
Testing for Buffer Overflows with Length Abstraction

Ru-Gang Xu1 Patrice Godefroid2 Rupak Majumdar1

1Department of Computer Science, University of California, Los Angeles, USA
2Microsoft Research, Redmond, USA

{rxu, rupak}@cs.ucla.edu, pg@microsoft.com

ABSTRACT
We present Splat, a tool for automatically generating in-
puts that lead to memory safety violations in C programs.
Splat performs directed random testing of the code, guided
by symbolic execution. However, instead of representing
the entire contents of an input buffer symbolically, Splat

tracks only a prefix of the buffer symbolically, and a sym-

bolic length that may exceed the size of the symbolic prefix.
The part of the buffer beyond the symbolic prefix is filled
with concrete random inputs. The use of symbolic buffer
lengths makes it possible to compactly summarize the be-
havior of standard buffer manipulation functions, such as
string library functions, leading to a more scalable search
for possible memory errors. While reasoning only about
prefixes of buffer contents makes the search theoretically in-
complete, we experimentally demonstrate that the symbolic
length abstraction is both scalable and sufficient to uncover
many real buffer overflows in C programs. In experiments
on a set of benchmarks developed independently to evaluate
buffer overflow checkers, Splat was able to detect buffer over-
flows quickly, sometimes several orders of magnitude faster
than when symbolically representing entire buffers. Splat

was also able to find two previously unknown buffer over-
flows in a heavily-tested storage system.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Reliability, Verification

Keywords: buffer overflows, directed testing, length ab-
straction, testing C programs, underapproximation

1. INTRODUCTION
Memory safety violations can lead to severe security vul-

nerabilities. Software containing these errors can lead to
denial of service or loss of control to an attacker, costing
billions of dollars in damage [3]. Although many techniques
and tools have been developed for finding such errors, none
have been shown to be 100% effective on realistic code [24].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

Proving the absence of these errors using static analysis usu-
ally leads to many false warnings due to the lack of precise
reasoning about bit operations, pointer arithmetic and arith-
metic overflow. Finding inputs leading to such errors using
random or systematic testing is also difficult due to the large
input space.

Recent advances in test generation using symbolic execu-
tion provide an interesting sweet spot between static analysis
and random testing. Automatic test input generation aims
at finding a set of inputs whose execution covers as many
program paths and statements as possible. One such com-
prehensive method is to generate tests that cover all paths
in a program with a bounded input using dynamic symbolic
execution [1, 6]. Obviously, enumerating all feasible pro-
gram paths becomes problematic as the size and complexity
of the program increases. Path explosion can be alleviated
by performing test generation compositionally [5], but full
path coverage is still problematic for very large applications
within a limited search period, say, one night.

In this paper, we argue for a lighter-weight approach
to buffer overflow detection using dynamic test generation.
Our insight and belief is that tracking all symbolic values
contained in input buffers is often more precise than neces-
sary for finding buffer overflows. This extra precision results
in a large input space that cannot be searched completely
in a reasonable amount of time.

Therefore, we propose a test input generation algorithm
that tracks and symbolically reasons about lengths of input
buffers and strings. This is done by extending symbolic exe-
cution with respect to buffer contents to also include a buffer
length and a string length (if the buffer contains a string).
In order to speed up the search and make it more tractable,
symbolic execution only tracks the influence of data values
stored in prefixes of input buffers, instead of full buffers. We
show using code coverage data obtained from preliminary
experiments that this underapproximation has the effect of
pruning the search space in a uniform manner.

As our technique explores an underapproximation of the
input space, some errors may be missed. However, this
underapproximation finds a wide class of common memory
safety violations. In many errors of this type, the length of
the input is important while the contents are not. Further-
more, the underapproximation may be tuned to be more
precise by making the symbolic input prefix longer. The
user can initially use a short prefix and gradually increase
the prefix as their testing budget allows. In the limit, all
input becomes symbolic, allowing for completeness, but at
higher test generation cost.

unsigned int strlen
(char *s) {

char *ptr = s;
unsigned int cnt = 0;
while (*ptr != ’\0’) {

++ptr;
++cnt;

}
return cnt;

}

void t1(char *s) {
unsigned int i;
int A[5];
i = strlen(s);
if(i > 4)

return;
A[i+1] = 0;

}

void t2(char *s) {
unsigned int i, tmp;
int A[5];
i = strlen(s);
if(i > 4)

return;
tmp = i+1;
assert(tmp>=0 && tmp<5);
A[tmp] = 0;

}

Figure 1: Buffer overflow due to an off-by-one error in t1. Memory checks are added to t1 with an assert as
shown in t2.

Figure 1 shows a possible buffer overflow in procedure t1

resulting from an off-by-one error when accessing buffer A.
The input is a string s where the string length i is an index
to a buffer of size 5. There is a check to see if the input i
is within the bounds of the buffer but the check does not
consider that i is incremented before the buffer access. If
the input is 4, the bounds check passes, but the illegal write
to A[4 + 1] results in a memory safety violation.

Assuming code for the function strlen is available, a di-
rected testing tool [6] will attempt to exercise all feasible
program paths and find n + 1 unique explicit paths for in-
puts s of length less or equal to n. Indeed, covering all
possible execution paths of the strlen function for an in-
put size bounded by n requires n + 1 input tests of different
length. In this case, if n is greater than 4, the off-by-one er-
ror in accessing the buffer is found simply because all string
lengths are enumerated up to n.

Note that this off-by-one error only depends on the size of
the input string s, not on its content. To eliminate the re-
dundant inputs due to the unfoldings of the loop in strlen,
we track only the abstract length of the input string s and in-
strument the string library, including functions like strlen,
with additional code that updates abstract lengths.1 strlen

would thus be replaced by a function that returns a symbolic
length. Then, program variable i would be assigned to this
symbolic length. Using directed testing, this would result in
two paths to be covered, each satisfying (i > 4) or (i ≤ 4)
respectively. A decision procedure can produce satisfying
assignments for these constraints that allow these paths to
be executed.

However, it can happen that neither of the two paths hit
the bug (e.g. the two inputs i = 5 and i = 0). To remedy
this, we must include implicit paths by providing instrumen-
tation that tracks allocated memory and adds the appropri-
ate checks before each memory dereference (e.g., see [7]).
Function t2 in Figure 1 shows these checks in the form of
an assertion. At each such assertion, we then try to solve for
an input that violates the assertion. In this case, the path
constraint with the assertion is (i ≤ 4)∧(i+1 ≥ 5) resulting
in a symbolic input length (i = 4).

We have implemented this combination of techniques in
Splat, a tool for finding memory safety violations in C pro-
grams. In the next section, we illustrate further the key fea-
tures of Splat with a more realistic example. In Section 3,
we recall basic notions of directed test generation. In Sec-
tion 4, we describe the implementation of Splat, and specify
how to carry out symbolic execution with symbolic lengths.

1An alternative would be to generate such function sum-
maries automatically for bounded domains, using techniques
as described in [5].

Section 5 discusses results of experiments with a large set of
benchmarks. Our experiments validate the choice of length
abstractions, showing that Splat can efficiently find buffer
overflows in many programs for which complete symbolic
searches do not. The paper ends with a discussion of re-
lated work.

2. EXAMPLE
Although Splat can find general memory safety violations,

we introduce and motivate our technique by examining how
we can find buffer overflows in C programs. Figure 2 illus-
trates a buffer overflow that was present in WuFTP, an ftp
server. In this example, the string functions are the standard
string.h functions. A string is stored in some fixed sized
buffer as an array of non-zero 8-bit characters followed by a
string terminator represented by a 0 byte. A buffer overflow
occurs when a string is copied into some buffer that is too
small. This is detected by Splat because copying a character
beyond the end of the buffer results in an illegal write. Even
though this example is small, it challenges most static anal-
ysis and automated test generation tools. Specifically, the
path sensitivity and pointer arithmetic causes static tools to
report many false alarms, while the large buffers create scal-
ability problems for test generation tools. We demonstrate
how Splat overcomes these problems.

Testing Algorithm. Our algorithm for detecting buffer
overflows implemented in Splat combines two ideas: first,
systematically searching for test inputs using directed test-
ing techniques [6, 17], and second, tracking buffers and
strings partially symbolically. We quickly recall the directed
test generation algorithm, and then explain the partial sym-
bolic representation of strings.

The systematic search for test inputs runs the program on
symbolic values representing the input in addition to con-
crete inputs. The program is instrumented to additionally
maintain a valid range for each pointer. The valid range de-
notes the set of addresses that can be safely accessed by the
pointer. For example, for a pointer into a buffer, the valid
range is between the start and end of the buffer.

Splat maintains a symbolic state that maps concrete ad-
dresses to symbolic expressions, and a path constraint that
stores the sequence of conditionals executed, as well as a se-
quence of symbolic constraints representing the predicates in
the conditionals. At each memory dereference, if the deref-
erenced address is a symbolic expression, Splat constructs
a symbolic constraint such that any satisfying assignment
to this constraint will ensure that after executing the cur-
rent path, the address being dereferenced will point outside
the valid range. Thus, finding a satisfying assignment indi-
cates a memory safety violation, and this satisfying assign-

01: void lookup(char *resolved) {
02: char *wbuf = "blah";
03: if (resolved[0] == ’/’ &&
04: resolved[1] == ’\0’)
05: rootd = 1;
06: else rootd = 0;
07:
08: if (strlen(resolved) + strlen(wbuf) +
09: rootd + 1 > 1024) return;
10: if (rootd == 0)
11: strcat(resolved, "/");
12: strcat(resolved, wbuf);
13:
14: }
15:
16: void test() {
17: char resolved[1024];
18: input(resolved,5);
19: lookup(resolved);
20: exit(0);
21: }

Figure 2: Buffer overflow due to off-by-one error

ment provides an input to the program that demonstrates
the bug. This test is then generated and run to confirm
the bug. If there is no satisfying assignment, the systematic
search continues by generating a new input by modifying the
path constraint and finding a satisfying assignment for this
modified constraint. The new input is guaranteed to have a
different execution path from all previous runs. Splat termi-
nates when no new execution path can be found or when a
bug is found.

Fully and Partially Symbolic Representations. In
Figure 2, there is an off-by-one error that causes a buffer
overflow in the strcat function on line 12. If resolved is
equal to a non-root directory, then an extra “/” is added
(lines 10–11). The length check on line 8–9 is incorrect, and
rootd should be !rootd. The bug is exposed when lookup

is called with a pathname that results in a resolved path-
name length of exactly 1024. Since most static analyzers
treat buffers and pointer arithmetic conservatively, they are
likely to generate many false positives for any code of this
form, and identifying this particular bug within this large
set of false positives may be difficult.

Normally, directed testing tools would track 1024 sym-
bolic variables: one for each character in the input (call
this the fully symbolic representation). Unfortunately, intro-
ducing such a large number of symbolic values results in a
large number of paths and a large set of symbolic constraints
that stresses the capacity of the underlying constraint solver.
Thus, this bug is difficult to find for directed testing tools
using a fully symbolic representation. For example, running
Cute [17] on the program of Figure 2 took 2 hours and gen-
erated 1019 paths before finding the error. Excess paths are
created when running through the various string manipula-
tion functions (such as strlen) because those functions are
not summarized.

Our algorithm for buffer overflows is based on the follow-
ing observations. First, for many buffer overflows (including
this one), most of the actual content of the buffer is not rel-
evant, what is relevant is the length of the string stored in
the buffer, and some small prefix of that string. Therefore,
instead of the exact fully symbolic representation, we use a

partially symbolic representation that tracks a few charac-
ters of the stored string and its length symbolically while
filling the rest of the buffer randomly.

Second, many strings are manipulated as an abstract
datatype using the standard string.h header functions.
Once we introduce this partially symbolic representation,
we can precisely abstract the behavior of many header func-
tions instead of stepping through them. For example, the
strlen function can be abstracted to simply return the sym-
bolic length of the string. This can drastically reduce the
number of paths to be explored in the directed search.

With these two optimizations, our algorithm can reach all
branches and detect all memory safety violations in lookup

while exploring only a few paths.
In general, of course, partial symbolic representations can

miss paths, but our approach allows the tester to iteratively
increment the size of the symbolic prefix.

Running Splat. We demonstrate our technique step by
step. The test function is the test harness and the starting
point for Splat. The input(p,k) function specifies the input,
where p is the address of the buffer storing the input and
k is the number of symbolic entries in the input (i.e., the
symbolic prefix). In this example, we chose the symbolic
prefix to be 5 characters. In general, the user can set a short
prefix length and gradually increase the length as their test
budget allows. To allow large input strings to be generated,
a symbolic string length is associated with the input. If
the symbolic length exceeds the symbolic prefix, characters
beyond the prefix are randomly generated.

Thus, the test harness constructs the following inputs for
Figure 2. First, it fills the character buffer resolved with
random characters (each of size 8 bits) followed by the string
terminator character. Of these random characters, the first
5 are tracked. At the same time, it constructs an integer
representing the length of the string that is also tracked
symbolically. Finally, it calls the lookup function with the
buffer resolved (line 19). Such a test harness could be au-
tomatically constructed by static analysis of the C code [6]
with some default symbolic prefix length parameter.

During the first run, the input string will be of length 5
with randomly chosen non-zero characters in the first five
entries and a string terminator in the last entry. Let’s say
for this run, we randomly generate resolved = “a1weq”.
We introduce 5 symbolic values representing the first 5 ele-
ments of resolved: α0, α1, α2, α3, α4 and a symbolic value
β representing the string length. We instrument the strlen

function to return the symbolic length of a string. Thus,
when called with resolved, strlen returns the symbolic
value β as the length. When the program is executed with
this input, it does not take the then branch at line 3 nor
the then branch at line 8. Executing to line 9, we have
¬(α0 = ′/′ ∧ α1 = 0) ∧ ¬(β + 5 > 1024) as the path con-
straint.

Notice that there is no predicate representing the branch
at line 10. This is because the variable rootd is not symbolic,
hence the conditional rootd == 0 evaluates directly to true

and so is not included in the path constraint (see [6]). At line
11, we update the symbolic state of resolved by updating
the string length to β + 1. At this point, we have to check
whether the call to strcat at line 11 can cause a buffer
overflow. To check this, we ask whether there is a satisfying
assignment for the extended path constraint ¬(α0 = ′/′ ∧

α1 = 0)∧¬(β +5 > 1024)∧ (β +1 ≥ 1024). Since the above
constraint is unsatisfiable, there is no buffer overflow (yet).

At line 12, we update the string length of resolved to be
β + 5 and again check for a possible overflow. This time,
we check if there is a satisfying assignment for the extended
path constraint ¬(α0 = ′/′ ∧ α1 = 0) ∧ ¬(β + 5 > 1024) ∧
(β + 5 ≥ 1024). This constraint is satisfiable and a solution
is β = 1019 and α0α1α2α3α4 = “a1weq”. This indicates a
potential buffer overflow. Next we generate an input string
with a prefix of “a1weq” but of length 1019 by filling the
non-symbolic suffix with random non-zero characters. This
new test case causes the resolved array to overflow.

Suppose now we fix the bug by replacing rootd in line 9
with !rootd and rerun Splat. The first run with “a1weq”
passes all memory violation checks. We create a new test
case by negating the last branch predicate, proceeding in a
depth-first order. Our path constraint currently is ¬(α0 =
′/′∧α1 = 0)∧(β+6 ≤ 1024). We solve for a new test case sat-
isfying ¬(α0 = ′/′ ∧α1 = 0)∧ (β +6 > 1024), getting a 1019
length string with “a1weq”prefix. After the next run, we get
the path constraint ¬(α0 = ′/′∧α1 = 0)∧(β+6 > 1024). We
recognize that both branches of the last conditional state-
ment have already been explored so we negate the first con-
dition and solve for the path constraint (α0 = ′/′ ∧α1 = 0),
getting the string “/” as the next input. We dropped the
(β + 6 > 1024) constraint because by negating an early
branch predicate we can no longer guarantee that we will
hit the later branch. The third run with “/” as input has
(α0 = ′/′ ∧ α1 = 0) ∧ (β + 6 ≤ 1024) as its path con-
straint. Again we search alternative path constraints depth
first and negate the last branch, getting the new path con-
straint (α0 = ′/′ ∧ α1 = 0) ∧ (β + 6 > 1024). However, β
represents the symbolic length of the input and the second
character α1 is the string terminator so there is no satisfying
assignment for this constraint. Then, Splat terminates after
exploring all three paths in lookup.

Summary. Splat is composed of three main ingredients: (1)
instrumentation at every memory access to detect memory
safety violations (buffer overflows), (2) directed testing, and
(3) partially symbolic representations with symbolic track-
ing of string length and symbolic summaries of string li-
brary functions. Memory safety violations are found by
tracking (de)allocations of memory and insuring all deref-
erences stay within their respected bounds. The system-
atic search of directed testing insures all explicit paths will
be explored. Combining (1) and (2) checks each memory
dereference along all explicit paths, that is all implicit paths
leading to possible memory safety violations are explored. In
addition, (3) scales Splat to realistic programs that rely on
the C string library by reducing the burden on the symbolic
path exploration. In the experimental section, we validate
our choice of partially symbolic representations by showing
that, despite the lightweight nature of the abstraction, it is
sufficient to find many buffer overflows in real benchmarks.

3. DIRECTED TESTING
We recall the directed random test generation algorithm

[6, 17], describing it for a simple imperative language with
a memory model similar to the C programming language’s.
Specifically, we model dynamic memory allocation on the
heap and limited pointer arithmetic. For clarity of exposi-
tion, we omit function calls and the stack.

Syntax. The operations of the language consist of labeled
statements ℓ : s. Labels correspond to instruction addresses.
A statement is either (1) a normal termination statement
halt or the abnormal program termination statement abort,
(2) an input statement input(l, k) that copies an input buffer
of size k into a buffer starting at address l of size at least
k, (3) an assignment l := e where l is an an address, and e
is a side-effect free expression, (4) a conditional statement
if(e)goto ℓ where e is a side-effect free expression and ℓ is
a program label, (5) a heap allocation l := malloc(k) where
after the statement l points to newly allocated memory of
size k, (6) heap deletion free(e) where after the statement,
memory pointed by address e is removed. For all labeled
statements, we assume ℓ + 1 is a valid label. For a labeled
conditional ℓ : if(e)goto ℓ′ we assume both ℓ′ and ℓ + 1 are
valid program labels.

Expressions are constructed from constants and addresses
using arithmetic operations, boolean operations, pointer
equality, the sizeof function, or the dereference operator ∗.
Boolean operators are evaluated to integers in the C style.
A value is either an integer (default value: 0) or an address
(default value: NULL). A non-null address can be derefer-
enced with the ∗ operator which returns the value stored at
the address. Addresses 〈b, offs〉 have a base address b and an
integer offset offs. Addresses point to some entry in a buffer.
A size k buffer A = 〈v0 . . . vk−1〉 is an ordered list of values.
vi can be retrieved by dereferencing an address 〈b, i〉 where
b is the base address of the buffer. The operator sizeof(a),
where a is an address, returns the size of the buffer pointed
by a, that is the number of elements from a to the end of
the allocated buffer.

A program P = 〈S, ℓ0〉 is a tuple containing a list of la-
beled statements S, and a starting label ℓ0 where execution
starts.

Semantics. A memory M is a partial mapping from ad-
dresses to values. A concrete state 〈M, ℓ〉 consists of a mem-
ory M and a program label ℓ.

Given a program P = 〈S, ℓ0〉, execution starts from the
starting label ℓ0 with initial memory M0. For convenience,
we write M [b 7→ A] to update a buffer A by adding (if b is
fresh) or modifying (if b was previously mapped) the map-
pings {(〈b, k〉, vk) | vk ∈ A} while keeping all other addresses
m′ mapped to M(m′). We write M [〈b, offs〉 7→ v] to update
a single address 〈b, offs〉 with a value v.

Expressions are evaluated as usual with the standard or-
der of precedence. Address expressions 〈b, e〉 containing
some base address or address b and expression e evaluates to
〈b, i〉 where e evaluates to an integer value i under the cur-
rent state 〈M, ℓ〉. Address expressions 〈〈b, e〉, e′〉 evaluate to
〈b, e + e′〉. A dereference ∗a evaluates to v if (a, v) ∈ M . If
a = NULL or M(a) is undefined, then the program terminates
abnormally due to a memory safety violation.

For an assignment statement ℓ : l := e, the left-hand side l
is an address where the result is to be stored. The expression
e is evaluated to a concrete value v in the context of the
current state 〈M, ℓ〉, the memory is updated to M [l 7→ v] and
the new program label pc is set to ℓ+1. An input statement
ℓ : input(l, k) is interpreted by updating the memory M to
the memory M [b 7→ A] where b is the base address of the
address l, and A is a buffer of randomly chosen integers of
size k, and the new label is set to ℓ + 1. For a conditional
ℓ : if(e)goto ℓ′, the expression e is evaluated in the current
state 〈M, ℓ〉. If the evaluated value is zero, the new program

label is ℓ′, otherwise the new label is ℓ + 1. In either case,
the memory remain unchanged. For an allocation statement
ℓ : l := malloc(k), a new base address b is created where
M [b 7→ A] and A is a buffer of 0s of size k and 〈b, 0〉 is
stored in address l. For the deletion statement free(〈b, offs〉),
if M contains a mapping from address 〈b, offs〉, all addresses
with the base address b are removed otherwise the program
terminates abnormally with a memory safety violation. At
the halt statement, execution terminates normally. At the
abort statement, execution terminates abnormally.

Directed Random Test Generation. Splat performs
symbolic execution of the program together with concrete
execution, similar to other directed testing algorithms [1,6,
17]. It maintains a symbolic memory map µ, and a symbolic

path constraint ξ in addition to the concrete state. These
are updated during the course of execution. The symbolic
memory map µ is a mapping from concrete memory base
addresses b to a pair 〈ϕ, γ〉 where ϕ = 〈α0, . . . , αk−1〉 is a
list of symbolic expressions representing k values of the con-
crete buffer A, and γ is a symbolic expression representing
the size of A.

At every statement ℓ : input(l, k), the symbolic mem-
ory map µ introduces a mapping µ[b 7→ 〈ϕ, αk〉] from the
base address b of l to a tuple of k fresh symbolic values
ϕ = 〈α0, . . . , αk−1〉 and a fresh symbolic value αk represent-
ing the length of the buffer. We refer to the k symbolic
values as the symbolic prefix. At every assignment ℓ : l := e,
the symbolic memory map is updated to map the address
l to µ(e), the symbolic expression obtained by replacing all
dereferences and sizeof operations in e with symbolic ex-
pressions that are stored in µ. Specifically, we replace all
dereferences ∗〈b, offs〉 to the offs-th symbolic expression in ϕ
from the pair µ(b) if it exists, otherwise we replace with the
concrete value M(〈b, offs〉). Note that the address 〈b, offs〉 is
concrete here, but when we check whether a dereference is
valid, the offset maybe symbolic. We replace sizeof(〈b, offs〉)
with (γ − offs) where γ is the symbolic length of the buffer
obtained from the last element of the tuple µ(b) if it exists,
otherwise we replace with the concrete size of the buffer.

The path constraint ξ is initially true . At every condi-
tional statement ℓ : if(e)goto ℓ′, if the execution takes the
then branch, the symbolic constraint ξ is updated to ξ∧µ(e)
and if the execution takes the else branch, the symbolic con-
straint ξ is updated to ξ ∧ ¬µ(e). Thus, ξ denotes a logic
formula over the symbolic input values that the concrete in-
puts are required to satisfy to execute the path executed
so far. For each memory dereference ∗〈b, e〉, we check if
ξ ∧ µ(e ≥ sizeof(∗〈b, 0〉)) or ξ ∧ µ(e < 0) is satisfiable. If
either are, we generate a test case satisfying that constraint.
If the new test case violates memory safety, we report the
error.

Given an execution, Splat generates a new testcase by se-
lecting a conditional ℓ : if(e)goto ℓ′ along the path that was
executed such that (1) the current execution took the “then”
(respectively, “else”) branch of the conditional, and (2) the
“else” (respectively, “then”) branch of this conditional is un-
covered. Let ξℓ be the symbolic constraint just before ex-
ecuting this conditional and ξe be the constraint generated
by the execution of this conditional. We find a satisfying
assignment for the constraint ξℓ ∧ ¬ξe. The property of a
satisfying assignment is that if these inputs are provided at
each input statement, then the new execution will follow the
old execution up to the location ℓ, but then take the condi-

Figure 3: Memory nodes contain possibly symbolic
representations of string length and size of allocated
memory.

p = malloc(s) → create(p, p + s, µ(s))
int i → create(&i,&i + sz(i), null)
*p → mn = find(p)

assert(p ≤ mn.δ + mn.a)
assert(p ≥ mn.a)

free(p) → mn = find(p)
assert(p ≤ mn.δ + mn.a)
assert(p ≥ mn.a)
delete(mn)

Figure 4: Tracking memory for heap and stack allo-
cations, and checking pointer dereferences.

tional branch opposite to the one taken by the old execution,
thus ensuring that the other branch is covered. The satis-
fying assignment is used to define a new input for the next
run of the program.

4. IMPLEMENTATION
We implemented Splat for testing C programs. Splat con-

sists of three parts: a source-to-source instrumenter, a li-
brary for tracking memory allocations, deallocations, and
accesses, and a library for symbolic execution, constraint
solving, and coverage tracking.

The instrumenter takes the source code of the program
and adds calls to the runtime library that tracks memory
allocation and memory dereferences. It also adds the calls
that run the symbolic execution in parallel with the concrete
execution.

4.1 Symbolic State
Aside from the concrete state (i.e., the heap and stack),

Splat tracks symbolic values, allocated memory sizes, and
string lengths. Tracking concrete allocated memory sizes al-
lows the detection of memory safety violations, while track-
ing symbolic values and string lengths allow the generation
of new inputs that result in memory safety violations.

For each allocated buffer, Splat internally maintains a
memory node that represents the state of the buffer. The
structure of a memory node is shown in Figure 3. A mem-
ory node tracks the starting address a and ending address
b of the buffer, the symbolic size δ of the buffer, the sym-
bolic contents α0, α1, α2, . . . , αk−1 (with k being the preset
constant for the length of the symbolic prefix), and (in case
the node refers to a string) the symbolic string length ω.
Because there exists only one symbolic length ω per mem-
ory node, we can only track one string that starts at the

beginning of the buffer. In our experiments, we have found
no need to track multiple strings per buffer. Memory nodes
are kept sorted by address ranges using a splay tree data
structure [19]. As an optimization, if the symbolic content
stored in a buffer is a constant, it is not stored and we rely
on the concrete value.

Memory nodes are created whenever a local variable is
allocated on the stack (e.g., when a function is called) or
when memory is allocated in the heap. Figure 4 shows
the instrumentation that is added to the program to cre-
ate memory nodes and to check memory dereferences for
possible errors. The function create(a, b, sz) creates a new
memory node that starts at the concrete address a and ends
at the concrete address b with a (possibly symbolic) size sz.
Notice that for allocations, the compiler may choose to al-
locate more memory for alignment but we track the most
conservative allocation. In case the allocated memory is a
string, the field ω of the memory node is set to a fresh sym-
bolic constant. Recall that µ is the symbolic memory map,
and µ(s) returns a possibly symbolic expression by evaluat-
ing s in the symbolic state. The function find(p) finds the
memory node associated with an address p in the splay tree,
if one exists. The function delete(mn) deletes the memory
node mn from the splay tree. Memory nodes are removed
from the splay tree when memory is freed on the heap or
when stack variables go out of scope on a function return.
Symbolic Execution. Symbolic expressions arise from in-
puts. Following our description of test generation in section
3, we define an input through the input(ptr, k) function
where ptr points to the beginning of an input buffer and
k is the number of elements in the input. This adds map-
pings to fresh symbolic values in the contents of the memory
node that ptr points to. As these elements are accessed and
modified, other memory nodes are updated with symbolic
expressions.

The symbolic updates occur as described in Section 3.
However we need to take into account some specific fea-
tures of C: memory allocation and string manipulations.
We replace the functions in string.h with our string li-
brary that is aware of symbolic lengths and memory nodes.
The string.h functions are modified to update the symbolic
length of strings. This is similar to how CSSV [2] symboli-
cally executes string manipulation functions. Figure 5 show
the updates for some widely used string manipulation func-
tions.

The strlen(s) function makes the contents of the return
value to be the symbolic string length. The symbolic length
is not simply the field ω of the memory node that holds
the string, because s may not point to the beginning of
the memory node a. The function strcpy(d,s) copies a
string s to d, so the symbolic length of string d is updated
with the length of string s. Again, offsets with relation
to the starting address of the memory nodes are added to
take account of d or s not being at the starting addresses of
their respective memory nodes. The function strcat(d,s)

appends the string s to the end of the string d so after the
operation the symbolic length of string d is the sum of the
length of d and the length of s.

The function sprintf(d,c,s1...sn) creates a string at d

from a format string c and some string parameters s1...sn.
We do not write all cases for the update of the length of
d, because there are many cases for calculating the length
of a C format string. Instead, we show a simplified update

l = strlen(s) → mn = find(s)
µ[&l 7→ mn.ω − mn.a + s]

strcpy(d,s) → mnd = find(d); mns = find(s)
mnd.ω = d − mnd.a + mns.ω

−s + mns.a
assert(mnd.ω < mnd.δ)

strcat(d,s) → mnd = find(d); mns = find(s)
mnd.ω = mnd.ω + mns.ω

−s + mns.a
assert(mnd.ω < mnd.δ)

sprintf(d, c, s1...sn) → ∀1 ≤ i ≤ n. mni = find(si)
mnd = find(d)
mnd.ω = d − mnd.a + strlen(c)

+
Pn

i=1
mni.δ − i + mni.a

assert(mnd.ω < mnd.δ)

Figure 5: Tracking memory for string operations.

where length of d is the sum of the string length of c plus
the lengths of the parameters.

4.2 Test Generation
As discussed in Section 3, Splat explores all paths by it-

eratively finding satisfying assignments for new path con-
straints representing unexplored paths. In the implemen-
tation, each path is a sequence of integers representing
branches taken. Each branch id is mapped to a symbolic
expression (if is not a constant) representing the predicate
associated with taking or not taking the branch. A trie [12]
stores all previously explored paths and whether negation
of a branch is unsatisfiable or has already been explored.
This allows Splat to use different search strategies. For ex-
ample, a depth-first search only requires storing one path in
the trie. The search terminates when all paths are either
unsatisfiable or have been explored.
Memory Safety. The splay tree of memory nodes track
all allocated memory in the heap and on the stack. For
each pointer dereference *p, we should be able to find, by
calling find(p), the memory node that contains the pointer
in the splay tree. If we do not find a memory node, we
have a memory safety violation. This approach is similar to
Valgrind’s Memcheck [15]. However, unlike Memcheck, since
the return address on the stack is not part of any memory
node, we can always detect buffer overflows that overwrite
the return address. Note that if we do not track symbolic
state, Splat can be used as a runtime checker for memory
violations.

In addition, we explicitly add assertions about well-
formedness of memory in the code using the function
assert(e). If during test generation, we can find a satisfying
assignment for the conjunction of the path constraints with
the symbolic expression ¬e, we have found a potential error.
Since symbolic execution can be imprecise, such a satisfying
assignment is subsequently run as a new input to confirm
the bug and exhibit a concrete execution trace to the user.

For example in Figure 4, when we dereference a pointer,
we generate the assertion assert(p ≤ mn.a + mn.δ), where
mn is the memory node for p. Failure of this assertion in-

dicates an input for which the pointer p points beyond its
memory node (and hence a memory error). This is a stricter
approach to memory safety by insuring the dereference oc-
curs in the memory node pointed to by the referent [10].
The referent refers to the valid address in the expression to
be dereferenced. For example in *(ptr + 5), ptr is the ref-
erent. If ptr points to a character buffer of size 3, *(ptr +

5) will always be a violation of the referent notion of mem-
ory safety. However, ptr + 5 may still be a valid address; if
the buffer is on the stack, ptr + 5 can point to some other
variable allocated on the stack.

Similar checks are performed for string operations as seen
in Figure 5. Whenever a string is copied into another buffer,
a check is made to see if the string length will exceed the size
of the buffer. Whenever sprintf is called, the length of the
generated string is checked to see if it fits in the destination
buffer.

4.3 Constraint Solving
We generate new inputs by finding satisfying assignments

for path constraints and constraints representing memory
violations. We use STP, a bit accurate SAT based decision
procedure [4]. This allows us to deal with widely-used bit
operators and arithmetic overflow. In our experience, arith-
metic overflow has been crucial in generating many memory
safety violations.

A satisfying assignment for a symbolic length may go be-
yond the symbolic prefix. Concrete buffer entries beyond
the symbolic prefix are randomly chosen characters (exclud-
ing the string terminator). Further we add additional con-
straints that make the symbolic length consistent with the
symbolic prefix. The occurrence of the string terminator in
the symbolic prefix affects the symbolic length. Given a sym-
bolic string length αk for the symbolic prefix α0α1 . . . αk−1,
we have the added constraints αi = 0 ⇒ αk = i for
0 ≤ i < k.

Figure 6 shows a buffer overflow bug originating in the
Bind DNS server that demonstrates the need for a bit-
accurate constraint solver. The bug is caused by an arith-
metic overflow in line 34. If dlen - n < 0, a huge amount
would be copied. This example requires the analysis to un-
derstand bit operators, pointer arithmetic, and fixed-sized
integers. To test this example, we create a symbolic buffer
with 100 symbolic values of size 1 byte each. Since we fill
the msg buffer entirely with symbolic values, the symbolic
string length is not tracked. Note that we could have made
the two strings within the message have symbolic lengths
and saved many extra executions, but that would require
knowledge of the internals of rrextract.

Instead of listing all runs, we examine a run that reaches
line 34. At line 34, suppose for the given run n = 13, cp is
0x40232504, eom is 0x40232568, dlen = αi << 8 | αi+1 and
type = αi << 8 | αi+1. We want to find a satisfying assign-
ment to (αi << 8 | αi+1−13 >unsigned 1024) in conjunction
with the path constraint (αj << 8 | αj+1 = T NXT) ∧
(0x40232504 + αi << 8 | αi+1 ≤unsigned 0x40232568). Note
that we must distinguish between the unsigned less-than and
the signed less-than operators. Given a decision procedure
for bit-vectors, a satisfying assignment can be found: for ex-
ample dlen = 12 results in a 2GB memcpy. In this example,
if the underlying constraint solver was not bit accurate, the
error would be missed.

5. EVALUATION
We demonstrate Splat on several programs. We ran Splat

on benchmarks representing real exploits [24] and found all
bugs except two. Because the benchmarks were not full
programs, we also ran Splat on a module in the Snort in-
trusion detection system, the WuFTP server, and NVDS, a
well-tested flash-based memory system. All tested programs
except NVDS had known memory safety bugs. For the case
studies, Splat found all known bugs and 2 unknown bugs in
NVDS.

Table 1 shows the results. All experiments were performed
on a 2.33GHz Intel Core 2 Duo with 2GB of RAM. Each
experiment contains both the program containing the bug
and the program with the bug fixed. The numbering of
each benchmark corresponds to the same numbering as the
paper [24] describing the benchmarks. We ran Splat on both
buggy and fixed versions, because enumeration of the buggy
program stops when the bug is found and depending on the
location of the bug, only a fraction of paths are enumerated.
Table 1 describes the bugs, the time spent to find the bugs in
the buggy program, and the time spent enumerating paths
in the fixed program.

For each program, the representation of the input string
was chosen with the shortest possible symbolic prefix that
can find the bug. The maximum size of the input and the
size of the symbolic prefix are shown in Table 1. If the size
of the symbolic prefix equals the maximum size, then the
input was fully symbolic. A symbolic prefix of size zero was
successful in finding bugs in 6 out of the 14 benchmarks.
A symbolic prefix of 10 characters was successful in finding
bugs for the WuFTP case study. The other benchmarks did
not use the string.h library thus requiring the input to be
fully symbolic.

For programs that utilized the string.h library, we
demonstrated how the length abstraction allows directed
testing to scale to larger more complex programs. We show
that the length abstraction allows directed testing to find
errors in Bind 4, WuFTP 2, and the WuFTP case study
that could not be found with a fully symbolic input within
our given testing budget. We also show that Splat with the
length abstraction enumerates fewer paths without sacrific-
ing branch coverage.

5.1 Finding Memory Safety Violations
Real Exploit Benchmarks. The first 14 rows of Ta-
ble 1 are real exploit benchmarks [24]. These benchmarks
are small stripped down versions of Bind, Sendmail, and
WuFTP, specifically designed to test buffer overflow detec-
tion tools. These benchmarks were independently developed
to be small but realistic and representative of known buffer
overflows. They have been shown to substantially challenge
dynamic and static buffer overflow detection tools [23,24]. In
these thorough evaluations, four static detection tools were
no better than randomly guessing buffer overflow warnings
for programs with or without such errors. Only one static
tool (Polyspace) was marginally better but produced 1 warn-
ing for every 12 lines of code. Splat successfully found errors
in all benchmarks except two, without reporting any false
warnings.

The original benchmarks contained inputs that would re-
sult in finding the exploit. These inputs were removed and
replaced with symbolic inputs. For the 6 benchmarks that
exclusively used the string.h library, we represented the

01 GETSHORT (s, cp) { \
02 register u_char *t_cp = (u_char *)(cp); \
03 (s) = ((u_int16_t)t_cp[0] << 8) \
04 | ((u_int16_t)t_cp[1]) \
05 ; \
06 (cp) += INT16SZ; \
07 }
08
09 GETLONG (l, cp) { \
10 register u_char *t_cp = (u_char *)(cp); \
11 (l) = ((u_int32_t)t_cp[0] << 24) \
12 | ((u_int32_t)t_cp[1] << 16) \
13 | ((u_int32_t)t_cp[2] << 8) \
14 | ((u_int32_t)t_cp[3]) \
15 ; \
16 (cp) += INT32SZ; \
17 }

18 void rrextract(char *msg, int msglen) {
19 int len, n;
20 short type, dlen;
21 char *eom, *cp, expanded;
22 char data[MAXDATA*2];
23 eom = msg + msglen; cp = msg;
24 n = strlen (cp); if (n > 15) return;
25 cp += n; len += n;
26 GETSHORT(dlen, cp);
27 cp += 2; len += 2;
28 if (cp + dlen > eom) return;
29 GETSHORT(type, cp);
30 cp += 2; len += 2;
31 if (type != T_NXT) return;
32 n = strlen(cp); if (n > 15) return;
33 cp += n; cp1 = data;
34 memcpy(cp1, cp, dlen - n); // overflow
35 cp += (dlen - n); cp1 += (dlen - n);
36 }

Figure 6: Buffer overflow due to arithmetic overflow

whole input with only a symbolic length. For all other
benchmarks, we represented all characters of the input with
100 symbolic characters.

The Bind programs represent several buffer overflows in
the Bind DNS Server. Bind 1 contained a memcpy that had
an arithmetic expression in the size argument that could
overflow. Bind 2 and 3 had memcpy size arguments that
were improperly bound-checked. Bind 4 contained a sprintf
without a bounds check. Sendmail represent bugs in the
Sendmail email server. Sendmail 1 did not increment a
counter as it processed the “<” character. Sendmail 2 con-
tains a copy to a fixed sized buffer without a bounds check.
Sendmail 3 has an index that is not reset after reading a
return character. Sendmail 4 does not check the size if a
return character is read. Sendmail 5 contains an improper
bounds check for sequences of “/”. Sendmail 6 contains an
arithmetic underflow. Sendmail 7 allows an arbitrary size to
be passed as a bound for strncpy. WuFTP represent bugs
in the WuFTP ftp server. WuFTP 1 and WuFTP 3 contain
unchecked strcpy or strcat functions. WuFTP 2 contains an
incorrect bounds calculation as shown in Figure 2.

All benchmarks finish quickly except Sendmail 1 and 5
which timeout. To reach the bug, Sendmail 5 requires a long
string of “/”characters of some particular length while Send-
mail 1 requires repeated occurrences of the pattern “<>”.
Therefore, Sendmail 1 and 5 require the input to be fully
symbolic. In either case, the buggy input was difficult to
find because both benchmarks require finding a particular
long input from millions of inputs that all lead to different
paths.
Snort. We tested the “Back Orifice” rootkit detector mod-
ule in the Snort intrusion system that had a known buffer
overflow. Snort modules have well-defined inputs that de-
scribe a packet. Splat can model this packet as a symbolic
buffer. The bug occurs because the length of the packet
field is not checked and later used as a bound on a while-
loop that reads the contents of the packet. Splat quickly
finds this buffer overflow.
WuFTP. We tested a version of the WuFTP server with a
buffer overflow in the pathname normalization function. The
example in Section 2 is a simplified version of that bug. Al-
though WuFTP processes packets, the contents of the pack-
ets are strings that are interpreted as FTP commands. We

test WuFTP by replacing the packet with a symbolic string
with a 10 character symbolic prefix and a symbolic length.
To skip the parser, we make several keywords in the string
concrete and others symbolic. These keywords are defined
by the underlying grammar. The details of construction
were presented without the memory and string lengths fully
tracked in a previous study [14]. Running Splat on each of
these strings finds the error after 240 seconds.
NVDS. NVDS is a non-volatile storage system for flash
memory that had been a target of substantial random differ-
ential testing [9]. We tested NVDS on an emulated system in
RAM. Testing was different from the previous experiments,
because NVDS did not just accept a string as an input. To
test NVDS, we formatted the emulated flash, wrote to it
three times and read from it once. The parameters for the
writes and reads were symbolic. We found overflows in the
memory emulating the flash that resulted from an arithmetic
overflow in the bound checking in both the write and read
functions.

5.2 Length Abstractions
For the 6 benchmarks and the 1 case study where string

operations were restricted to the C string library, we ran
Splat with the input string being represented by a small pre-
fix (10 characters for the WuFTP case study and no prefix
for the benchmarks) and a symbolic string length. We com-
pared how Splat performs when the input string was symbol-
ically represented by its length (Splat-length) with how Splat

performed with the input string represented by all symbolic
characters (Splat-full). Splat-full represents previous work
in test generation tools that tries to completely search all
paths up to some size input. Splat-full required 100 sym-
bolic characters as the input for the benchmarks and 1024
characters as the input for WuFTP. These sizes were cho-
sen to be slightly greater than the minimum string length
that could set off the error, thus giving Splat-full the best
chance possible in finding the error. In our experiments,
Splat-length performed faster than Splat-full in finding er-
rors as seen in Table 2 — showing the effectiveness of using
a string length abstraction.

Program LOC Prefix Size Bug Buggy Fixed
R

ea
l
E

x
p
lo

it
B

en
ch

m
a
rk

s
Bind 1 2.9K 100 100 size arg of memcpy could overflow 0.02s 0.5s
Bind 2 3.1K 0 2048 size arg of memcpy could be negative 0.1s 1.1s
Bind 3 2.5K 100 100 size arg of memcpy not checked 0.05s 0.1s
Bind 4 2.7K 0 2048 sprintf without bounds check 0.6s 0.6s
sendmail 1 1.9K 100 100 “<><><>....<><><>” t/o t/o
sendmail 2 2.4K 0 2048 copy to fixed sized buffer without check 6.8s t/o
sendmail 3 2.0K 100 100 index not reset 18.6s 1m16s
sendmail 4 2.4K 100 100 no bounds check 0.16s 1m49s
sendmail 5 2.1K 100 100 “/////////. . .//////////////” t/o t/o
sendmail 6 2.2K 100 100 arithmetic underflow 0.04s 1m38s
sendmail 7 2.8K 100 100 unchecked size bound 0.05s 18.2s
WuFTP 1 2.4K 0 2048 strcpy without bounds checks 0.3s 1.8s
WuFTP 2 2.6K 0 2048 off-by-one bound check 0.03s 0.03s
WuFTP 3 2.3K 0 2048 strcpy and strcat without bounds checks 0.4s 0.4s

P
ro

g
ra

m
s

snort 1.7K 100 100 unchecked look bound 13s 33s
WuFTP 36K 10 2048 off-by-one bound checks 4m 4m43s
nvds 12K 80 80 bounds check does not consider arithmetic overflow 2m5s 2hr1m52s

Table 1: Experimental Results: Splat bug finding effectiveness. LOC is lines of code. Prefix is the length of
the symbolic prefix in bytes. Size is the maximum length of the input string in bytes. Buggy is time spend
finding the bug. Fixed is time spent rerunning the test after fixing the error. t/o means timeout after 2
hours.

Symbolic Length Fully Symbolic

Program Prefix Size Buggy Fixed Coverage Size Buggy Fixed Coverage

Bind 2 0 2048 0.1s 1.1s 70/176 = 40% 100 0.61s 32.5s 70/176 = 40%
Bind 4 0 2048 0.6s 0.6s 21/38 = 55% 100 t/o t/o 21/38 = 55%
sendmail 2 0 2048 6.8s t/o 53/90 = 59% 100 3.4s t/o 53/90 = 59%
WuFTP 1 0 2048 0.3s 1.8s 22/50 = 44% 100 2.9s 22.5s 22/50 = 44%
WuFTP 2 0 2048 0.03s 0.03s 28/120 = 23% 100 t/o t/o 46/120 = 38%
WuFTP 3 0 2048 0.4s 0.4s 54/140 = 39% 100 0.7s 1.16s 54/140 = 39%
WuFTP 10 2048 240s 283s 552/1285 = 43% 1024 t/o t/o 372/1285 = 29%

Table 2: Experimental Results: Comparing the length abstraction with a fully symbolic input string on
programs with string manipulations. Prefix is the length of the symbolic prefix in bytes. Size is the maximum
length of the input string in bytes. t/o means timeout after 2 hours for the benchmarks or 24 hours for the
case study. Coverage is the branch coverage for the testing fixed programs run until completion or timeout.

In Bind 4 and WuFTP 2, the fully symbolic string tech-
nique could not find the bug within 2 hours while Splat-

length found both errors in less than a second. In the
WuFTP case study, Splat-full could not find the error within
24 hours. In all 3 tests, Splat-full was stuck in generating in-
put not relevant to reaching the error.

For example, Bind 4 contains many sprintf of the form,
where buf is a fixed 1000 byte buffer and all other arguments
are inputs:

sprintf(buf, "%s: query(%s) %s (%s:%s)",

sysloginfo, queryname, complaint, dname,

inet_ntoa(data_inaddr(a_rr->d_data)));

Suppose sysloginfo, queryname, complaint, and dname

are all string inputs with maximum length of 250 while

(data_inaddr(a_rr->d_data)) was a 32-bit integer input.
To check for an overflow, Splat-length solves the constraint:

strlen(sysloginfo) + strlen(queryname)

+strlen(complaint) + strlen(dname)

+15 + 15 + 1 > 1000

The constraint has been simplified to include the string
length of the address representing the 32-bit integer as 15,
the length of the format string as 15, string terminator as 1
and the size of buf as 1000.

While Splat-length can solve the string lengths and gener-
ate an input that will cause the memory violation, a tool
without the length abstraction must rely on a complete
search. If we fix the integer input, Splat-full requires plac-
ing the string terminator at almost all locations in each of
the four strings in the worst case. If each string can have a
length of 250, there are around 2504 or approximately 4 bil-
lion strings to enumerate. Furthermore, instead of tracking

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200

B
ra

nc
h

C
ov

er
ag

e

Paths Enumerated

splat-length
splat-full

Figure 7: Coverage for Bind 2: Splat-length enumer-
ates 34 unique paths in Bind 2 with a random string
and a symbolic length. Splat-full must enumerate 210
paths with a symbolic input of 100 bytes.

01 char pathspace[MAXPATHLEN];
02 char old_mapped_path[MAXPATHLEN];
03 char mapped_path[MAXPATHLEN] = "/";
04 int mapping_chdir(char *orig_path) {
05 char *path = &pathspace[0];
06 strcpy(old_mapped_path, mapped_path);
07 strcpy(path, orig_path);
08 . . .
09 }

Figure 8: WuFTP 1: strcpy at line 07 can overflow

just 4 symbolic constants representing each string length,
1000 symbolic constants must be tracked — leading to a
substantial cost increase in constraint solving. In our Bind
4 experiments, we tried to give Splat-full a better chance
of finding the error by reducing the input string sizes such
that four input strings of length 24 would result in a buffer
overflow, but this also led to a time-out as seen in Table 2.

The other experiments involve copying into a buffer with-
out doing a proper check. Figure 8 shows a representative
memory violation in WuFTP 1 where the strcpy on line 14
may overflow because the input is not bound checked be-
fore. Splat-length quickly finds these errors by representing
the input with just a symbolic length. However, Splat-full

can also find the error by enumerating all string lengths up
to the maximum length of the input. Because the 6 bench-
marks are small snippets of the real exploit, the Splat-full

can terminate and find the error. In real programs, directed
testing with a fully symbolic input will unlikely find the
bug, because it would be stuck enumerating many irrelevant
paths of inputs with varying string lengths.

Since a fully symbolic search may get lost in a large
search space, Splat-length also gets better branch coverage,
i.e., number of branches explored / total branches, given
a limited test budget. As seen in Table 2, in the WuFTP
case study, Splat-length’s 283 second search had better cov-
erage than the fully symbolic search timing out after 24
hours. Splat-length reaches higher branch coverage faster
than Splat-full. Figure 7 shows how branch coverage in-
creases when Splat-length and Splat-full are run on Bind 2.
Splat-length only enumerating 34 unique paths results in the

same branch coverage as Splat-full enumerating 210 unique
paths. As Splat-full is unrolling loops to generate new paths,
no new branches are covered. Although it is expected that
given substantial resources that Splat-full would get better
branch coverage, only in the case of WuFTP 2 did the fully
symbolic string approach get better coverage (46/120 ver-
sus 28/120). Note that all such experiments are not close
to full branch coverage because the benchmarks represent
snippets of code from the full program where many paths
are unreachable and we do not model all inputs such as net-
working or configuration options in our WuFTP case study.

6. RELATED WORK
Many approaches to detect memory safety violations stat-

ically or dynamically have been proposed. Splat combines
ideas from several of those with test input generation.
Runtime Checking. Runtime checkers detect memory
safety violations of specific execution runs but require a test
input to trigger the violation. For such approaches, there is
a trade-off between being able to detect the violation and
performance. Valgrind [18] uses one bit for each address to
represent if it is allocated or not. If an invalid address is ac-
cessed, a memory safety violation is reported. This only de-
tects accesses to unallocated memory, so the return address
of a function on the stack can still be overwritten and unde-
tected. Jones and Kelly [10] implemented a memory safety
checker in gcc that adds instrumentation to check whether
an address evaluated from some expression containing an
address p still points to the same buffer as p. CRED [16]
extends Jones and Kelly by checking bounds only before a
memory dereference and focuses only on string operations.
If Splat was run without input generation, Splat would be
similar to the CRED approach with additional instrumented
libraries.

Larson and Austin [13] extends runtime checking by find-
ing errors that may occur along the same control path of
the supplied input but with a different input. Their mem-
ory model [13] associates each buffer index with a range,
and each buffer with a string length and buffer size that are
updated symbolically. Splat tracks similar constraints but
is more precise because [13] conservatively represents each
range and size with an integer instead of a symbolic expres-
sion. Also [13] does not perform test generation and may
generate false alarms when symbolic execution is imprecise.
Static Analysis. In contrast to dynamic analysis, static
analysis runs on all paths of a program and does not require
any test inputs. However, they typically generate (many)
false positives. CSSV [2] converts string manipulation to in-
teger operations and performs an integer analysis to insure
string operations remain within proper bounds. Although
false positives were reported to be few, manual summaries
are needed for functions and the integer analysis was expen-
sive. Archer [22] tracks linear relationships between vari-
ables and automatically generates function summaries by
inferring relationships between function parameters by var-
ious heuristics. Boon [21] uses a flow insensitive analysis for
string manipulations errors which is fast but very imprecise.
A comparison between various static tools showed that none
were very effective in finding real buffer overflows, either not
finding the errors or generating too many false positives [24].
Splat’s symbolic execution of string lengths was inspired by
static analyses that track only lengths [2,21,22].

Directed Testing. The idea of path exploration using both
symbolic and concrete execution is from directed testing
tools such as DART [6], CUTE [17], EXE [1] and SAGE [8].
Recent papers [1,7,11] also suggest to systematically inject
assertions in programs during directed test generation in or-
der to detect memory safety violations and other standard
programming errors, such as division by zero and integer
overflows. Our contribution is to use symbolic length ab-
straction and symbolic prefixes of input buffers to improve
scalability of automatic test generation for buffer overruns.
Underapproximation. To allow Splat to effectively find
bugs and finish within a reasonable amount of time, Splat

uses an underapproximation that leaves some input suffixes
random but tracks the length of the string input symboli-
cally. In the context of test generation, different underap-
proximations involving heap shapes have been explored in
Java Pathfinder [20]. Our experiments with Splat show the
new underapproximation using symbolic string lengths and
buffer sizes seems to be effective in finding buffer overflows
in C programs.

7. CONCLUSION
For any bug-detection technique, there is a tradeoff be-

tween cost (how much time it takes) and precision (how
accurately it detects errors). In automated state-space ex-
ploration, this tradeoff has been explored by varying the
search strategy (e.g., depth-first vs. breadth-first) to gen-
erate an underapproximation of the state space that still
encounters program errors. We believe length abstractions

capture an interesting property-driven heuristic in approx-
imating the program state space for automatic buffer over-
flow detection. Our experiments on standard buffer exploit
benchmarks [23,24] demonstrate that in many real-life buffer
overflow scenarios, just tracking the string length (and a
small prefix) is enough to find test inputs that expose the
bug. On the other hand, tracking the entire string symboli-
cally, while theoretically complete, fail to terminate or find
the bug on the same set of benchmarks.
Acknowledgments: This work was initiated during a visit
of the first author to the second author at Bell Laborato-
ries. This research is sponsored in part by the grants NSF
CCF-0546170 and NSF CCF-0702743. We thank the au-
thors of [24] for their benchmarks. We thank Alex Groce
and Rajeev Joshi for feedback on preliminary versions of
Splat.

8. REFERENCES
[1] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and

D. Engler. Exe: automatically generating inputs of
death. In CCS, 2006.

[2] N. Dor, M. Rodeh, and S. Sagiv. CSSV: towards a
realistic tool for statically detecting all buffer
overflows in C. In PLDI, 2003.

[3] J. C. Foster, V. Osipov, and N. Bhalla. Buffer

Overflow Attacks. Syngress, 2005.

[4] V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In CAV, 2007.

[5] P. Godefroid. Compositional dynamic test generation.
In POPL, 2007.

[6] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In PLDI, 2005.

[7] P. Godefroid, M. Y. Levin, and D. Molnar. Active
property checking. Technical report, Microsoft, 2007.

[8] P. Godefroid, M.Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. In NDSS, 2008.

[9] A. Groce, G. J. Holzmann, and R. Joshi. Randomized
differential testing as a prelude to formal verification.
In ICSE, 2007.

[10] R. Jones and P. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In
Third International Workshop on Automated

Debugging, 1997.

[11] P. Joshi, K. Sen, and M. Shlimovich. Predictive
testing: amplifying the effectiveness of software
testing. In FSE, 2007.

[12] D. Knuth. The Art of Computer Programming,

Volume 3: Sorting and Searching. Addison-Wesley,
1997.

[13] E. Larson and T. Austin. High coverage detection of
input-related security faults. In USENIX, 2003.

[14] R. Majumdar and R. Xu. Directed test generation
with symbolic grammars. In ASE, 2007.

[15] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI, 2007.

[16] O. Ruwase and M. Lam. A practical dynamic buffer
overflow detector. In NDSS, 2004.

[17] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In FSE, 2005.

[18] J. Seward and N. Nethercote. Using Valgrind to detect
undefined value errors with bit-precision. In USENIX,
2005.

[19] D. Sleator and R. Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652–686, 1985.

[20] W. Visser, C. S. Pasareanu, and R. Pelánek. Test
input generation for Java containers using state
matching. In ISSTA, 2006.

[21] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In NDSS, 2000.

[22] Y. Xie, A. Chou, and D. Engler. Archer: using
symbolic, path-sensitive analysis to detect memory
access errors. In FSE, 2003.

[23] M. Zhivich, T. Leek, and R. Lippmann. Dynamic
buffer overflow detection. In BUGS, 2005.

[24] M. Zitser, R. Lippmann, and T. Leek. Testing static
analysis tools using exploitable buffer overflows from
open source code. In FSE, 2004.

