I(s)(p) 6= F) I

0

(s)(p

i

) = (�(s) = i)

I

0

(s)(�p) = (I(s)(p) 6= T) I

0

(s)(p

must

) = F:

For all states of the formhT; ii in S0, and for allp 2 �

0,
we haveI 0(hT; ii)(p

must

) = T.

Intuitively, the traditional game structureG0 encodes each
setT of successor states inG defined in conjunctive must-
transitions by a state of the formhT; ii from which all states
s

0 in T are then reachable. Also, the interpretation function
I

0 for propositionsp and�p is designed to preserve the may-
semantics[[�]]may. Since the size ofG is defined asjGj =
P

s2S

(j�may(s)j+
P

a2�must(s)
jaj), we havejG0j = O(jGj).

Given an AMC formula�, we define a recursive for-
mula transformationT (�) as follows. First, we rewrite� in
positive normal form, pushing negation inwards using De-
Morgan’s laws, and then we apply recursively the following
rewriting rules: T (p) = p, T (:p) = �p, T (�

1

_ �

2

) =

T (�

1

)_ T (�

2

), T (�
1

^ �

2

) = T (�

1

)^ T (�

2

), T (x) = x,
T (�x:�) = �x:T (�), T (�x:�) = �x:T (�), and

T (hhAii �)=

h

_

i2A

p

i

_ hhAii (:p

must

_ hhAii T (�))

i

^

h

:(

_

i2A

p

i

) _ hhAii (:p

must

^ T (�))

i

T ([[A]] �)=

h

:(

_

i2A

p

i

) _ [[A]] (:p

must

_ [[A]] T (�))

i

^

h

_

i2A

p

i

_ [[A]] (:p

must

^ T (�))

i

:

The correctness of these game and formula translations is
defined by showing that, for all formulas� and statess in S,
we have[[�]]may(s) = F in G iff [[T (�)]](s0) = F in G0, where
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s

0 is the state corresponding tos in G

0. This result gives
us a decision procedure for solving the 3-valued model-
checking problem on abstract game structures (which gen-
eralizes the 3-valued model-checking procedure of [6, 16]
for closed systems):

� if [[T (�)]](s0) = F in G0, then[[�]]3val(s) = F in G;

� if [[T (:�)]](s0) = F in G0, then[[�]]3val(s) = T in G;

� otherwise,[[�]]3val(s) =? in G.

From this construction, we obtain the following result.

Theorem 4.1. The AMC model-checking problem for ab-
stract game structures and the AMC model-checking prob-
lem for concrete game structures are inter-reducible in lin-
ear time and logarithmic space.

Thus, both lower and upper complexity bounds for AMC
model checking over concrete games carry over to abstract
games. The game and formula translations described above
can also be used to prove that the same results hold for
other 3-valued alternating temporal logics whose seman-
tics is defined by following the same rules as those used
in Section 3 to define the 3-valued AMC from the tradi-
tional AMC. See [2] for the complexity of model checking
for various alternating temporal logics.

The construction ofG0 and T (�) described above is
also applicable to abstract transition structures, i.e., abstract
game structures with only one player. In that case, all the
moves are played by the system, except in states of the form
hT; ii where the environment picks the next state. Thus,
model checking on abstract transition structures is also re-
ducible (in linear time and logarithmic space) to two model-
checking problems on traditional game structures. Con-
versely, it can be shown that the game played by two play-
ers of a traditional game structure can be simulated by the
game played by the system and its environment in an ab-
stract game structure.

Theorem 4.2. The AMC model-checking problem for ab-
stract transition structures and the AMC model-checking
problem for concrete game structures are inter-reducible in
linear time and logarithmic space.

Thus, the alternation expressible in abstract transition struc-
tures makes them compact and precise, but increases the
cost of model checking compared to traditional MTSs, LTSs
or Kripke structures. In the case of CTL/ATL, the cost in the
size of the structure simply increases from NLOGSPACE-
complete for CTL to PTIME-complete for ATL, while
both CTL and ATL model checking can be done in linear
time [2]. However, in the case of CTL�/ATL�, the cost
of model checking increases from PSPACE-complete for
CTL� to 2EXPTIME-complete for ATL� [2].

Checking alternating refinement between abstract tran-
sition or game structures can also be reduced to check-
ing alternating simulation on traditional game structures
obtained using a construction similar to the one ofG

0

above. Since checking alternating simulation can be done
in PTIME [3], and since checking alternating refinement
generalizes checking simulation which is itself PTIME-
hard (see [3]), checking alternating refinement is PTIME-
complete.

Theorem 4.3. Given two abstract game structuresG and
G

0, checking whetherG � G

0 is PTIME-complete.
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