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Abstract We present a framework for abstract-
ing two-player turn-based games that preserves
any formula of the alternating-calculus (AMC).
Unlike traditional conservative abstractions which
can only prove the existence of winning strategies

There are at least four practical motivations to study ab-
straction frameworks for games that can handle arbitrarily
nested strategy quantifiers.

e Compositional verification is one of the motivations

for only one of the players, our framework is based
on 3-valued games, and it can be used to prove
and disprove formulas of AMC including arbitrar-
ily nested strategy quantifiers.

Our main contributions are as follows. We de-
fine abstract 3-valued games and an alternating re-
finement relation on these that preserves winning
strategies for both players. We provide a logical
characterization of the alternating refinement rela-
tion. We show that our abstractions are as precise
as can be via completeness results. We present
AMC formulas that solve 3-valued games with
regular objectives, and we show that such games
are determined in a 3-valued sense. We also dis-
cuss the complexity of model checking arbitrary

for the study of games [13]. In this context, one is

interested in the symmetric treatment of all players,
and the specification of interesting game-properties re-
quires the full generality of the logic.

Some applications require nested strategy quantifiers
for both players, such as formulas specifying the cor-
rectness of security protocols [21, 22].

e Another motivation is to develop a sound theoretical

basis for abstraction-based software model-checking
tools suitable for both proving and disproving that an
open program satisfies a property no matter what its
environment does (calledodule checking [23]). In

this context, abstractions are automatically generated

AMC formulas on 3-valued games and of check-

. : . from a static analysis of an open program using ab-
ing alternating refinement.

straction techniques such as predicate abstraction [15].

e Even in the traditional framework of conservative ab-
straction for transition systems, the ability to con-
sider both existential and universal formulas serves
as a good foundation for the detection of feasible
counter-examples [38hnd in counter-example refine-
ment [34].

1 Introduction

Abstraction is key to extend the scope of formal verifi-
cation to systems with infinite or very large state spaces,
as illustrated by recent work on “software model checking”
(e.g., [4, 9, 17]). The relation between the concrete system
and an abstraction is usually a simulation relation [31, 28]; An outline of our approach. In the traditional frame-
this approach enables the verification of univergaC{L*) work for constructing conservative abstractions using a sim-
properties [7]. These abstraction techniques have been exulation relation, a transition is present between two abstract
tended to games [18, 36] to handle the verification of con- states iff there is at least one corresponding transition be-
trollers in open systems. In the context of games, the re-tween related concrete states in the concrete system. This
lation between the concrete and abstract games is usuallframework is suited only to the verification of universal
alternating simulation [3]. While this approach enables properties. Modal Transitions Systems (MTS) [25, 24] en-
the verification of a universal fragment of alternating tem- able the verification of both universal and existential prop-
poral logic [2], it is unsound for game properties speci- erties by including two types of transitionstay-transitions
fied using existential path quantifiers and arbitrarily nested and must-transitions Typically, a may-transition between
path/strategy quantifiers in general. abstract statey andt, indicates that there is at least one
transition from some concrete state relatedtdo some
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concrete state related tg, while a must-transition between  two-player turn-based ganfesiVe define an alternating re-
abstract states, andi, indicates that there is a transition finement relation between states of an abstract game. Must
from everyconcrete state relatedtpto some concrete state  and may-transitions for the two players give risentast-
related tot,. In an MTS, a universal property is verified by strategies,that are guaranteed to exist in all refinements,
checking the may transitions, and an existential property isandmay-strategieshat may exist in a refinement. In con-
verified by checking the must transitions. trast to alternating simulation, our definitionsgmmetric
When using MTSs to represent abstractions, however,between the players, and focuses on the increase in must-
there is an inherent loss of precision in the representationtransitions and decrease in may-transitions. However, it
of must-transitions. This loss of precision may prevent the shares some of the structural features of alternating simula-
verification of existential properties. To illustrate the prob- tion —e.g., if a state’ is refined bys, every must-strategy
lem, consider the following transition system over proposi- (for any subset of players) is preserved fraefrto s, and
tionsp, q, r, where each state has a superscript with the setévery may-strategy (for any subset of players) is preserved

of propositions that hold in the state. from s to s’. Thus, our definition of alternating refinement
preserves winning must-strategies &irplayers.
0 _ {p} _ {r} The determinacy of standard two-player games is re-
51 53 . %5 placed by three-valued determinacy. We show that for any
/ objective ¢ there are three possibilities: (a) playkrcan
achieveg with a must-strategy, (b) play@ can achieve
sg > sj’f —¢ with a must-strategy, or (c) both players may be able
to achieve their respective, and complementary, objectives
The CTL formulado ([pV ~q] AJOr) holds at states,, s,.  USing may-strategies. The last unusual case indicates that
For simplicity in this discussion, view abstractions as being the abstract system under consideration can potentially be
described by equivalence classes of states, wrftings.] refined in twg different ways (wrt. the control—ob_JectM:)e
for the abstract state which is the equivalence class con-— ©Nne in which playei achievess and a second in which
taining s, so. Consider abstractions that identify, s- player2 achieves-¢.
and track the predicatgs q, r to prove this formula. The As a computational logic for encoding properties and al-

mismatch of propositions igs, s, and the need to validate ~90rithms, we provide a 3-valued (true, false, unknown) se-
p V ~q mean thats; ands, cannot be in the same equiv- Mantics for alternating-calculus (AMC). We show that all
alence class. Thus, in standard MTSs, there is no mustAMC formulas are preserved under refinement. We also
transition from[sy, s»] in the abstraction since there is no provide a logical characterization of the alternating refine-
single equivalence class that can be reached from both ment relation in terms of a 3-valued interpretation of AMC
ands,. On the other hand, if we allow must-transitions formulas. This framework permits the use of existing ab-
to havesetsas destinations, the abstraction can include a Straction techniques for (closed) transition systems [10, 11]
must-transition fronfis, , s,] to theset{[ss], [s4]}. We view in tr_\e context of abstraction of games. Our fra_mework is
these sets conjunctively, i.e., to use a must transition fromflexible enough to show thainy classical abstract interpre-
[s1,52] to {[s3],[s4]} as a witness to existentially achieve tation of data values extends to an alternating refinement of
a formula, boths;], [s4] have to satisfy the formula. The abstractgames that preserves all AMC-formulas.

need for must-transitions whose targets can be a set of states e also show that, given an LTL ar-regular objective,
was first pointed out in [26], and it has been independently the sets of states where a player has must or may-strategies
advocated in [35, 12]. can be computed using AMC formulas. These formulas

Motivated by the above discussion, we define in this pa- €N thus be used to solve verification and control problems
per an expressive variant of MTSs, which we eaibtract on abstract transition structures and abstract games. We fi-
transition structuresand study its properties. We show that nally discuss the complexity of 3-valued model-checking of
for any given relation between concrete and abstract statesAMC formulas on abstract transition structures and abstract
our abstract transition structures are as precise as possibldd@mes, as well as of checking alternating refinement.
amongall possible abstractions, regardless of their repre-
sentation. This preci_sion leads tocgmpositional frame- 2. Abstract Game Structures
work for the construction of abstractionl also enables us
to show for a logic of branching-time safety properties that,
if such a branching-time safety property holds at a state of
a possibly-infinite concrete system, then therefisiée ab-

stract system that C.an prove thIS.. ) ) 20ur ideas work for multi-player turn-based games, but atelinectly
We then generalize these basic ideas in a natural way tcapplicable to concurrent games.

Given a setS, we write P(S) for the powerset ofS.
We consider a fixed set of propositions. We consider




3-valued logic, where the three truth values, L are or-
dered according to the information ordering:< T and
1< F, while T andF are incomparable. The boolean op-
erations are defined as follows: v y is true if either is
true, false if both are false and otherwise. Negation in-
terchanges true and false, but leaveantouched. We will

May and must-transitions can be understood as follows.
In a may-transition frons € S, we can choose the desti-
nation state € dmy(s): hence, to achiev& C S at the
next state, it suffices thdtay (s) N 7" # (). Must-transitions
can be interpreted as a game between the system and non-
determinism: the system choosEsc dmst (s), and the

user, U for the greatest lower bound and the least upper nondeterminism chooseésc U. To achievel' C S at the

bounds with respect to this information ordering. For two
functionsf,g : ¥ — {T,F, L}, we write f < g (resp.
f<9)if f(q) <g(q) (resp.f(q) < g(q) forallg e X. A

next state, there must Bé € dmyst (s) with U C 7.
In view of this interpretation, for each statewe need
to represent only the elements®fs: (s) that are minimal

two-player, turn-based abstract game structure is defined asvith respect to set inclusion. PreciselyifT" € st ()

follows.

Definition 2.1 (abstract game
two-player  turn-based abstract
G = (S, A, Omay, dnust , Z) consists of:

structure). A
game  structure

¢ A (possibly infinite) state space

e \: S — {1,2} indicates which player is to move at a
state. We writd = 2,2 = 1.

e A transition functiondpmy : S — P(S), which asso-
ciates with every state € S a nonempty set of possi-
ble may-destination state%ay (s) C S.

e Atransition functiomns; : S — P(P(S)), which as-
sociates with every statee .S a nonempty set of pos-
sible must-destination state-sefgyst (s) C 2° that
satisfies the following constraint:

(Vs € S) (VU € Spust (5)) U N Sy (5) # 0

e Two predicate valuation$nay , Znust : X — P(S5),
associating with each propositional symbahe set of
statesZmy (¢) Whereq mayhold, and the set of states
Tnust (¢) whereq must hold They satisfyZmst (¢) C

Tray (9)- ]

An abstract transition structurés the special case of ab-
stract game structure wheké¢s) = 1 for all s € S. Given
asetd C {1,2} of players, we define A = {1,2} \ A.

An abstract game structure fimite-branchingif for all
s € S, the setSdmmy(s), dmst (s), and all the sets in
dnust (s), are finite. An abstract game structurencrete
if for all statess € S, we havedws: (s) = {{t} | t €
dmay ()}, and if for allg € X, we havelyay (¢) = Znust (¢)-

In contrast to other existing models with 3-valued propo-
sitions and transition functions [11, 5, 19], this definition
follows [26] in the type of the must-transition function,
which associates to a state a set of succeste-sets,

with 7" C 7", then we can removE’ from dmyst (s) without
affecting the ability of either player to win the game: in
fact, the player that moves atwill always prefer movel’

to 7'. We will make this remark precise below, showing
that removingl” preserves game similarity.

The condition on the may/must-transition relations can
be viewed as an analogue of the consistency condition of
modal transition systems. To see this, change the type of the
may-transition function tég,, (s) € P(S), let b, (s) =
{{t} | t € dmy(s)} andd¥,s; (s) = dnust (s), and “upward
close” both transition functions, i.e., for alle S, all v €
{may,nust } and allT" € §%(s), if T'C T' C S, then add
also7" to 0¥(s). In such a setting, the condition between
the may and must-transition functions can equivalently be
written asdgys; (s) € Gy (5)-

The predicate valuatiorey andZnst can be equiv-
alently represented in the style of Partial Kripke struc-
tures [5, 6], by defining a single 3-valued valuatifyy, :

S = (¥ — {71,F,L}), defined for alls € S andq € ©
by Zaval (q)(s) = Tif s € Znust (¢); Zaval (¢)(s) = Fif
s & Tiay (q); andZayval (¢)(s) =L otherwise.

Definition 2.2 (strategies).Given A C {1,2}, a may-
strategy(resp.must-strategy ; for team A is a function
m ST = (P(S)\ 0) such that, for alls € S* and all
s € S we have:

o if A(s) € A, thenm;(5s) C diay(s)
(resp.m;(8s) € Omust (8));
e if A(s) € A, thenm;(5s) = S.

We denote byl (resp.Ily,s. ) the set of all may (resp.
must) strategies for tean. "

Two strategies, one for teash and one for teanmh A, to-
gether with an initial state, determine a set of infinite paths,
calledoutcomesas follows.

Definition 2.3 (outcomes)For all teams4 C {1, 2}, ini-
tial statess € S, modalitiesy4,v.4 € {may,nust}

rather than states. In the context of abstract transitionand strategies: € II7} and#’ € I, we define the
systems, this definition has been independently exploredS€t Outcomes(s,, ') as the set of infinite sequences of

in [35] and with fairness considerations in another paper in Statestotit; - - -

this volume [12].

such thatty, = s and, for allk > 0,
the1 € m(to - ty) N7 (to -+ - k). .



2.1 Alternating Refinement where-0; ;= 5 x S_qndt{;71(j,) is defined from;{g’g,)
using the above definition.

Alternating simulation was introduced independently for
turn-based games [1] and general concurrent games [3]. In2.2  Alternating-u-calculus
formally, for the special case of turn-based games, alternat-
ing simulation provides a way to specify that the possible Syntax. The formulas of the logic AMC (alternating-time
moves for a player are increased while those for the othery-calculus) [2] add next-time operators parameterized by a
player are decreased. In contrast, the alternating refinemengubset of players to the traditionaicalculus. Lef be a set
that we define below isymmetridoetween the players, and  of predicate symbols, anid be a set of variables. The set of
focuses on the increase in must-transitions and decrease ip-calculus formulas is generated by the following grammar
may-transitions of both players. Thus, if a staltés refined whereA C {1,2}:
by s, every must-strategy (for any subset of players) is pre-
served froms’ to s; every may-strategy (for any subset of pu=plz|-d|oVe| (AYO | pz.d,
players) is preserved fromto s'. . )

Our definition of refinement is a two-player version of for predicatep € X and variables: € V. In the quan-
the definition of [26]. Intuitively, if a state refiness’, then tificationspz.¢ and its duab.¢, we require again that all
s' has all the may transitions ef For must-transitions, on ~ 0ccurrences af in ¢ have even polarity[A]]O¢ is defined
the other hand, we need to take into account the semantic§S the DeMorgan dual df4) O¢. Let gucalc denote the
of transitions from a state to a set of states. The defini- St of all AMC formulas, andl-gucalc the set of all closed
tion reflects the view of must transition as games betweenAMC formulas.
the system and nondeterminism. Informallys ifefiness’,
then for every abstract mové’ € dnst (s') there is are-  Semantics. We define two semantics for AMC, thay
lated system mov& € dmust (s), such that for every non-  semanticgj[ ], and themustsemanticgj[-] s, - Infor-
deterministic counter-move € U, there ist’ € U’ with ¢ mally, for a closed formula, a game structurg, and a state
refining¢’. This ensures that, if the system has a winning s of G, we haves € G[¢]ns: if ¢ holds at all refinements
strategy against nondeterminism in the abstract system, itof s, ands € G[¢]sy When there may be a refinementsof
has such a strategy also in the refined system, ensuring thuat which¢ holds. In the following, we write Simply-] ., ,

the preservation of must strategies. [rust for G[-lvays Gl-Imust Whenever the game structure
o ) ) o is obvious from the context.

I?efln|t|0n 2.{1 (alternating refinement and bisimula- Fix a game structur§ = (S, A, dray , drust , Z). A vari-

tion). Consider two abstract game structur€s = able environmenis a functione : V — 25 that associates

(9, A, Oy, Orust , Z). ANAG" = (5", X', Oy, Ouse, Z')- A a subset of states to each variable. The basic lookup of
relationz C S x 5" is a refinement if, for alk € S and propositional information and the monotone boolean oper-

s' € 5', we have: ators work as usual:
@ o ftstimplies thatiavar (5) 2 Lval () P =1.0)  [6 vl = [0l ULl
* A(s) = A(s); [2]¢ = e().
® Vi€ dmy(s) . 3" € iy (s') -t R Following [20, 27], negation connects the two semantics.
SV € Bt (). 30 € b () V€ ULH € e g\ g, [0liust =5\ [Blimy

The semantics of the fixpoint operator is defined as usual:

Given two game structurgg andg’, there is a maximum
fory € {may, nust },

refinement preorder that we tetrmx g gy We omit the

subscript(G, G') when clear from the context, and in partic- e gy —

ular, whenG andg’ are the same game structure. [nz-g]5 = ﬂ{T c ST =[el5 }
If s =g,g s’ we say thats’ alternatingly abstracts

or s alternatingly refines’. For finite-branching transition

relations = g, ¢) is the maximum fixed point of a monotone

We address the strategy quantifiers below.
Recall that in the case of concrete games a state satis-
) ) ; X j fies the formula(A) O¢ if the players inA can forceg in
function with closure ordinab, ie. =g gy= Nj =(g g the next state [2]. In a state of an abstract game structure
3Note that, writings > s’, s is the refinement, and the abstraction: Where a player fromi IS. to make a .move’ the f(.)rmUIa IS
the symbol> is used in the opposite direction as it is customary in the .true inthe mUStfsemam'CS at a stateith /\(5) € A_|f there
discussion of, for instance, trace inclusion. is a must-transition to a set of states, all of which make




true. Informally, this witnessing must-transition cannot be 4. V¢ € cl-aucalc : s € [¢) st < 5 € [D]must
removed in any refinement af and thus thed-team will
continue to have a strategy to validate In a state where

a player not fromA is to make a move, the formula is true
in the must-semantics if all may-transitions lead to states
that satisfiess. Informally, any refinement of has fewer
may-transitions, and thus the player notdrwill continue

to remain unable to invalidai¢. The complete semantics
for both strategy quantifiers is described below.

The fixpoint free fragment of the logic suffices for com-
pleteness, eg. for the implicatig) = (1), it suffices to
considerp without fixpoints. The proof of this theorem fol-
lows the outline of [25], with extra quantifiers accounting
for the conjunctive-must transitions.

We can now make precise our remark on the minimal-
element representation of the must-transition function.

s €[(AY OB if Given a must-tran'5|t|on functiofyyst : S — P.(.P(S)), we
_ denote byl dmst : S — P(P(S)) the transition relation
da € st (5) - a C [Plfuse, if A(s) € A defined by
Va € dmay(s) . a € [@]Gust» If A(s) € A
s €[(A) O]y if 1 Onust () = {T € Snust (s) | VT € bpust (s).T" ¢ T}.
Ja € dmy(s) - a € [Py, if A(s) € A
Va € mst (5) - a N [¢ray # 0, if A(s) ¢ A Theorem 2.3.For any game structure G =
. . <57A75nﬂy76m.15t 7I>1 let g, = (Sa/\afsrmy:i(snust 7I>
The may and must-semantics are consistent. Then' for everyg € S’ we haves j(g7g1) sands j(g,7g) s.

Theorem 2.1 (Consistency)For all AMC-formulasg, for Thus, for allp € cl-aucalc andy € {may, nust } we have

all variable environments, [¢]5ust € [y - [l = g'lel,-

The consistency theorem enables us to define the 3-value<§ 3 Games with Linear-
semantics of AMC, namelf],, as a function from formu- '
las to{T,F, L} as follows:

Time Objectives

When considering games, it is often natural to consider

T, if s € [f]fust linear-time objectives, where a player must ensure that all
[¢]avar (s) = F if s & [[‘Z%]]ﬁay resulting linear sequences of states satisfy given properties
1, otherwise. [38]. These linear-time properties can be expressed, for in-

i . stance, by linear-time temporal logic [29] formulaswor

We show that refinement preserved alternatingu-  5tomata [37]. We will consider here linear-time properties
calculus formulas. In con_tr_ast, alternating-simulation only expressed bparity acceptance conditions on the state space
preserves a class of positive formulas of ATIS]. The  fihe game structure. Any-regular property can be speci-
next theorem ensures that when a stdtés refined by & fieq py a deterministio-automaton with a parity accepting
states, every formulag that is true (resp. false) i’ is  congition [37]; by taking the product between this automa-
also true (resp. false) in Thus, in the3-valued view, the 55 and the game structure, one obtains a game structure
only change that can happen in moving frefito s is that \yith a parity condition defined over the state space.
¢ evaluates tal in s’, and either true or false in. Thus, Given an abstract game structureg _
must-strategies that achieve an alternagingalculus goal (S, \, Gray, 6 1) consider a tuple A _
of both players are preserved frashto s. Also, if there (T7 T ey ”:;iSt; whereT" T, is a partition ofS into
is a must-strategy for playerthat achieves at statean disl',oirit’ subseta Givenlz; oo c gw
AMC-goal ¢ in the next state, we are at least guaranteed > ) 50, 515 52, - -+ ’

. ) we denote by Inde), A) the largesti € {1,...,m}
that there exists a may-strategy for the same playem such thats, € T, for infinitely many k € IN
s’ that achieves the goadlin the next state, when working Then, the ,E)arity przoperty parity(A) is defined b'y

againstany must-strategy of player parity(A) = {0 € S* | IndexXs,A) is ever}. Note

Theorem 2.2 (Soundness and Completenesgonsider ~ that the complement of parity properties is given by

a finitely-branching abstract game structufeand lets, s’ 5 \ p?‘ritY(_<T1’ e >rm>) = parity((0, 73, ... ’,Tm>);
be states of;. The following are equivalent. we indicate it by— parity((11,... ,T},)). We define the
winning states with respect to a parity condition as follows.

1l.s>5

2. V¢ € cl-aucale : [¢]ava (5) > [Hlavar (5') Definition 2.5 (winning states).The §ets[<<A>>tI>]my and
[(A)®@]mst of may and must-winning states for a team

3. V¢ € cl-aucalc : 5 € [¢lmy = 5" € [Alray A C {1,2} with respect to a parity properyy C S are



given by:

s € [(A)®lnay iff I € My, . Vo' € I, -
Outcomes(s, 7, 7') C ®
s € [(A)®lmust iff Im € Mg . Va' € Iy, .

Outcomes(s,7,7') C® =

[¢i]may = [gilwst = Ti, then for ally € {may, nust }
and for all teams4 C {1, 2} we have:

[(AN @]y = [8[(a1, - - -, am), All,-

The following theorem states that the above solution for-
mula, when evaluated over abstractions of the game struc-
ture on which the goal is defined, still gives rise to 3-valued

To express the 3-valued determinacy of games over abstractieterminacy. The result follows from by reasoning on the

game structures, letd = {1,2} \ A and—-® = 5¥ \ &.

Theorem 2.4 (3-valued determinacy)For all parity con-
ditions® = parity((T1,... ,Tn)) andallA C {1, 2}:

[((A) @lmst = S\ [(~A) ~Plrmy -

When teamA must-wins for®, team—-A cannot may-win
for —=®. Similarly for team—-A and—-®. Thus, given a
linear-time goal and a teanA, at each state exactly one
of the following three cases holds:

e teamA must-wins for®,
and team- A does not maybe-win for®;

e teamA maybe-wins for®, but does not must-win for
¢|
and team~A maybe-wins for-®, but does not must-
win for —=®;

e teamA cannot may-win for,
and team-A must-wins for-®.

To obtain an AMC formula for computing the set of winning
states, we assume that there are propositigns.. , ¢,,
such that, forl <i < m, [¢ilway = [¢i]st = Ti- EsSEN-
tially, this means that the condition is specified directly on

form of ¢[®, A], and from the duality of AMC operators.

Theorem 2.6. For all m > 0, propositionsgqy,... , ¢m,
teamsA C {1,2}, andy € {may, nust }, we have:
[[¢[<q17 v a(Im): A]]]'y =S5 \ [[¢[<F7 qi,--- 7q’m)7 ﬁ14]]]7

wherermay is nust , must is may, and[F],, = 0.
3. Abstraction

We construct game abstractions uspigyer-preserving
abstractions, that maintain the distinction of which player
can play at a state. Given a game structdre =
(S, A, 6may, Onust , Z) and a set of state¥, we say that a
relationp C S x T is player-preserving fog if, for all
(s,8"),(t,s") € p, we have that\(s) A(t). Given a
relatonp C S x T"andU C S,V C T, we write
Uop={s €T |3IseU.(ss)€ptandpoV =
{s €S |3’ €V .(s5) € p} Wesay thap is total and
surjectiveif S o p = T andS = p o T. Given an abstract
game structurg with state spac#, and a total and surjec-
tive relationp C S x 1", we can construct thabstraction of
G by p, denotedAbstr(G, p).

Definition 3.1 (Abstraction construction). Consider an

the state space, as is the case when it is obtained through thabstract game structuge= (S, A, dnay , onust , Z) , together

product construction with an alternating automaton. Theo-

with a set7” and a total and surjective relatignC S x T

rem 2.2 ensures that it is possible to evaluate these alternatthat is player-preserving fay. We defineAbstr(G, p) =

ing p-calculus solution formula on abstractions of the given

(T, N, Oty , Oust » Z') s follows. For allt € 7' and all

game structure, obtaining may and must-approximations forg € X:

the set of winning states.

Given a parity propert$ = parity((1y,...,71,,)) and
ateamA C {1,2}, we indicate byp[(q1,- .. ,gm), 4] the
alternatingu-calculus formula

m

Tme- e Tle- \/(Qi A <<A>>OXl)7

i=1

¢[<Q17 s 7Qm>7A]

whereY,, is v if m is even, and ig, otherwise. The next
result generalizes to 3-valued games a result of [14], and en
ables the computation of the may and must-winning states.

Theorem 2.5 (3-valued control for linear objectives).
For all parity properties® parity ((T1,...,T)), if
there are propositiong,, . .. , ¢,, such that, forl <i < m,

N(s)=As), ifsps
Sy (5) = by (5) 0 p
mst (8) ={U" CT |Vs€po{s'}.IU € dnst (s) .

UopCU'}
Thay (@) = Iy (q) © p
Tust (1) = {s' € T'| po{s'} C Imust (q)}-

Abstraction construction for transition structures can be de-
fined simply by omitting the definition of'. In the spirit of

the definitions of [36], the abstractions for the states of each
player are performed separately following our treatment of

abstract transition systems. For each player, the two com-
ponents of the definition follow [10, 11].



The following theorem serves as a “sanity check” and An equivalentresult for transition structures can be obtained
ensures that Definition 3.1 yields abstractions that are soundsimply by omitting the player-preserving requirement from

w.r.t. refinement.

Theorem 3.1. Consider an abstract game structuge =
(S, A, 6mmy, Onust ,Z). Let T' be a set of states and let
p C S x T be atotal and surjective relation that is player-
preserving forG. LetG’ = Abstr(G, p). Then, for allspt,
we haves =g g t.

Abstract interpretation is a rich source of examples for the
relations required to use the schema presented by the abovga

definition. The following example, based on [16], illustrates
how predicate abstraction fits into this framework.

Example 3.1 (Predicate abstraction)Let’R be a concrete
transition structure, whose infinite state spads given by
all possible valuations of three integer varialesy/, and
z. Any statec is of the form{x — i,y — j,z — k},
for some integers, j, k. Let us assume that the transi-

the above definition.
3.1 Precision of abstraction

We now explore the precision of the abstraction defined
in definition 3.1. For notational simplicity, our results are
phrased in terms of abstract transition structures, but analo-
gous results hold for abstract game structures.

The basic algorithmic problem in the evaluationof
Iculus formulas consists in computing the predecessor
operatorsipre,. must be possible to compute in the the
operators system. Specifically, we show that once the ab-
stract state space and the abstraction relatiare chosen,

the three-valued abstractions proposed in this paper, with
conjunctive representation for must-transitions, enable the
computation of the predecessor operators on the abstract
system in a way that is “as precise as possible”, for the cho-

tions are those induced by the single assignment statemerit€" abstract state space and abstraction relation.

X = z, e.g. there is a transition from stateabove to
statec’ = {x — k,y — j,z — k}. The predicates
¢1 = odd(x),¢2 = (y > 0), and¢s = (z < 0) induce
an equivalence relation on the statesAQf two states are
equivalent if they agree on all three predicates. Tdbe
the set of all equivalence classes of stateskof Define

We consider a concrete abstract transition strucklee
(S, dmay , Onust , Z), together with a sef’, and a surjective
and total relationp C S x 7. The idea underlying the
construction of abstractions vjais that, when the abstract
structure is at a statec T', the concrete structure can be at
any state irp o {t}. To take into account this uncertainty,

p C S x P(S) as the relation associating each state of 9iven a set/ C T andy € {nust,may}, we relate the

S to the equivalence class to which it belongs. By defini-

tion of abstraction, there is a may-transition frarto a’ in
Abstr(R, p) iff there arec € a andc’ € o’ such thathas a
transition toc¢’ in R. Dually, there is a must-transition from
ato Aiff, forall ¢ € a, there exista’' € A andc’ € a’ such
thatc has a transition te’ in R. For instance, there is a may-
transition from the staté; A ¢, A ¢3 to each of the states
D1 A\ da A p3 and—gy A o2 A p3. Thereis arust -transition
from ¢1 A ¢2 A ¢3 tothe Set{(¢1 A ¢2 A ¢3, _‘¢1 A ¢2 AN ¢3}
that captures the “absence of effect” of the statement on
andz. ]

computation of3pre. (U) to the following game, played
from a statg € T'. The game involves two players: Propo-
nent, that tries to readh from¢ in one step (as called for by
Jpre, (U)), and Spoiler, that tries to prevent this. Spoiler
plays first, and chooses a statec p o {t} in the concrete
structure that is related # Then, Proponent (i = may)

or Spoiler (ify = nust) chooses a move € d.(s). If

~v = nust, Spoiler chooses € a; otherwise, ify = may,
Spoiler chooses’ = a. Finally, Spoiler chooses a state
t' € {s} o p. Thus, Spoiler represents both the imprecision
involved in moving between the concrete system and the ab-
straction, and the conjunctive nature of the must-transitions.

The must-transition of the above example, which leadstoa We say that an abstraction vjaof R is preciseif for
set of states, was missing in our earlier treatment of abstracall v € {nust,nay} andU C S, we can compute

tion via MTSs [16]. We showed in that paper that the ab-

dpre. (U) on the abstraction such that fore 7', we have

sence of this transition causes the framework to be unable tat € Jpre, (U) iff Proponent has a strategy to reactrom
support incremental abstractions. In this paper, we do havet in the above game. For a formalization of precision us-
the required compositionality to ensure that abstractions caning the language of abstract interpretation see [10, 11] —

be built incrementally.

Theorem 3.2 (Compositionality of abstractions). Let
G = (S, dmy,0nust , Z) be anabstract game structure
LetT,U be sets of statesandC S x T'andp’ CT x U
be total and surjective, such that bgtlandp’op are player-
preserving forg. Then,

Abstr(G, p’ o p) = Abstr(Abstr(G, p), p')

the notable difference in our results is the difference in the
types of may and must transition relations.

Theorem 3.3 (Precision of abstraction).Given an ab-
stract transition structuré? with state spacé and a total
and surjective functiop C S x T for someT’, the abstrac-
tion Abstr(R, p) is a precise abstraction % via p.

The above theorem differs from the results of [8] on optimal
abstractions. In [8], the structure of the abstraction is fixed



(both may and must-transitions have type— P(S), and
are thus non-conjunctivegmong abstractions having that
structure,it is proved that the abstraction constructed there

is as precise as possible. In contrast, in our result the struca set of propositions’

Given an abstract game structurej
(S, A, 6y, Onust , Z) over a set of propositioris, we define
a concrete 2-valued game structgfe= (S’, X', ', Z') over
EU{p [ p € E}U{puyet, P1, D2}

ture of the abstraction is unconstrained — the abstractionas follows.

of R by p constructed bybstr(R, p) is themost precise
possibleof all abstractions ofR by p. Similar results hold
for the abstraction of abstract game structures.

3.2 Completeness of abstraction

Consider AMC with only greatest fixed points.

pu=p|ple|oVe|ond
| (A)O¢ | [[AllOd | va.é

This is a logic of safety properties. In the special case
of abstract transition structures, the logic includes both
universal-safety and existential-safety properties in the ter-
minology of [30].

The following theorem shows that, for any possibly-
infinite concrete game structugeand any formula of this
logic, there exists §inite abstraction of this game structure
that preserves the truth valuedr F) of ¢ interpreted org.

Theorem 3.4.Let a concrete game structurg;
(S,\,6,7), s € S and a formulag in above logic be such
thats € [¢]wst - Then, there is dinite setT and a total
and surjectivep C S x T yielding a finite abstract game
structureAbstr(G, p) satisfying :

(Vae A)[spa= ac€ [d]nst]

The abstraction relatiop required for the proof of the

above theorem is obtained from an equivalence relation that
relates concrete states if they are not distinguished by any™

subformulas of.

This completeness result is clearly “foretold” in the com-
pleteness results of [32]; indeed, elsewhere in this vol-
ume [12] uses the techniques of [32] to show that the addi-

S'= SU{(T,i) |35 € S : T € dust (5) Ai = A(5)}.

A S — {1,2}is defined as\'(s) = A(s) fors € S
and as\'((T',i)) = i for T' € P(S).

The transition function’ : S’ — S’ is defined, for all
s €8, by:

() = Sy (5) U (T3} | T € St (3) Ai = A(5)}

and for all states of the formZ,i) in S’, by
3((T,i))={s"|s" €T}

The interpretation functiog’ : S — [£' — {T,F}]is
defined, fors € S, p € ¥', i € {1,2} by:
I'(s)(p) = (Z(s)(p) #F)  T'(s)(pi) =
I'(s)(p) = (Z(5)(P) #T)  Z'(5)(Ppust)

For all states of the forr(il’, ) in S’, and for allp € X',
we havel’ (T, i) (Puust) = T-

(A(s) = 1)
=F.

Intuitively, the traditional game structug encodes each
setT" of successor states thdefined in conjunctive must-
transitions by a state of the for(ff’, ;) from which all states
s'in T are then reachable. Also, the interpretation function
7' for propositiong andjp is designed to preserve the may-
semanticq-],my. Since the size of is defined agg| =

2 ses([Omay ()] + 2 e () 101), We haveG'| = O(|G]).
Given an AMC formulag, we define a recursive for-
ula transformatiofi’(¢) as follows. First, we rewrité in
positive normal form, pushing negation inwards using De-
Morgan’s laws, and then we apply recursively the following
rewriting rules: T(p) = p, T(-p) = p, T(¢1 V ¢3) =
T(G0)V T($2), T(d1 A 62) = T(61) A T(), T(x) = z,

tion of fairness constraints to abstract transition structures! (#@-¢) = pw.T(¢), T'(ve.¢) = va.T(¢), and

permits the above theorem to be proved for arbitrary
calculus formulas.

T((4)09) = [\ PV (A)O(bguer v (A)OT(9))]

icA
4 Model Checking and Refinement Checking A H \/ 2i) V (AN O(~Paus A T(¢>))]
icA
In this section, we discuss the complexity of the model T7'([[A]]O¢) = [—|( \/ pi) V [[A]]O(—Ppust V [[A]]OT(¢))]
checking and refinement checking problems for abstract icA

transition and game structures via a reduction from abstract
game structures to the traditional (concrete, turn-based)
game structures of [2].

AV PV TATO(Panse AT(6))].

i€EA

4Symbolic model-checking algorithms can be obtained digdobm The correctness of these game and formula translations is

the semantics of the-calculus on abstract transition structures in Section 2 d€fined by showing th?.t, f(?r all formulgsand ?tates insS,
and of the alternating-calculus on abstract game structures in Section 3. We have[@], (s) = Fin G iff [T'(¢)](s') = Fin ', where

8



s' is the state corresponding toin G’'. This result gives Checking alternating refinement between abstract tran-
us a decision procedure for solving the 3-valued model- sition or game structures can also be reduced to check-
checking problem on abstract game structures (which gen4ng alternating simulation on traditional game structures

eralizes the 3-valued model-checking procedure of [6, 16]
for closed systems):

o if [T(9)I(s') =Fing’, then[g]sy, (s) = Fin G
o if [T(=9)](s") = Fing', then[¢]ya (s) = Tin G;
e otherwise[¢]syq (s) =L inG.

From this construction, we obtain the following result.

Theorem 4.1. The AMC model-checking problem for ab-
stract game structures and the AMC model-checking prob-
lem for concrete game structures are inter-reducible in lin-
ear time and logarithmic space.

Thus, both lower and upper complexity bounds for AMC

obtained using a construction similar to the one gjf
above. Since checking alternating simulation can be done
in PTIME [3], and since checking alternating refinement
generalizes checking simulation which is itself PTIME-
hard (see [3]), checking alternating refinement is PTIME-
complete.

Theorem 4.3. Given two abstract game structurésand
G', checking whethe > G’ is PTIME-complete.
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can also be used to prove that the same results hold for

other 3-valued alternating temporal logics whose seman-
tics is defined by following the same rules as those used
in Section 3 to define the 3-valued AMC from the tradi-
tional AMC. See [2] for the complexity of model checking
for various alternating temporal logics.

The construction ofg’ and T'(¢) described above is

also applicable to abstract transition structures, i.e., abstract 3]

game structures with only one player. In that case, all the

moves are played by the system, except in states of the form

(T, i) where the environment picks the next state. Thus,

model checking on abstract transition structures is also re-

ducible (in linear time and logarithmic space) to two model-
checking problems on traditional game structures. Con-
versely, it can be shown that the game played by two play-

ers of a traditional game structure can be simulated by the
game played by the system and its environment in an ab-

stract game structure.

Theorem 4.2. The AMC model-checking problem for ab-
stract transition structures and the AMC model-checking
problem for concrete game structures are inter-reducible in
linear time and logarithmic space.

Thus, the alternation expressible in abstract transition struc-

tures makes them compact and precise, but increases th
cost of model checking compared to traditional MTSs, LTSs
or Kripke structures. In the case of CTL/ATL, the costin the
size of the structure simply increases from NLOGSPACE-
complete for CTL to PTIME-complete for ATL, while
both CTL and ATL model checking can be done in linear
time [2]. However, in the case of CTIATL*, the cost

of model checking increases from PSPACE-complete for
CTL* to 2EXPTIME-complete for ATE [2].
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