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ABSTRACT
In today’s agile world, developers often rely on continuous integra-
tion pipelines to help build and validate their changes by executing
tests in an efficient manner. One of the significant factors that
hinder developers’ productivity is flaky tests—tests that may pass
and fail with the same version of code. Since flaky test failures are
not deterministically reproducible, developers often have to spend
hours only to discover that the occasional failures have nothing
to do with their changes. However, ignoring failures of flaky tests
can be dangerous, since those failures may represent real faults
in the production code. Furthermore, identifying the root cause of
flakiness is tedious and cumbersome, since they are often a con-
sequence of unexpected and non-deterministic behavior due to
various factors, such as concurrency and external dependencies.

As developers in a large-scale industrial setting, we first describe
our experience with flaky tests by conducting a study on them. Our
results show that although the number of distinct flaky tests may
be low, the percentage of failing builds due to flaky tests can be
substantial. To reduce the burden of flaky tests on developers, we
describe our end-to-end framework that helps identify flaky tests
and understand their root causes. Our framework instruments flaky
tests and all relevant code to log various runtime properties, and
then uses a preliminary tool, called RootFinder, to find differences
in the logs of passing and failing runs. Using our framework, we
collect and publicize a dataset of real-world, anonymized execution
logs of flaky tests. By sharing the findings from our study, our
framework and tool, and a dataset of logs, we hope to encourage
more research on this important problem.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Both the industry and the open-source community have embraced
the Continuous Integration (CI) model of software development and
releases [26, 45]. In this model, every check-in is validated through
an automated pipeline, perhaps running as a service in the cloud,
that fetches source code from a version controlled repository, builds
source code, and runs tests against the built code. These tests must
all pass in order for the developer to integrate changes with the
master branch. Thus, tests play a central role in ensuring that the
changes do not introduce regressions.

To ensure that developers deliver new features at a high velocity,
tests should run quickly and reliably without imposing undue load
on underlying resources such as build machines. On the other hand,
it is also critical that no regressions are introduced into the existing
code. That is, in an ideal world, test failures would reliably signal
issues with the developer’s changes and every test failure would
warrant investigation. Unfortunately, the reality of CI pipelines
today is that tests may pass and fail with the same version of source
code and the same configuration. These tests are commonly referred
to as flaky tests [19, 34]. In a recent keynote [37], Micco observed
that 1.5% of all test runs in Google’s CI pipeline are flaky, and almost
16% of 4.2 million individual tests fail independently of changes in
code or tests. Similarly, we find a non-negligible fraction of tests
to be flaky; over a one-month period monitoring of five software
projects, we observed that 4.6% of all individual test cases are flaky.
Given their prevalence, there have even been calls to adopt the
position that every test is potentially a flaky test [24].

The presence of flaky tests imposes a significant burden on de-
velopers using CI pipelines. In a survey conducted on 58 Microsoft
developers, we find that they considered flaky tests to be the sec-
ond most important reason, out of 10 reasons, for slowing down
software deployments. A further detailed survey using 18 of the
developers showed that they value debugging and fixing existing
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flaky tests as the third most important course of action for Microsoft
to take regarding flaky tests. These debugging and fixing efforts
are often complicated by the fact that the test failures may only
occur intermittently, and are sometimes reproducible only on the
CI pipeline but not on local machines. When we re-run flaky tests
locally 100 times, we find that 86% of them are only flaky in the
CI pipeline. This result is not surprising since reproducing flaky
behavior entails triggering a particular execution among many
possible non-deterministic executions for a given flaky test. Non-
determinism can arise from the non-availability of external I/O
resources, such as network or disk, or from the order of thread and
event scheduling. Prior work [34, 42, 51] uncovering these factors
has examined in detail the extent to which these factors contribute
towards flakiness, and developers often find it too difficult and
expensive to identify the root cause of flakiness.

In most cases of flaky test failures, developers often resort to
rerunning the tests after spending considerable effort debugging
the failures [36, 37]. In some cases, developers may request that the
flaky test should be rerun up to n times with the hope that at least
one of the runs passes. For large repositories with multiple flaky
tests that may fail independently, this process could add substantial
time to the developer feedback loop, and can also result in scarcity
of resources shared across teams. For example, Google ends up
using ≈ 2-16% of its testing budget just to rerun flaky tests [37].
Ignoring flaky test failures can be dangerous since a rerun test that
passes might hide a real bug in the production code. One study [43]
found that when developers ignored flaky test failures during a
build, the deployed build experienced many more crashes than
builds that did not contain any flaky test failures. Another recent
study [49] also found developers treating the signals from tests as
unreliable, sometimes choosing to simply ignore test failures.

Debugging flaky test failures is a difficult and time-consuming ac-
tivity, yet important to ensure high-quality production code. There-
fore, there is a pressing need to develop automated scalable tech-
niques to help developers debug flaky tests. This work takes the first
step in this direction. More specifically, we study the prevalence of
flaky tests in an industrial setting using production data obtained
within Microsoft. We then describe an end-to-end framework that
identifies the flaky tests during regular test executions and helps
understand the root causes of the flakiness. This framework can be
replicated for other companies and open-source projects.

Our experience with flaky tests includes dynamically instrument-
ing flaky test executions. Even though we focus here on unit test
executions, we observe 335k methods calls, 5 threads, and 55418
objects on average per test run. Future efforts on flaky tests should
hopefully be able to handle programs of this scale. We also describe
detailed case-studies that illustrate some of the difficulties any au-
tomated technique will need to solve to debug flaky tests arising in
production. Finally, we develop new tools and techniques to reduce
the burden of flaky tests on developers, and present interesting
challenges that can help guide future research in the area of flaky
tests. Our experience with flaky tests provide three main lessons:
(1) there is no correlation between the number of flaky tests and
the number of builds that fail due to flaky tests, (2) excessive run-
time overhead due to factors such as instrumentation can affect
the reproducibility of flaky tests, and (3) finding differences in the

runtime behavior of flaky tests can be an effective way to help de-
velopers root cause flakiness in tests. More details about the lessons
we learned are presented in Section 5.

Overall, this paper consists of two parts. The first part contains
a motivational study and a dataset of flaky tests. The second part
contains a preliminary tool and framework to help identify and
debug flaky tests. The paper makes the following contributions:
Study:A large-scale study of flaky tests in an industrial setting. Our
quantitative results demonstrate that flaky tests are prevalent, and
that although the number of distinct flaky tests is comparatively
low, the number of validation runs that could fail due to flaky
tests is high, emphasizing the problematic nature of flaky tests to
developers. Along with the quantitative results, we also provide
qualitative insights with in-depth examples that demonstrate the
root causes of flaky tests.
Dataset: A collection of publicly available real-world, anonymized
execution logs of flaky tests. We hope that the data will spur the
development of new research techniques to root cause flaky tests
and evaluate the effectiveness of tools that can help investigate
flaky tests. These logs are publicly available online [8].
Tool:Wedevelop andmake publicly available a preliminary tool [8],
called RootFinder, that analyzes the logs of passing and failing
executions of the same test to suggest method calls that could be
responsible for the flakiness.
Framework:An end-to-end framework developedwithinMicrosoft
that uses RootFinder to root cause flaky tests. This framework can
be easily replicated for other companies and open-source projects.

2 OUR EXPERIENCEWITH FLAKY TESTS
Microsoft makes a CI pipeline available to its developers as a mod-
ern build and test service framework on the cloud, called CloudBuild.
CloudBuild is an incremental and distributed system for building
code and executing unit tests, similar to other engineering systems
such as Bazel [2] and Buck [3].

When a developer sends a build request to CloudBuild with a
change, CloudBuild constructs a dependency graph of all modules
in the project and identifies the modules that are impacted by the
given change. CloudBuild executes unit tests only in those impacted
modules, and skips the remaining modules’ unit tests, since none
of their dependencies were changed. Note that, within a module,
CloudBuild always executes all tests in the same order. Also, Cloud-
Build executes unit tests as soon as their dependencies are ready,
rather than waiting for the entire build to finish. This is a major
advantage that helps reduce the overall build time since tests are
executed while building modules. This feature also helps with an
effective utilization of resources [47]. Today, CloudBuild is used
by ≈1200 projects inside Microsoft and executes ≈350 million unit
tests per day across all projects. Therefore, CloudBuild is certainly
an ideal system to conduct large-scale studies.

Table 1 provides statistics about the flaky tests collected across
30 days in five projects that use CloudBuild. Due to confidentiality
reasons, we anonymized the names of the projects. The goal of
this data is to show the prevalence of flaky tests in Microsoft. We
collected this data using a feature of CloudBuild, where failing tests
are automatically reran, and if the rerun passes, we identify the test
as flaky. However, there is no guarantee that rerunning a failure
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Table 1: Statistics showing the prevalence of flaky tests in five projects using CloudBuild.
# Test # Flaky Test # Distinct # Builds with Flaky % of Builds with Flaky

Projects # Tests # Builds Executions Failures Flaky Tests Test Failures Test Failures
ProjA 26,404 302 6,670,299 6,106 2,165 43 14%
ProjB 5,675 430 2,433,452 537 125 224 52%
ProjC 23,651 575 4,596,490 3,530 190 173 30%
ProjD 5,693 741 1,449,233 328 98 126 17%
ProjE 3,390 1,823 786,898 1,564 286 429 24%

from a flaky test will result in a pass. Therefore, the actual number
of failures from flaky tests could be higher than the reported values.

In the table, Column 2 shows the number of distinct unit tests
in each project. Column 3 shows the number of failing builds of
each project. Column 4 shows the number of unit tests executed in
all builds. Note that CloudBuild does not execute all unit tests in
each build, rather it executes only those tests that are within the
modules impacted by the change. Column 5 presents the number of
unit test failures due to flaky tests, and Column 6 shows the number
of distinct flaky tests that failed at least once. Finally, Columns 7
and 8 show the number and percentage, respectively, of builds that
contained at least one flaky test failure. Note that each of these
builds can have more than one flaky test failure.

Our results show that, although the number of distinct flaky
tests is low, the percentage of builds that include flaky test failures
is substantial. For example, ProjB has the most builds (≈52%) failed
because of one or more flaky test failures, but the project’s number
of flaky tests is substantially lower than other projects (e.g., ProjA).
Upon further investigation into ProjA’s flaky tests, we find that its
large number of flaky tests can be attributed to a single change
causing a large number of tests to be flaky for a few builds, and once
the flakiness was fixed, these tests no longer caused builds to fail due
to flaky test failures. Overall, our results illustrate the prevalence
of flaky tests on these five projects, and how often developers are
burdened by flaky tests causing their builds to fail.

3 END-TO-END FRAMEWORK
We next present our framework to identify the root causes of flaky
test failures. The framework consists of multiple steps.

First, CloudBuild identifies flaky tests by rerunning failing tests
to see if the retry passes or not. If the retry passes, then the test is
identified as flaky. CloudBuild then stores information about all of
these flaky tests in a scalable storage.

Next, for each flaky test specified in this storage, we collect all
dependencies (i.e., test binary, its dependent source binaries, and
relevant test data) from CloudBuild, so that the test can be executed
locally on any machine independent of CloudBuild.

Next, for each flaky test, we produce instrumented versions of
all of its dependencies using an instrumentation framework, called
Torch [27, 33]. The instrumentation helps us log various runtime
properties of the test execution. Note that instrumented binaries
retain the same functionalities as the original binaries, and therefore,
tests can seamlessly run on Torch-instrumented binaries.

Using the instrumented version, we next run the test 100 times
on a local machine in an attempt to produce logs for both passing
and failing executions. The logs generated by Torch contain various
runtime properties at different execution points. More details are
described in Section 3.1. We run the test 100 times as doing so

represents a good trade off between gaining logs for both passing
and failing executions, and the time spent on test runs. The test
is run offline at a later time instead of on CloudBuild machines,
since running the test 100 times under instrumentation is expensive,
thereby increasing the build times for the users and causing resource
contention. Nevertheless, our future work plan includes to not
only collect the passing/failing logs of a flaky test during minimal
workload times on the CI machines, but also to analyze the logs on
the machines. Doing so would not only notify developers of a flaky
test but also the possible root causes of the flakiness as part of their
normal continuous integration workflow.

Since tests may exercise many methods during their execution,
these logs can be very large and highlighting the differences among
the passing and failing executions is beneficial for the majority of
them. Therefore, we also present a tool, RootFinder, that automat-
ically analyzes these logs to highlight the differences to provide
developers insight on why the test is flaky.

3.1 Torch Instrumentation
Torch [27, 33] is an extensible instrumentation framework for .Net
binaries. It takes a .Net binary and a set of target APIs, and in-
struments each target API call in the binary. The exact nature of
instrumentation depends on what Torch instrumentation plugin is
used. For instance, the profiling plugin instruments the binary to
track latencies of APIs executed on critical paths. Torch comes with
plugins for profiling, logging, fault injection, concurrency testing,
thread schedule fuzzing, etc. One can extend these plugins or write
new plugins to suit one’s instrumentation goals.

During instrumentation, Torch replaces each API call with an
automatically generated proxy call, as shown in Figure 1. Note
that Torch does not instrument the implementation of a target API;
only the call to the API is instrumented. The proxy generated by
Torch calls the original API; in addition, as shown in Figure 1(c), it
calls three Torch callbacks—(1) OnStart, called immediately before
calling the original API, (2) OnEnd, called immediately after the
original API returns, and (3) OnException, called when the original
API throws an exception. OnStart returns a context that is passed
to OnEnd and OnException; the context is used to stitch together
information tracked by callbacks for the same API call.

For identifying the root causes of flaky tests, we use Torch’s
logging plugin to passively track and log various runtime properties.
We find that some APIs will behave differently in passing and
failing executions, and analyzing the differences will provide us
insights on the root causes of flakiness. Since such APIs are not
known beforehand, we opt for logging information for all API calls.
Specifically, we log the following properties for all API calls.

(1) Call information, including signature of the API, and its caller
API (the API calling the instrumented API). We also track location
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1 WebClient client = new WebClient();

2 string data = client.DownloadString (url);

(a) Original code

1 WebClient client = new WebClient();

2 TorchInfo ti = Torch.GetInstrumentationInfo();

3 string data = Torch_DownloadString(ti,client,url);

(b) Instrumented code

1 public static string Torch_DownloadString(TorchInfo torchInfo,

WebClient instance, string url) {

2 string returnValue = null;

3 var context = Torch.OnStart(torchInfo, instance, url);

4 try {

5 returnValue = instance.DownloadString(url);

6 } catch (Exception exception) {

7 Torch.OnException(exception, context);

8 throw; // rethrow original exception

9 } finally {

10 Torch.OnEnd(returnValue, context);

11 }

12 return returnValue;

13 } (c) Proxy method

Figure 1: Torch instrumentation

of the API call in the binary and/or source code. Signatures and
locations let us uniquely identify each API call.

(2) Timestamp at each call. Timestamps at OnEnd and OnStart

give the latency of the API call.
(3) Return value at OnEnd and exception at OnException, if any.
(4) A unique Id of the receiver object of the API. This helps

identifying APIs operating on the same object and thus uncover-
ing potential concurrency issues. (5) Ids of the process and thread
executing the API.

(6) Id of the parent thread, i.e., the thread that spawned the thread
executing the API. The information is important to understand
dependencies of different threads and their activities [33].

It is important for the instrumentation to have a small runtime
overhead. Excessive overhead can change runtime behavior by e.g.,
removing existing flakiness, introducing new flakiness, or timing
out. The overhead comes from two different sources. First, comput-
ing some of the runtime properties on the fly can be expensive. For
example, finding signatures of an API and its object type through
reflection, or finding the parent API through stack trace can be
expensive. We avoid this cost by computing these static properties
during instrumentation and passing them to the OnStart callback
as static parameters (as a TorchInfo object in Line 3 in Figure 1(b)).
Second, since we collect runtime information for all APIs, the size
of logs they generate can be prohibitively large. To avoid the over-
head, we compress the logs in memory and asynchronously write
them to disk.1

3.2 Log Analysis Tool
We develop a simple tool called RootFinder to parse Torch logs of
passing and failing executions to identify potential root causes of
certain types of flaky tests. At a high level, RootFinder takes as input
a method name that is likely to be the cause of the flakiness and two
directories containing Torch logs of passing and failing test runs,
1We also experimented with more lightweight Event Tracing for Windows (ETW)
logging [1]; however, at a high logging event rate, ETW may skip logging randomly
chosen events. We observed a high loss rate, and hence did not use ETW for logging.

and determines if the method exhibits anomalous runtime behavior
in the failing runs. Examples of input method names that may be of
interest include methods that return non-deterministic values such
as System.Random.Next (returns a non-negative random integer)
or System.DateTime.Now (returns a DateTime object representing
the current date and time). By default, our framework will use
RootFinder with a predefined set of nondeterministic method calls.
Developers can also add or remove method calls as they wish.

RootFinder works in two steps. In the first step, it processes each
log file independently and evaluates a set of predicates at each line
of the log file. The predicates, similar to the ones used in statistical
debugging [32], determine if the behavior of the callee method in a
log line is “interesting” (several example predicates will be given
shortly). The outputs of the predicates are written to a predicate
file. Each line in the predicate file contains the following informa-
tion about a predicate: (1) The logical epoch when the predicate is
evaluated, (2) name of the predicate, (3) value of the predicate at
the current epoch. We currently consider predicates that are local
to specific code locations, and therefore use logical epochs that
can identify partial orders of predicates evaluated at the same code
location. More specifically, the epoch is given by a concatenation of
the unique code location of the method call,2 current thread id, and
a monotonically increasing sequence number that is incremented
every time the method is called at the current location. For instance,
in Figure 3, the method Random.Next() at unique location 9 is called
multiple times (e.g., perhaps the line is in a loop or is called by mul-
tiple threads)—once in log line 2 and again in log line 5. Assuming
that they both are executed in the same thread with id 10, the first
call has the epoch 9:10:1, the second call has the epoch 9:10:2,
and so on. Partial orders of the epochs can be derived from their
ids along with the threads’ parent-child relationship, which Torch
dynamically tracks and logs.
Predicates: A predicate evaluates the state of the method call at
the current epoch. RootFinder currently implements the following
boolean predicates:

• Relative: The predicate is true if the return value of the cur-
rent epoch is the same as that of any previous epochs. This
predicate is useful to identify if a non-deterministic method
is returning the same value in successive calls.

• Absolute: The predicate is true if the return value of the
current epoch matches a given value. This predicate is useful
to check if a method returns an error value (e.g., null or an
error code).

• Exception: is true if the method throws an exception.
• Order: The predicate is true if an ordering of method calls
matches a given list of methods and optionally, whether a
specified amount of time occurred between the methods.
This predicate is useful to identify thread interleavings.

• Slow: This predicate is true if the method call takes more than
a specified time. (The threshold can be determined based on
domain knowledge of the called method, or by analyzing
latencies of passing test runs.)

2Unique code location uniquely identifies the location of a method call in the code. An
example is the name of the program source/binary file plus the line number/binary
offset of the method call within the file. For simplicity we use Source# as the unique
location in the rest of the paper.



Root Causing Flaky Tests in a Large-Scale Industrial Setting ISSTA ’19, July 15–19, 2019, Beijing, China

• Fast: This predicate is true if the method call takes less than
a specified time.

After the predicate files are generated, RootFinder compares
all predicate files (from passing and failing runs) to identify ones
that are true/false in all passing executions, but are the contrary
in all failing executions. Intuitively, these predicates are strongly
correlated to test failures and hence are useful to understand the un-
derlying root cause of failures. Specifically, RootFinder labels each
predicate in the predicate files with one of the following categories:
(1) Inconsistent-in-passing: Such a predicate either appears in
only a subset of all passing test runs or appears in all passing runs
but with more than one value. The log line corresponding to such a
predicate is likely irrelevant as to why a test is flaky. This is because
whether the predicate was true or false did not affect the outcome
of the test runs (i.e., they always passed).
(2) Inconsistent-in-failing: Such a predicate either appears in
only a subset of all failing test runs or appears in all failing runs but
with more than one value. As in the case of the previous category,
this predicate is also likely irrelevant as to why a test is flaky.
(3) Consistent-and-matching: Such a predicate appears in all
passing and failing runs and with the same value. This predicate is
also likely irrelevant as to why the test is flaky as it did not affect
the final outcome of the test runs.
(4) Consistent-but-different: Such a predicate either (I) appears
only in passing or only in failing runs, or (II) is true in all passing
runs but false in all failing runs (or vice versa). (I) indicates that
executions of a passing and a failing run diverge before the epoch
where the predicate was evaluated (which is why the predicate
appears in one set and not the other), while (II) indicates how a
method consistently behaves differently in the passing and failing
runs. This predicate is highly likely to explain why a test is flaky
because it precisely shows how passing and failing test runs differ.

By default, the predicates outputted by RootFinder are sorted so
that the ones that are most likely to explain why a test is flaky are
shown first (i.e., Consistent-but-different predicates). Once the cate-
gories are sorted, RootFinder then sorts the predicates within each
category so that the predicates with the lowest log line numbers
are outputted before the ones with higher numbers. In our case
studies with RootFinder as described in Section 4.2, we find that
sorting predicates as stated enables RootFinder to output useful
ones in the least amount of time.

The predicates outputted by RootFinder can aid the debugging
efforts of nine out of ten categories of flaky tests mentioned in a
survey [34]. More specifically, for categories such as Network, Time,
IO, Randomness, Floating Point Operations, Test Order Dependency,
and Unordered Collections, RootFinder can directly compare the
return value of failing and passing Torch logs to identify predicates
that are highly likely to explain why the test is flaky. For the Async
Wait and Concurrency categories, our framework currently relies
on Torch’s ability to first fuzz delays, and then for RootFinder to
identify latency-related predicates, such as Fast and Slow, to help
developers root cause those categories. For the remaining category,
Resource Leak, we plan to extend the set of predicates to include
memory leak detection tools [5, 9] to help developers understand
tests of this category with new predicates.

1 class TestAlertTest {

2 void TestUnhandledItemsWithFilters() {

3 TestAlert ta1 = CreateTestAlert();

4 TestAlert ta2 = CreateTestAlert();

5 ...

6 Assert.AreNotEquals(ta1.TestID, ta2.TestID);

7 }

8 TestAlert CreateTestAlert() {

9 int id = new Random().Next();

10 ...

11 return new TestAlert(TestID = id, ...);

12 }

13 }

Figure 2: Test method from a Microsoft product’s test suite.

Figure 3: Torch logs for passing test executions of the test in
Figure 2. TUIWF is TestUnhandledItemsWithFilters.

Figure 4: Torch logs for failing test executions of the test in
Figure 2. TUIWF is TestUnhandledItemsWithFilters.

An Example. Figure 2 shows the simplified version of a test of a
confidential product in Microsoft (the corresponding code under
test implementing TestAlert is omitted for brevity).
TestUnhandledItemsWithFilters is flaky since new Random().Next()

may actually return the same value if two consecutive calls are
invoked close together. This is because if a Random object is instanti-
ated without a seed, it takes the current system time as the default
seed; therefore, two Random objects instantiated without a seed and
within a short window of time may be initialized with the same
seed, causing their Next() calls to return the same sequences of
random numbers.

Figures 3 and 4 show a fragment of Torch logs from passing
test runs and from failing test runs (respectively) of the test in
Figure 2. As shown in Lines 2 and 5 of Figure 4, the StartTimes of
the Random.Next() calls are the same in all failing logs, therefore
the return value for both calls to Random.Next() is the same value
(e.g., 21, 17, and 5). In the passing logs such as the ones depicted
in Figure 3, we can see that on Lines 2 and 5, StartTimes are differ-
ent and consequently, the return values of Random.Next() are also
different. The assertion on Line 8 of Figure 2 passes if the return
values of Random.Next() are different and fails otherwise.

RootFinder can narrow down the above root cause when it is
invoked for the method Random.Next(). In step 1 of its processing, it
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Table 2: Characteristics of the specific flaky test examples in Section 4.2 and of all 44 flaky tests in our dataset.
Duration % of failed # of method # of unique # of threads # of objects

/ test executions/test calls/test method calls/test / test / test

Specific examples in Section 4.2
Time 1s 29% 4.7k 463 3 1,151
Randomness 4s 91% 0.8k 182 1 249
Async Wait 2s 1% 0.2k 90 4 62
Concurrency 10s 1% 18k 882 8 8,200
Resource Leak 4s 1% 0.6k 218 6 246
All 44 flaky tests
Median 5s 6% 2.5k 248 3 637
Average 45s 28% 335k 335 5 55,418

converts the passing logs in Figure 3 into predicate files containing
the predicate (9:2, Relative, False). This predicatemeans that the
method Random.Next() in Source# 9 and Seq# 2 returns a value that is
different from the return value of the immediate previous call of the
same method at the same Source#. Similarly, it converts the failing
logs in Figure 4 into predicate files containing the predicate (9:2,

Relative, True). In step 2, RootFinder compares the predicates
across runs and identifies the predicate as Consistent-but-different.
This predicate quickly points to a root cause (or a symptom that is
strongly correlated to the root cause) of the flakiness, as well as its
code location (encoded in the epoch of the predicate).

4 CASE STUDIES
We next present the results of applying our framework on large
projects that use CloudBuild as their CI pipeline. To ensure that
our results are not biased due to a single project, we collected all
distinct flaky tests recorded during a day in our production en-
vironment. Among these flaky tests, we identified the tests that
are compatible with the Torch instrumentation framework. More
specifically, CloudBuild supports unit tests written in both managed
(such as C#) and unmanaged (such as C++) code [4]. Also, Cloud-
Build supports tests written for various test frameworks such as
MsTest [6], NUnit [7], and XUnit [10]. Our current implementation
of the instrumentation framework supports only unsigned (binaries
that do not include digital signatures) and managed code, and is
also tailored for those tests that run using the MsTest framework.

Overall, we collected 315 flaky tests that matched the criteria de-
scribed above. Our collected flaky tests belong to different projects
that provide Microsoft services for both internal and external cus-
tomers, and also fall into different categories such as database,
networking, security, and core services. Among these flaky tests,
we were only able to reproduce flakiness i.e., produce logs for both
passing and failing executions in 100 runs for 44 tests. Among the
remaining tests, 97 of them have all of their runs pass. For these
tests, we also tried a fuzzing technique that introduces delays using
Torch, however we were still unable to reproduce the flakiness. It
is important to note that the focus of our framework is for identify-
ing and debugging flaky tests. Our findings here that only 44 out
of 315 flaky tests are reproducible suggests that improvements to
reproducing flakiness can also be highly impactful.

For the remaining 174 tests, we find that all 100 runs failed.
During our inspection, we find that for some of the cases, the tests
failed with a different error signature than the one that resulted

in the flaky failures. These failures can be broadly classified into
three categories; (1) the Torch instrumentation resulted in a new
failure, (2) there are some issue in the instrumentation part of our
framework that needs to be fixed, or (3) there are differences in
CloudBuild and the test machine where we ran the tests. Our future
work plan is to investigate these issues and also try alternatives
such as running the instrumented tests directly on CloudBuild.

4.1 Study Dataset
We use a dataset consisting of 44 flaky tests. They belong to 22
software projects from 18 Microsoft internal/external products and
services. For each test, the dataset contains 100 execution traces,
some of which are from failed executions. Each trace file consists
of a sequence of records containing various runtime information
about an executed method as described in Section 3.1.

Table 2 shows some characteristics about the tests and traces.
The characteristics show the overall complexities of the tests. The
average run duration of the tests is nontrivial (45s), even though
they are all unit tests and most of the I/O calls are mocked with fast
proxy calls. Each test runs a large number of methods (335k total
methods/test and 335 unique methods/test), mostly because a tested
component often depends on many underlying components, each
invoking many methods. 80% of the tests use more than one thread
and on average, each test runs on 5 threads and operates on 55418
objects. Many of these elements can introduce nondeterminism
that can make a test flaky. Moreover, the tests produce massive
runtime logs, which can be extremely challenging to analyze.

Each runtime log in our dataset contains a wealth of information.
For example, it contains all methods executed by the test, their
latencies, return values, parent-child relationships of threads, ac-
tivities of threads, etc. We believe that the dataset will be useful to
the research community, not only to conduct research on various
aspects of flaky tests and their root causes, but also for a general un-
derstanding of runtime behavior of tests in a production system.We
have, therefore, made an anonymized version of the dataset avail-
able to the public [8]. In the anonymized dataset, sensitive strings
(such as method names containing Microsoft product names) are
replaced with hash values. The hashes are deterministic and hence
can be correlated within and across trace files.

4.2 Case Studies of Finding Root Causes
As explained in Section 3.2, our framework in theory can address
nine out of ten categories of flaky tests. In this section, we provide



Root Causing Flaky Tests in a Large-Scale Industrial Setting ISSTA ’19, July 15–19, 2019, Beijing, China

1 [TestMethod]

2 public void TestReplicaService() {

3 ...

4 byte[] response = Service.SendAndGetResponse(payload);

5 byte[] replicaResponse = ServiceReplica.SendAndGetResponse(payload);

6 Assert.AreEqual(response, replicaResponse);

7 }

8 public class Service : NetworkService {

9 public byte[] SendAndGetResponse(Request req) {

10 ...

11 DateTime currentTime = DateTime.UtcNow;

12 Message message = new Message(req, currentTime);

13 return base.SendAndGet(message.Serialize());

14 }

15 ...

16 }

Figure 5: A test that is flaky due to getting the system time.

in-depth examples of flaky tests and how RootFinder assisted devel-
opers with debugging these particular flaky tests. The remainder
of this section presents four examples of flaky tests that our frame-
work can find root causes for and one example that our framework
cannot. All examples are anonymized and simplified as needed.

4.2.1 Time. We find some tests to be flaky due to improper use of
APIs dealing with time. These flaky tests rely on the system time,
which introduces non-deterministic failures, e.g., a test may fail
when time zones change.

Figure 5 shows a simplified version of a test case, which ensures
that a service and its replica return the same response to a particu-
lar message. A developer may observe that the assertion on Line 6
occasionally fails. The failures are because calls to Service and
ServiceReplica’s SendAndGetResponsemay or may not use the same
timestamps. If the invocations of SendAndGetResponse on Lines 4
and 5 happen within a short window of time, the timestamps pro-
duced by DateTime.UtcNow on Line 11 can be the same due to the
limited granularity of the system timer. The granularity is seconds
by default. If the timestamps are the same, then the test passes;
otherwise, it fails. We find many flaky tests at Microsoft exhibiting
similar behavior. This example fails 29% of the time in our experi-
ments, but our experiments also find other tests exhibiting a similar
root cause to fail up to 88% of the time.

A useful predicate for this example should indicate that the
timestamp of SendAndGetResponsewhen invoked by Line 5 is always
the same as the timestamp when invoked by Line 4 in the passing
logs, but they are always different in the failing logs.Whenwe apply
RootFinder to this example without any domain knowledge from
developers, it took, on average, 11 seconds to run and outputted
1163 predicates total. The useful predicate was ranked at 81. In
practice, when developers used RootFinder on this example, they
were able to input suspicious method names to quickly find the
useful predicate in a matter of minutes.

4.2.2 Randomness. Tests may pass or fail if their results depend on
random numbers. More specifically, tests that use a random number
generator without accounting for all the possible values that it may
generate can be flaky.

One example of such a flaky test we find is shown in Figure 2.
As explained in Section 3.2, the test in Figure 2 is flaky since

1 [TestMethod]

2 public void DelayedTaskStaticBasicTest() {

3 int delay = 1000; int i = 0;

4 Scheduler.ScheduleTask(

5 DateTime.UtcNow.AddMilliseconds(delay),

6 new LoggedTask(

7 "TestDelayedTaskFrameworkTask", () => { i = 1; },

8 new Dictionary<string, string> { { "test", "value" } }));

9 Thread.Sleep(500);

10 Assert.IsTrue(i == 0);

11 Thread.Sleep(delay);

12 Assert.IsTrue(i == 1);

13 }

Figure 6: A test that is flaky due to waiting for asynchronous calls.

Random.Next() actually uses the system time as the seed to gen-
erate a random number if no seed is provided by the user. There-
fore, when the timing delay between the CreateTestAlert() calls
and consequently the calls to new Random().Next() is too small for
the system to record that it’s different, then the test will fail. In
our experiments, we find that the TestUnhandledItemsWithFilters

test fails 91 out of 100 times. The fix for the flakiness of this test
should be for the CreateTestAlert helper test method to not use
random numbers for testID. Instead CreateTestAlert should take
an int parameter and allow tests to pass in values for testID so
that TestAlerts that should and shouldn’t have the same TestID

can be decided by the method calling CreateTestAlert. A useful
predicate for this example is described in Section 3.2. When we
apply RootFinder to this example without any domain knowledge
from developers, it took, on average, 2 seconds to run and outputted
408 predicates total. The useful predicate was ranked first.

4.2.3 Async Wait. Tests are flaky due to the Async Wait issues
when the test execution makes an asynchronous call and does not
properly wait for the result of the call to become available before
using it. Depending on whether the asynchronous call was able to
finish execution or not, such flaky test may pass or fail.

Figure 6 shows an example of an Async Wait flaky test.
DelayedTaskStaticBasicTest schedules a task to run at a pre-defined
time (the current time + 1000 milliseconds) on Line 4. In our exper-
iments, we find that the DelayedTaskStaticBasicTest test fails 99
out of 100 times. The test can be flaky due to two main reasons.

(1) When the asynchronous task on Line 4 finishes executing
before Line 10, then the test will fail. In passing executions of this
test the value of i has not changed to 1, but in the failing executions,
delays before the assertion on Line 10 can actually be greater than
the time it takes to execute the asynchronous task on Line 4. In
such cases, the value of i when Line 10 executes is already 1 and
the assertion will fail.

(2) When the assertion on Line 12 finishes executing before the
asynchronous task on Line 4 finishes executing, then the test will
fail. In passing executions of this test, the value of i is changed
to 1 before Line 12 executes, but in the failing executions, the
asynchronous task on Line 4 runs so slow that the delays on Lines 9
and 11 are not enough to prevent Line 12 from executing before the
asynchronous task finishes. In all 6 test failures that we encounter,
the flaky test failed due to this second reason.

A useful predicate for this example should indicate that the task
on Line 4 always took longer in the failing runs. When we apply
RootFinder to this example without any domain knowledge from
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developers, it took, on average, one second to run and outputted
868 predicates total. The useful predicate was ranked at 17.

4.2.4 Concurrency. A flaky test’s root cause is Concurrency when
the test can pass or fail due to different threads interacting in a
non-deterministic manner (e.g., data races, deadlocks).

Figure 7 shows an example of a test that is flaky due to concur-
rency issues. The TestDirtyResource method tests that a manager
(created in Line 4) of a cluster properly recycles used resources.
Once the manager is created, it is setup by adding a machine to it,
that is in use, or “dirty” (Lines 5–6), along with more setup code
(omitted for brevity). The test then repeatedly creates and sends
requests to the cluster to execute jobs (Lines 9–12), and makes sure
that the response obtained in line 12 is correct (Lines 13–16). Finally,
the resources used by the cluster to process the particular request
are released (Line 17), and the newly freed resource heartbeats
its status to the manager (Line 18), and the manager processes it
(Line 19). We observed in our experiments that the assertion on
Line 13 failed occasionally.

Upon investigating the failure, we find that the creation of the
resource manager (Line 4) also starts a background task that pe-
riodically marks resources as unavailable in case T milliseconds
(ms) has elapsed since the last heartbeat was processed. Test failure
occurs when this task runsT ms after another thread has processed
Line 19, since the background task would mark the cluster resource
as unavailable, which would then cause the subsequent resource
allocation request made using QueryAllocate on Line 12 to return
null. The null value will then cause the assertion on Line 13 to fail.
This example demonstrates a subtle flakiness condition that only
manifests on a particular thread interleaving, and moreover, only if
the interleaving follows very precise timing constraints.

A useful predicate for this example should indicate that the
background task from Line 4 always ran after Line 19 and it always
runsT ms or longer after Line 19. When we apply RootFinder to this
example without any domain knowledge from developers, it took,
on average, 126 seconds to run and outputted 127187 predicates
total. The useful predicate was ranked at 3231. In practice, when
developers used RootFinder on this example, they provided some
domain knowledge and RootFinder was eventually able to help
them debug the root cause of this flaky test. The difficultly for
RootFinder here is largely because this flaky test’s root cause is not
only thread interleaving, but also the timing of the interleavings.
Our future work plan includes improving RootFinder to consider
combinations of predicates (e.g., Order and Slow) to better root
cause flaky tests such as this example.

4.2.5 Resource Leak. A flaky test’s root cause is Resource Leak
when the test passes or fails because the application does not prop-
erly acquire or release its resources, e.g., locks on files.

Figure 8 shows an example of a Resource Leak flaky test.
ResourceAllocation tests whether the necessary resources are prop-
erly allocated for an application. The application internally uses a
third-party database to store some information. The TestCleanup

method is executed after every test case to delete the database, so
that it may be re-initialized before the next test case. Although
Line 12 tries to close the connection to the database, the third-party
library requires the garbage collector to run prior to this step in
order to release the file handle to the database file. If the garbage

1 [TestMethod]

2 public async Task TestDirtyResource() {

3 ...

4 using (var emptyPoolManager = CreatePoolManager(...)) {

5 Resource pm = ResourceUtils.CreatePhysicalMachine(...);

6 await emptyPoolManager.AddOrUpdateResourceAsync(pm, HeartbeatStatus.

InUse);

7 ...

8 for (int i = 0; i < 5; i++) {

9 var sessionId = Guid.NewGuid().ToString();

10 var request = new ResourceAllocateRequest(pm);

11 await emptyPoolManager.PreAllocateResourcesAsync(request.Yield(), pm.

Specification, TenantId, sessionId, sessionPriority);

12 var response = (await QueryAllocate(emptyPoolManager, request.Yield()

, TenantId, sessionId)).FirstOrDefault();

13 Assert.IsNotNull(response);

14 Assert.AreEqual(request.Id, response.RequestId);

15 Assert.IsNotNull(response.ResourceId);

16 Assert.AreEqual(pm.ResourceId,response.ResourceId);

17 await emptyPoolManager.ReleaseResourcesAsync(response.ResourceId);

18 await emptyPoolManager.HeartbeatResourceAsync(pm, HeartbeatStatus.

Ready);

19 await emptyPoolManager.ProcessResourcesHeartbeats(CancellationToken.

None);

20 }

21 }

22 }

Figure 7: A test that is flaky due to concurrency.

1 DatabaseProvider ssp;

2 String currentDirectory = ...;

3 [TestMethod]

4 public void ResourceAllocation() {

5 ssp = new DatabaseProvider(currentDirectory);

6 ...

7 }

8 [TestCleanup]

9 public void TestCleanup() {

10 ClearConnections();

11 if (File.Exists(dbPath)) {

12 File.Delete(dbPath);

13 }

14 ...

15 }

Figure 8: A test that is flaky due to resource leaks.

collector does not run first, then the file resource is held, causing
the subsequent attempts to delete the file on Line 12 to throw an
exception. Since our framework relies on Torch to capture infor-
mation relevant to the root cause of the flaky test from the user’s
code, our framework is currently unable to assist developers for
Resource Leak flaky tests such as the one in this example.

4.3 Applying RootFinder on to Case Studies
When we apply RootFinder onto the examples described in Sec-
tion 4.2, we find that the root causes are concisely summarized as
predicates in the output for four of the five examples, especially
when developers provided domain knowledge to RootFinder. These
predicates can assist developers in identifying what values are the
same or not in the passing and failing executions, and provide them
the code location that produced these values. When we present the
findings of RootFinder to developers or use it ourselves, they/we
are able to more quickly reproduce the failures of the flaky test.

For the remaining example, Resource Leak, our future work
plan includes possibly extending the end-to-end framework, Torch
instrumentation framework, and RootFinder to provide valuable,
concise information to developers in a timely manner. For example,
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one possible extension we plan to make is to extend the end-to-
end framework to include memory leak detection tools [5, 9]. This
extension will allow us to provide developers information for the
Resource Leak example in Section 4.2.5. Integrating such an exten-
sion may impose significant performance, resource and time cost
to our current framework though. Therefore, more research and
experimentation may be required to determine the best solutions
to address all of the possible root causes of flaky tests.

5 LESSONS LEARNED
This section summarizes the main lessons learned so far from our
experience with flaky tests in our specific industrial setting.

(1) Reproducing flakiness locally is challenging. In our experi-
ments, we tried 315 tests that showed flaky behavior in CloudBuild.
However, when run on a machine outside CloudBuild, we did not
observe flakiness in a vast majority of them (86%), even after run-
ning each test 100 times.

(2) Runtime overhead from instrumentation can affect the repro-
ducibility of flaky tests. We used several runtime optimizations in
Torch, including pre-computing static properties and compressing
logs. Yet, when we randomly sampled 59 flaky tests to run 100 times
locally on a machine with and without Torch instrumentation, we
observed that 2 tests are flaky only with Torch instrumentation,
while 3 tests are flaky only without Torch instrumentation.

(3) The number of flaky tests a project contains does not correlate
to the frequency in which builds fail. E.g., as shown in Table 1, ProjB
has a low number of flaky tests but a high number of failed builds,
whereas the situation is the opposite for ProjA.

(4) Finding differences in the runtime behavior of flaky tests can
be an effective way to help developers root cause these tests. In fact,
our preliminary tool along with our lightweight instrumentation
can already help developers in nine out of ten causes of flaky tests.

We emphasize that these results are preliminary and that the
main purpose of this paper is instead to encourage more work
in this specific problem area. With this goal in mind, we identify
several open research challenges in Section 8.

6 THREATS TO VALIDITY
Internal Validity: Our threats to internal validity are concerned
with our study procedure’s validity. RootFinder and our framework
can contain faults that impact our results and lessons learned. We
attempt to mitigate this threat by having thorough code reviews
and testing of RootFinder and our framework. Furthermore, we rely
on various other tools in our framework, such as Torch. These tools
could have faults as well and such faults could have also affected
our results. To mitigate this threat, the logs produced by Torch and
the root causes produced by RootFinder are manually analyzed and
confirmed by at least two of the authors.
External Validity Our threats to external validity are concerned
with all threats unrelated to our study procedure. Our lessons
learned may not apply to projects other than the ones in our study.
We attempt to mitigate this threat by including a diverse range of
projects in our study. Our projects service for both internal and
external customers of Microsoft, and also fall into different cate-
gories such as database, networking, security, and core services.
Flaky tests are, by definition, tests that nondeterministically pass

or fail with the same version of code. Due to the nondeterministic
nature of these tests, the flaky tests from our dataset that we are
able and unable to produce Torch logs for may not be true if the
experiment was to be repeated. To mitigate this threat, we ran each
test a nontrivial amount of times.

7 RELATEDWORK
Prevalence and costs of flaky tests. Luo et al. [34] noted in first
extensive study of flaky tests that specific numbers on the occur-
rence of flaky tests were hard to obtain. Since then, the problem
has received more attention, with recent results indicating that
flaky test failures are relatively common. We find that on average,
27.4% builds exhibit flaky tests while Labuschagne et al. [30] found
that 12.8% of builds in their data set of 935 builds from 61 projects
using Travis CI, a cloud-based CI tool, failed because of flaky tests.
Palomba and Zaidman [42] found 8829 flaky tests out of 19532 JUnit
tests from 18 projects - 45% of all tests they analyzed were flaky.
Moreover, these tests showed both passing and failing behavior
using only up to 10 reruns. In our experience, flaky behavior is
rarer (around 4.6% of all tests flaked), as well as harder to repro-
duce. Of 311 tests in our dataset that failed on the cloud, we could
not reproduce the failure locally in 97 cases, even with 100 reruns.
Rahman and Rigby [43] showed, using Firefox as a case study, that
ignored flaky tests can lead to crashes in production. In spite of
this, developers do ignore flaky tests; Thorve et al. [49] examine 77
commits pertaining to flaky tests from 29 Android projects, finding
that 13% of the commits simply skipped or removed flaky tests. Lam
et al. [31] found 388 flaky tests in 683 projects, and publicized the
list flaky tests they found online. Their dataset includes the names
and partial classification of the flaky tests, but does not contain
detailed execution logs, such as the ones provided in our dataset.
Causes of flaky tests.Zhang et al. [51] note that test suites can suf-
fer from test order dependency where test outcomes can be affected
by the order in which the tests are run. In our case, CloudBuild
always runs tests of a test suite in the same order. Luo et al. [34]
investigate 201 commits from 51 open-source projects, finding that
the primary causes for flakiness are (i) async-wait, (ii) concurrency,
including atomicity violation, data races and deadlocks, and (iii) test
order dependency. Thorve et al. [49] find additional root causes for
flaky tests in Android. These studies worked backwards from the
commits fixing flaky tests to ascertain the root cause; in contrast,
our RootFinder aims to diagnose flakiness before the flaky tests are
fixed. Gao et al. [20] observe that it is difficult to reliably replay
and reproduce outcomes from tests where a user interacts with
a system, owing to test dependencies on system platform, library
versions and tool configurations. Although we focus on unit tests,
our experience has been similar.
Detecting andfixingflaky tests.A standard strategy in CI pipelines
to deal with flaky tests is to rerun them—if a failing test passes on
re-running, it no longer gates a build [34, 37]. However, running
tests can be expensive especially when these tests are gating a build.
DeFlaker [13] monitors the code coverage of recent changes and
marks as flaky any newly failing test that did not execute any of the
changes. On the other hand, RootFinder helps developers root cause
flaky tests by finding the differences in the logs of passing and fail-
ing executions. Since Deflaker helps developers know which tests
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may be flaky and RootFinder helps developers root cause flaky tests,
we recommend developers to first use Deflaker to find flaky tests
and then use RootFinder to root cause them once they are found.
Herzig and Nagappan [25] propose an association rule mining based
technique to tag a system/integration test with many steps that
fails as a false alarm, based on whether each step failed or passed.
Among approaches to detect root causes of flaky tests, detecting de-
pendent tests has received the most research attention [31, 38, 51].
Palomba and Zaidman [42] established a relationship between test
smells and flaky tests. Refactoring the tests fixes the flakiness in
all the tests containing the code smell in their study. However, it is
not clear how to generalize their approach to other root-causes for
flaky tests. Shi et al. [46] detected nondeterministic flaky tests by
detecting tests that assumes a deterministic implementation with a
nondeterministic specification. In comparison to our work, we do
not require specifications to detect flaky tests.

Concurrency is a major root-cause for flaky tests [34, 42, 49],
therefore detecting and fixing concurrency issues could partially ad-
dress the problem. There exist automated techniques to detect data-
races [18, 39], deadlocks [21, 40, 44] and atomicity violations [17].
However, to integrate these techniques within modern CI pipelines
would require overcoming significant challenges of meeting per-
formance, resource and time constraints, providing multi-language
support, and controlling rates of false positives and false nega-
tives [14, 15, 28, 35]. Given the ubiquity of flaky tests in modern
continuous integration environments, Harman and O’Hearn [24]
advocate assuming all tests as flaky (with some probability).

Like RootFinder, several other systems use differences in runtime
invariants in passing and failing tests to identify likely causes of
failures [16, 22, 23, 32, 48]. Fault localization techniques and tools,
such as Tarantula [29], Ochiai [12], Op2 [41], Barinel [11], and
DStar [50], analyze different passing and failing tests in order to
localize likely faults in programs. In contrast, RootFinder focuses
only on non-deterministic tests that sometimes pass and sometimes
fail, it depends on collecting a large volume of runtime logs (to not
miss rare flakiness and to check for unplanned invariants), and it
optimizes the process of log collection (to not affect flakiness and
reproduce it even under instrumentation).

8 OPEN RESEARCH CHALLENGES
The preliminary results reported in this paper are just scratching
the surface of identifying the root causes of flaky tests. By sharing
our dataset of flaky tests, we hope to encourage more research in
this area. Here are open questions that are left to be explored.

How to evaluate results. A major challenge is to determine
the “ground truth” of why a test is flaky. Ultimately, this requires de-
velopers to look at each flaky test, examine the suggested candidate
root causes, and then decide which root cause(s) is/are the most
likely. For a large number of flaky tests, this evaluation is expensive.
Moreover, results may vary depending on the developer’s expertise
and familiarity with the code being tested and with the tests being
performed. How to prevent biased evaluations due to diversity in
developer expertise is another non-trivial challenge.

What information to log. Earlier in the paper, we showed
one way to log execution traces. But there are many other op-
tions. Should all method calls and returns be logged? In all the

software components or only in some? If some, which ones and
why? Should function input and output values be logged as well?
Should intra-procedural execution information (e.g., which code
instructions, blocks or branches were executed) also be recorded
for a fine-grained analysis?

Logging versus analysis tradeoffs. The more data is being
logged, the more computationally expensive it is to store and pro-
cess all the data. The analysis itself becomes more complicated:
non-essential differences may creep in if too much information is
recorded, which makes it harder to identify meaningful differences.
On the other hand, recording too little information may omit key
events explaining the source of the test flakiness. How to strike the
right balance between logging and analysis effectiveness is another
key challenge in this space.

Fixed versus variable logging.Another dimension to the prob-
lem is whether the level of detail used for logging should be the
same for all applications and tests, or whether it should be adjusted,
automatically over time in an “iterative-refinement process”, or
using user-feedback. If the logging level can be adjusted, should it
start lazily, at a high-level and be refined until meaningful differ-
ences are detected? Or, should logging proceed bottom-up, eagerly
logging many events, then identifying irrelevant details (data noise)
and eliminating those until meaningful differences are found?

Logging versus reproducibility. The more data one logs, the
more intrusive the runtime instrumentation can be. As discussed
earlier in this paper, reproducing flakiness is hard, and can become
even harder when significant runtime slowdowns are introduced
by expensive logging activities.

9 CONCLUSION
Flaky tests are a prevalent issue plaguing large software develop-
ment projects. Simply ignoring flaky tests from a regression suite
is a dangerous practice since it might mask severe software defects
that will hurt users later on. To help software developers and testers,
we clearly need better tools and processes for dealing with flaky
tests. This paper presented two main efforts currently under way at
Microsoft to address flaky tests. The first part consists of a motiva-
tional study and a dataset of flaky tests. The second part consists of
a framework and preliminary tool to help debug flaky tests. More
specifically, we described how centralized software building and
testing can help detect and manage flaky tests. We also discussed
preliminary work on new tools for root-causing flaky tests, in order
to determine in a cost-effective manner what causes a test to be
flaky and how to eliminate that root cause. The purpose of this
paper is also to share with the research community a large data
set of flaky tests and the tools we are currently building to root-
cause these tests. We hope that this paper, dataset and tools will
encourage more research on this important problem.
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