
Using Partial-Order Methods in the Formal
Validation of Industrial Concurrent
Programs

Patrice Godefroid, Doron Peled and Mark Staskauskas

IEEE Transactions on Software Engineering, volume 22, number 7, pages 496-507, July 1996.

Copyright  1996 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.

1

Using Partial-Order Methods in the Formal

Validation of Industrial Concurrent Programs

Patrice Godefroid, Doron Peled and Mark Staskauskas

Patrice Godefroid and Mark Staskauskas are with Bell Laboratories, Lucent Technologies Inc., 1000 E. War-

renville Rd., Naperville, IL 60566. E-mail: fgod,markstasg@bell-labs.com. Doron Peled is with Bell Laborato-

ries, Lucent Technologies Inc., 600 Mountain Ave., Murray Hill, NJ 07974. E-mail: doron@bell-labs.com.

August 29, 1996

2

Abstract

Formal validation is a powerful technique for automatically checking that a collection of com-

municating processes is free from concurrency-related errors. Although validation tools invariably

�nd subtle errors that were missed during thorough simulation and testing, the brute-force search

they perform can result in excessive memory usage and extremely long running times. Recently,

a number of researchers have been investigating techniques known as partial-order methods that

can signi�cantly reduce the computational resources needed for formal validation by avoiding

redundant exploration of execution scenarios. This paper investigates the behavior of partial-

order methods in an industrial setting. We describe the design of a partial-order algorithm for

a formal validation tool that has been used on several projects that are developing software for

the Lucent Technologies 5ESS

R

telephone switching system. We demonstrate the e�ectiveness

of the algorithm by presenting the results of experiments with actual industrial examples drawn

from a variety of 5ESS application domains.

Keywords

Formal methods, automatic veri�cation, validation, partial-order methods, concurrent pro-

grams, reachability analysis.

I. Introduction

Formal validation enables the automatic detection of errors such as deadlock and livelock

in networks of communicating processes. By exhaustively exercising possible execution

scenarios of the processes, formal validation can detect subtle errors that are missed during

simulation and testing, where only a small fraction of the scenarios can be checked for

correctness.

We have designed a tool that validates networks of communicating processes imple-

mented in the Virtual Finite State Machine (VFSM) notation ([18], [2]). Our goal was to

make formal validation a routine part of the VFSM design methodology, which is used on

a variety of software projects for the 5ESS

R

(No. 5 Electronic Switching System), a prod-

uct of Lucent Technologies Inc. (formerly the systems and technology unit of AT&T). To

date, over twenty-�ve 5ESS developers have used the validator to search for errors in their

VFSM designs. Our experience represents one of the �rst instances we know of in which

validation technology has achieved widespread use in an industrial software development

organization (see [1] for more details about our experiences with technology transfer).

3

Despite its many successful applications, the validator can be a di�cult tool to use: the

running time of validation typically grows exponentially with the size of the VFSM(s)

being validated. The �rst few runs of the validator usually �nd errors quickly; however,

as errors are detected and corrected, one soon reaches the point where the validator must

explore millions of states before the next error is found. Often, only one or two validation

runs per day can be completed, so obtaining an error-free validation run requires a great

deal of patience and persistence on the part of the user.

We therefore became interested in techniques that might decrease the running time of

validation. One such family of techniques, known as partial-order methods, has achieved

impressive reductions in running time on many examples ([4], [13], [16]). The goal of

validation is to check all possible execution scenarios of a collection of communicating

processes for errors, where a scenario consists of an interleaving of execution steps of the

processes. It is often the case that many steps in a scenario are independent, i.e., the

order in which they appear in a scenario does not a�ect the presence or absence of an

error. For example, if two processes both increment an integer variable in successive steps,

the end result is the same regardless of the order in which these steps occur. Partial-

order methods exploit the fact that, if two scenarios di�er only in the relative ordering of

independent execution steps, it is su�cient to check only one of the scenarios for errors. In

validation examples where there is a great deal of independence among process execution

steps, this can result in an enormous reduction in the memory and CPU resources needed

for validation.

Our initial investigation of the usefulness of partial-order methods in the context of

the VFSM validator revealed a number of potential di�culties. VFSMs communicate by

asynchronous message-passing, and an execution step of a VFSM can involve receiving a

message from its queue and sending messages to several other VFSMs. The large granu-

larity of these execution steps limits the amount of independence among them: any two

send operations on the same queue are dependent, since the order in which the messages

appear in the queue is signi�cant.

Another problem is that implementation of partial-order methods requires knowledge of

the operations on shared data structures that a concurrent process will perform in a given

4

execution step. In the case of VFSM, it is not easy to determine this information a priori.

One approach would be to conservatively estimate the possible operations of a VFSM with

a compile-time static analysis of its structure. Although relatively inexpensive to obtain,

this information may overestimate the operations a VFSM can perform in a given step, and

therefore underestimate the amount of independence among the steps, preventing partial-

order methods from obtaining the maximum possible reduction in computational resources.

Better information could be obtained by simply executing the VFSM and recording the

operations it performs. However, execution of a VFSM for purely informational purposes

would add a great deal of overhead that might well negate the reduction obtained by

partial-order methods. Thus, there is a tradeo� between the accuracy of the information

needed for partial-order methods and the cost of obtaining it.

We present in this paper a partial-order algorithm for the validation of networks of

VFSMs. We also discuss how we dealt with the problems mentioned above in the course

of developing the algorithm. Our algorithm is unique in that it rests on a model of

concurrency that incorporates all the subtleties of a real-life operating-system environment,

including timers and process priorities. This is in contrast with other existing algorithms

of this family, which were designed to analyze systems modeled in simpler, more abstract

formalisms, such as Petri nets and communicating �nite-state automata. To investigate the

extent of the reduction in validation e�ort obtained with partial-order methods, we present

the results of validation runs with and without the partial-order algorithm on four VFSM

examples that represent actual 5ESS applications. For each example, we perform three

experiments with the partial-order algorithm. Each experiment uses a di�erent approach

to compute the information about the operations a VFSM performs in an execution step;

the approaches di�er in how they resolve the cost-accuracy tradeo� mentioned above. We

show that the partial-order algorithm leads to reductions in the number of execution steps

explored that range from 13% to more than a factor of �ve.

The remainder of the paper is organized as follows. We begin in Section II with a

high-level overview of the VFSM methodology and toolset. Section III contains a precise

mathematical description of the execution of a collection of communicating VFSMs. We

then present in Section IV our adaptation of Holzmann's supertrace algorithm [8] to the

5

validation of a network of VFSMs. Section V presents a partial-order algorithm for VFSM

validation and its correctness proof. Section VI details the three approaches we used to

determine the operations a VFSM performs in an execution step. In Section VII, we brie
y

describe the four 5ESS VFSM application examples used to test the e�ectiveness of the

partial-order algorithm, and present the results of our experiments, including a discussion

of how the structure of the examples in
uences the reductions obtained. We conclude in

Section VIII with a discussion and our plans for future research.

II. VFSM Overview

The VFSM methodology [18] consists of a design paradigm, in which the control be-

havior of a software module is speci�ed as a �nite-state machine; and an implementation

paradigm, which consists of a design structure that de�nes the interface between the control

speci�cation and the rest of the implementation. The VFSM toolset translates the VFSM

speci�cation into executable form and produces templates for the modules that interface

with the control portion of the implementation. The toolset also includes a simulator that

allows the designer to execute a VFSM speci�cation interactively.

The VFSM methodology has been used on over 75 5ESS software projects, and has been

taught to several hundred 5ESS developers. The VFSM speci�cation notation is easy

to learn, since it is a slight extension to the familiar concept of a �nite state automaton.

Because part of the implementation is generated automatically from a VFSM speci�cation,

developers feel that the e�ort spent in writing the speci�cation is repaid by less work

during the coding phase, in contrast to other methodologies that result in only a piece of

documentation.

A VFSM speci�cation is written in terms of states, virtual inputs and virtual outputs.

The term \virtual" means that VFSM inputs and outputs are abstract names local to the

VFSM: virtual inputs represent conditions in the environment that in
uence the control

behavior of the speci�ed system, and virtual outputs stand for actions to be taken by the

system at various points during its execution. The exact binding between these abstract

inputs and outputs and their concrete realizations in the implementation is speci�ed by

the VFSM implementation paradigm.

A major di�erence between a VFSM and a traditional FSM is in how inputs are handled.

6

S_SEND_REQ {

E: O_SEND_MSG1, O_START_TIMER;

X: O_STOP_TIMER;

IA: I_ACK ? O_MSG_OK;

I_TIMEOUT ? O_REPORT_ERROR;

NS: I_ACK > S_SEND_NEXT_MSG;

I_TIMEOUT > S_ERROR;

}

Fig. 1. Example state of a VFSM speci�cation

Each input received by a VFSM is stored in a set called the Virtual Input Register (VIR),

and remains there until it is explicitly removed. VFSM state transitions and the production

of virtual outputs can be conditioned on the presence of particular subsets of inputs in

the VIR.

Fig. 1 shows an example speci�cation of one state of a VFSM. The example illustrates

a simple handshake protocol. Thb entry-action (E:) section speci�es that upon entry to

this state, the VFSM will produce virtual outputs representing the sending of a message

(O_SEND_MSG1) and the starting of a timer (O_START_TIMER). The exit-action (X:) section

lists the outputs that are to be produced when there is a transition out of this state; in

this example, the timer started upon entry to the state is stopped. The input-action (IA:)

section speci�es that, if the desired acknowledgement to the message is received, which

is represented by the presence of virtual input I_ACK in the VIR, appropriate action will

be taken (O_MSG_OK); however, if the timer expires, indicating that the message or its

reply has been lost, then error processing will take place (O_REPORT_ERROR). The next-

state transition (NS:) section de�nes the VFSM state that will be entered next: either the

subsequent step in the handshake protocol (S_SEND_NEXT_MSG) or an error-handling state

(S_ERROR).

Fig. 2 shows the structure of a VFSM implementation. The input mapper and output

functions provide a \�rewall" that enforces the separation of the top-level control behavior

de�ned by the VFSM speci�cation from the low-level data manipulations and functions

7

Virtual
Inputs

Virtual
Outputs

Specification

VFSMInput

Mapper

Output

Functions

External

Events

Events

(message,

timer, etc.)

Feedback Events

Fig. 2. Structure of a VFSM implementation

of the system. As shown to the left of Fig. 2, the input mapper receives events, such as

messages, interrupts and timer expirations, from the environment of the system. Based

on the event received and the values of local data structures, the input mapper determines

which virtual inputs must be inserted into, or deleted from, the VIR.

When the input mapper completes, the VFSM speci�cation is executed. The VFSM

may change state several times and produce several virtual outputs, terminating execution

when a state is reached from which no state transition is possible given the current VIR

contents. The user associates with each virtual output the name of an output function;

whenever that output is produced during VFSM execution, its output function is invoked.

The output function performs whatever processing and data manipulation are necessary

to realize the abstract behavior represented by the virtual output. Note that an output

function may also invoke the input mapper with a feedback event, as suggested in Fig. 2;

thus, the VIR can change while the VFSM is executing. Feedback events are typically used

when an output function detects an error condition that must be dealt with immediately

by the VFSM.

In a VFSM implementation, inter-process communication occurs via system calls to

send and receive messages that appear in the output functions and input mapper. In

order to keep the VFSM model used for validation as small as possible, we do not allow

the inclusion of the input mapper and output functions in the model. Instead, we provide a

feature known as mapping abstractions that allows the user to specify those aspects of the

input mapper and output functions that have an impact on inter-process communication.

8

For the input mapper, mapping abstractions specify the possible combinations of virtual

inputs that might be inserted into, or deleted from, the VIR for each received event; for

the output functions, the user can specify all combinations of timer operations, feedback

events, and events sent to other VFSMs for each virtual output.

To use the validator, the user �rst de�nes mapping abstractions for each received event

and virtual output of the VFSM(s) to be validated. It may also be necessary to construct

\environment VFSMs" that model the external environment of the validated VFSMs; for

example, when validating a telephone-call setup protocol, one would construct a VFSM

that models the possible behavior of the caller at each step in the protocol. Given a network

of communicating VFSMs, the validator generates possible execution scenarios in a manner

described in more detail below; it checks for errors in inter-VFSM communication such

as deadlock, livelock, unexpected inputs, and message bu�er over
ows. In future versions

of the validator, we plan to allow the user to specify application-speci�c properties in

temporal logic that will be checked during validation.

III. A Formal Model of VFSM Execution

In order to de�ne a formal validation algorithm for a network of VFSMs, it is necessary to

construct a precise mathematical model of the VFSM execution environment provided by

the operating system under whose control the 5ESS software executes. A VFSM system

consists of a collection of processors, which are intended to represent entities that can

execute concurrently. Each processor contains one or more processes, at most one of

which can execute at a time; thus, all processes in a processor execute under control of the

same scheduler. Each process contains one or more VFSMs. There exists a �xed priority

mechanism between the processes of the same processor. That is, there is a total order `>'

such that if P

1

> P

2

, and both processes can proceed, P

2

would have to wait for P

1

to go

�rst (see Fig. 3). All communication among VFSMs is by asynchronous message passing.

Each process has two bounded-length queues, one for intra-process communication among

the VFSMs in that process, and another on which messages from other processes (on the

same or a di�erent processor) are received. It is assumed that the queues are large enough

to contain the maximum number of messages that might be sent during execution of the

system, so that queue over
ow never occurs. Thus, an attempt to send a message to a

9

queue that is full is a design error that is repaired by enlarging the queue or changing the

logic of the VFSMs in the system.

In addition, each VFSM may have one or more timers that it can start and stop. Once

a timer is started, it can expire at any time (it is not possible to associate a time duration

with timers in our model). Expiration of a timer results in the sending of a message to

the VFSM that started it. Since timer expiration occurs independently of the execution

of VFSMs, each timer can be thought of as a separate processor.

An execution of a VFSM system is a (possibly in�nite) sequence of transitions, where

a transition is either the execution of a VFSM or the expiration of a running timer.

A transition of a VFSM, in turn, consists of a �nite sequence of operations, where an

operation is the sending or receiving of a message, the starting or stopping of a timer, or

an internal execution step that changes the state and/or VIR of the VFSM. At any point

in an execution, at most one VFSM on each processor is enabled, and only the enabled

VFSM can execute next. Below, we give a precise description of operations and transitions

and of how the enabled VFSM on each processor is determined.

A. Global States and Executions

We model each process P as a seventuple hM

P

; V

P

; H

P

; L

P

; S

P

; I

P

; T

P

i, where M

P

is

the alphabet of possible input messages, and V

P

is the set of VFSMs in that process.

Each message received by a process is addressed to one of its VFSMs; thus, the incoming

messages of process P are of the form v(m), where v 2 V

P

and m 2 M

P

. H

P

and L

P

are

two queues, called the high-priority queue and low-priority queue, respectively. A message

sent from one VFSM to another VFSM in the same process would get to the end of the high-

priority queue of that process, while an inter-process communication would be through the

low-priority queue. A process would prefer reading messages from its high-priority queue;

thus, it would read a message from its low-priority queue only if the high-priority queue

is empty. S

P

is a �nite set of process states. Each state has several components, including

a component for each queue s(H

P

) and s(L

P

), and a separate component s(v) for each

VFSM v 2 V

P

that contains its VFSM state and virtual input register. I

P

� S

P

is the

set of initial process states, and T

P

is a �nite set of operations, to be described below.

A processor state is a collection of all the local states of the processes that belong to a

10

P

52

P

56

P

17

P

11

P

12

P

51

PR

5

PR

2

PR

1

P

25

P

22

P

21

Low

HL

HL

HL

HL

HL

HLpriority

priority

High

HL

HL

HL

Fig. 3. Process hierarchy in VFSM

processor. A global state includes the state of all the processors of the system (note that

each timer, as described below, is a separate processor). An initial global state is a global

state in which every process P of the system is in one of its initial states I

P

, and all of the

message queues are empty.

Each operation � of process P consists of the following elements:

� An entry process state s 2 S

P

. The operation � can be executed only if P is in process

state s.

� An exit state s

0

2 S

P

. After executing � , P is in a process state s

0

.

� One of the following:

1. A VFSM v 2 V

P

and a message m 2M

P

. Then � is a receive operation of the VFSM

v, i.e., would be executable only if v receives v(m). Such an operation is denoted as

s

� :?v(m)

�! s

0

, where s and s

0

must satisfy one of the following:

(a) v(m) appears as the �rst message in s(H

P

), i.e., s(H

P

) = v(m):R. Then

s

0

(H

P

) = R, i.e., the �rst message is removed from the head of the high-priority

queue of P .

(b) s(H

P

) is empty and v(m) appears as the �rst message of s(L

P

), i.e., s(L

P

) =

11

v(m):R. Then s

0

(L

P

) = R, i.e., the �rst message is removed from the head of the

low-priority queue of P .

2. A triple hQ; v; mi, where Q is a process, v 2 V

Q

is a VFSM of Q, and m 2M

Q

is a

message of Q. Then � is a send operation, and it will send v(m) to process Q. Such

an operation is denoted as s

� :Q!v(m)

�! s

0

. Denote the states of process Q before and

after the operation by ~s and ~s

0

, respectively. If P = Q, then ~s

0

(H

Q

) = ~s(H

Q

):v(m),

i.e., v(m) is appended to the end of H

Q

. If P 6= Q, then ~s

0

(L

Q

) = ~s(L

Q

):v(m), i.e.,

v(m) is appended to the end of L

Q

.

3. None of the above. Then, � is a local operation, responsible only for changing the

process state. Such an operation is denoted as s

� :�

�! s

0

.

A transition is a sequence of operations that can be executed only by the enabled VFSM,

if any, on a processor. The enabled VFSM is determined by scanning the list of processes

in priority order (i.e., from highest to lowest) until a process P is found that satis�es one

of the following conditions:

1. Its high-priority queue, H

P

, is non-empty; the enabled VFSM is the recipient of the

message at the head of H

P

.

2. H

P

is empty, but its low-priority queue, L

P

, is nonempty; the enabled VFSM is the

recipient of the message at the head of L

P

.

3. H

P

and L

P

are empty, but P contains a free VFSM v that is enabled. Normally, a

5ESS process is event-driven, executing only when it receives a message. A free VFSM

is one that can execute even if it does not receive a message. Free VFSMs are typically

used to model spontaneous behavior by the environment of a VFSM being validated;

for example, the caller in a call-setup protocol can at any time choose to hang up the

phone. The enabledness of a free VFSM is a function of its local state, and there can

be at most one free VFSM per process.

A transition of an enabled VFSM consists of a receive operation (except in case (3)

above), followed by a sequence of zero or more local, send, and timer operations. Roughly

speaking, a transition therefore comprises all of the execution steps needed for a VFSM to

completely process a single received message. A transition is atomic: no timer expirations

or operations of VFSMs on other processors can be interleaved with the operations in a

12

transition.

The execution model we have described di�ers from most other formal models of con-

current programs in that the granularity of transitions in our model is much larger. In

traditional models, e.g., that used in [4], a transition contains at most one access to a

shared data structure, and is therefore comparable to an operation in our model. We

have chosen to represent execution steps as sequences of operations rather than individ-

ual operations because doing so greatly reduces the number of execution sequences that

need to be explored during validation. The large granularity of transitions in our model

is justi�ed because it is an accurate re
ection of the scheduling policy of the 5ESS oper-

ating system, which allows a VFSM to perform the processing of a received message as a

non-preemptible unit of computation.

B. Timers

The VFSM model also includes timers. Each timer is associated with a particular VFSM

of a process. A timer that is started will expire after some delay, sending a message to the

process containing the VFSM that started it. Each timer W can be modeled as a triple

hS

W

; T

W

; v

W

i such that there are exactly two states S

W

= fstopped

W

; running

W

g, three

operations T

W

= fstart

W

; stop

W

; expire

W

g, and v

W

is the VFSM that \owns" the timer,

i.e., it is the only VFSM that can start and stop it. The initial state of each timer W is

stopped

W

.

Each VFSM that uses a timer W has also two additional types of operation. The

operation s

� :start(W)

�! s

0

sets the timer W to be running. This operation can execute

only jointly with the operation start

W

of timer W . Similarly, the operation s

� :stop(W)

�! s

0

executes jointly with the stop

W

operation of W and places W in state stopped

W

.

The operation expire

W

is enabled when the timer W is in its running

W

state. The

result is that a message v(W) is appended to the low-priority queue of the process that

contains v

W

. The timerW itself then returns into its stopped

W

state. During an execution

of a VFSM system, a running timer can expire at any time. For example, if a VFSM starts

a timer during a transition, that timer could expire immediately upon completion of that

transition, or other VFSM transitions and/or timer expirations might occur �rst.

13

C. Examples

We present in this section some examples to provide concrete illustrations of the abstract

model presented above. The �rst example shows how a VFSM transition is composed of

a sequence of operations. Consider the example VFSM in Fig. 1, which is waiting for an

acknowledgment message in the VFSM state shown. Suppose that the VFSM receives this

message, and that the entry-action section of the state it enters next (S_SEND_NEXT_MSG)

also sends a message and starts a timer. The sequence of operations the VFSM performs

upon receiving the acknowledgment message is as follows:

1. A receive operation to remove the acknowledgment message from its high- or low-

priority queue.

2. A local operation in which the virtual input I_ACK is inserted into its VIR.

3. A timer operation to stop the running timer, performed upon exiting the state

S_SEND_REQ.

4. A local operation that models the change in VFSM state that occurs when the VFSM

transitions from S_SEND_REQ to S_SEND_NEXT_MSG.

5. Upon entry to state S_SEND_NEXT_MSG, a send operation to send the next message in

the handshake-protocol sequence.

6. Also upon entry to state S_SEND_NEXT_MSG, a timer operation to await the reply to

the next message.

Our next example illustrates the composition of a typical collection of VFSMs in a VFSM

system (this example is one of the four on which we perform the validation experiments

that will be described later in the paper). The voice storage system is a 5ESS feature that

allows mobile-phone users to access their voice mail; it does so by issuing commands to the

voice storage equipment (VSE) hardware that identify the mailbox desired and the type

of operation (play, record, or erase) that the user wishes to perform. The system consists

of four VFSMs: a \main" VFSM, which implements the functionality of the voice storage

system, and three \environment" VFSMs that model the communication partners of the

main VFSM. Note that the environment VFSMs were constructed only for validation and

do not represent complete 5ESS software modules. Each of the four VFSMs resides on

a separate processor; since each process therefore contains only one VFSM, there is no

14

communication on the high-priority queues.

The VFSMs in the system are as follows:

� The voice storage terminal process (VTP) VFSM is the \main" VFSM in the system;

it acquires a trunk connection from the 5ESS switch to the VSE and coordinates the

interaction between them.

� The VSE VFSM models the behavior of the voice storage equipment hardware. It

receives messages from the VTP VFSM and generates possible responses.

� The originating terminal process (OTP) VFSM models the process that controls the

caller end of a telephone call. The VTP reports back to the OTP on the progress of

its attempt to establish a connection with the VSE.

� The terminal maintenance subsystem (TMS) VFSM models the interaction between

the VTP and the fault-detection software in the 5ESS switch. If the trunk connection

to the VSE becomes faulty, TMS issues an interrupt message to the VTP that requires

it to release control of the trunk so that diagnostics can be performed.

IV. Verification by State-Space Exploration

The global state space A

G

of a system can be explored by performing a search of all

the states that are reachable from the initial state s

0

. This can be done by recursively

exploring all successor states of all states encountered during the search, starting from the

initial state, by executing all enabled transitions in each state. During the search, visited

states are stored in memory in order to avoid redundant explorations of parts of the state

space.

The main limit of state-space exploration veri�cation techniques is the often excessive

size of the state space. Owing to simple combinatorics, the size can be exponential in the

size of the description of the system being analyzed. This exponential growth is known as

the state-explosion problem.

Several techniques have been proposed to tackle this problem. Among them, bit-state

hashing [8] is a simple technique that has proved to be very useful for exploring large state

spaces. The principle of this technique is the following. When a new state is visited during

the search, its representation is hashed into an address in an array of bits stored in the

randomly accessed memory available in the computer on which the state-space exploration

15

is performed. If the bit of the corresponding location in the array is on, the algorithm

considers that the state has already been visited. If the bit is o�, it is set to on, and the

algorithm continues the search from the current state. Since there is no collision detection,

it follows that the above search is partial: there is always a possibility that reachable states

will be missed. On the other hand, since only one bit of memory is needed to represent the

visit of one state, instead of the full state description (which may require several hundreds

of bytes of memory), this technique makes it possible to store more states in memory, and

hence to explore larger state spaces while still avoiding redundant exploration of parts of

the state space. This bit-state hashing technique is used by the VFSM validator.

Another family of techniques that have been developed to cope with the state-explosion

problem are partial-order methods [14], [3], [16], [6], [12], [17], [19], [13], [4]. The aim of

these methods is to avoid the part of the state explosion due to the exploration of all

possible interleavings of concurrent transitions. Given a property, partial-order reduction

methods explore only a reduced part of the global state space that is provably su�cient

for verifying the given property. The di�erence between the reduced and the global state

spaces is that not all interleavings of concurrent transitions are systematically represented

in the reduced one. Which interleavings need to be preserved may depend on the property

to be checked.

The intuition behind partial-order methods is that concurrent executions are really par-

tial orders where concurrent \independent" transitions should be left unordered. Intu-

itively, transitions are independent when the order of their occurrence is irrelevant.

This notion of independency between transitions and its complementary notion, the

notion of dependency, can be formalized by the following de�nition (adapted from [9]),

where s

t

! s

0

means that the transition t leads from the state s to the state s

0

, while

s

w

) s

0

means that the �nite sequence of transitions w leads from s to s

0

.

De�nition 1: Let T be the set of transitions (transitions of VFSMs and expirations of

timers) in a VFSM system, and let S be the set of possible global states for this system.

The relation D � T � T � S is a valid conditional dependency relation for the system i�

for all t

1

; t

2

2 T and s 2 S, (t

1

; t

2

; s) 62 D (t

1

and t

2

are independent in s) implies that

(t

2

; t

1

; s) 62 D (D is symmetric w.r.t. T � T) and that the two following properties hold

16

in state s:

1. if t

1

is enabled in s and s

t

1

! s

0

, then t

2

is enabled in s i� t

2

is enabled in s

0

(independent

transitions can neither disable nor enable each other); and

2. if t

1

and t

2

are enabled in s, then there is a unique state s

0

such that s

t

1

t

2

) s

0

and

s

t

2

t

1

) s

0

(commutativity of enabled independent transitions).

All partial-order methods follow the same basic pattern: they operate as classical state-

space searches except that, at each state s reached during the search, they compute a

subset T of the set of enabled transitions in s, and explore only the transitions in T ;

the other enabled transitions are not explored. Such a search is referred to as a selective

search. Partial-order methods presented in the references cited above di�er by the way

sets T are computed, and by the type of properties they can verify (see [4] for an extended

survey).

Among all these algorithms, persistent sets were shown in [4] to provide an abstract

characterization of a whole family of existing algorithms [11], [17], [5] for computing such

sets T . The notion of persistent set is very similar to the notion of faithful decomposition

introduced (independently) in [10] and to the notion of ample set [12]. We will use per-

sistent sets in what follows. Intuitively, a subset T of the set of transitions enabled in a

state s of A

G

is called persistent in s if all transitions not in T that are enabled in s, or in

a state reachable from s through transitions not in T , are independent with all transitions

in T . In other words, whatever one does from s, while remaining outside of T , does not

interact with or a�ect T . Following the de�nition of [5], we have:

De�nition 2: A set T of transitions enabled in a state s is persistent in s i�, for all

nonempty sequences of transitions

s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

from s in A

G

and including only transitions t

i

62 T , for 1 � i � n, t

n

is independent in s

n

with all transitions in T .

Note that the set of all enabled transitions in a state s is trivially persistent since nothing

is reachable from s by transitions that are not in this set.

17

1 Initialize:Stack is empty; H is empty;

2 push (s

0

) onto Stack;

3 Loop: while Stack 6= ; do f

4 pop (s) from Stack;

5 if s is NOT already in H then f

6 enter s in H;

7 T = Persistent Set(s);

8 for all t in T do f

9 s

0

= succ(s) after t; /* t is executed */

10 push (s

0

) onto Stack;

11 g

12 g

13 g

Fig. 4. Persistent-set selective search

Let a persistent-set selective search be a selective search through A

G

which, in each state

s that it reaches, explores only a set T of enabled transitions that is persistent in s, and

that is nonempty if there exist transitions enabled in s. Such an algorithm is illustrated in

Fig. 4. It can be shown that such a search reaches all deadlock states of A

G

(e.g., see [4]).

V. Computing Persistent Sets for VFSM Systems

The key element required for the implementation of a persistent-set selective search is an

algorithm for computing persistent sets. The algorithms that have been proposed for this

purpose [11], [10], [17], [5], [12] infer the persistent sets from the static structure (code) of

the program being veri�ed. They di�er from each other by the type of information about

the program that they use. The aim of these algorithms is to obtain the smallest possible

persistent sets. Usually, the more information about the program the algorithm uses, the

smaller the persistent set it produces can be, albeit at the cost of a higher computational

complexity. Note that exploring the smallest number of enabled transitions at each step

of the search is only a heuristic: it does not necessarily lead to the exploration of the

smallest number of states.

An algorithm for computing persistent sets in the context of VFSM systems is presented

18

1. Take one transition t that is enabled in s. Let P

i

be the processor of t, and let P = fP

i

g.

2. For all processors P

i

in P , add to P all processors P

j

such that

(a) P

j

contains a transition t

0

that is potentially reachable from the current state s, and that can

perform a Send operation on a queue in Sensitive(P

i

; s); or

(b) P

j

is in may be a�ected by(enabled(P

i

; s)); or

(c) if P

i

is a processor of type \timer" and is running, P

j

contains a transition t

0

that is

potentially reachable from the current state s, and that can stop this timer; or

(d) if P

i

is a processor of type \timer" and is stopped, P

j

contains a transition t

0

that is

potentially reachable from the current state s, and that can start this timer.

3. Repeat step 2 until no more processors need be added. Then, return all transitions t that

are in processors in P and that are enabled in s.

Fig. 5. Computing persistent sets for VFSM systems

in Fig. 5. This algorithm starts by considering a processor or a timer that contains a

transition enabled in state s. (In what follows, timers are considered as processors of a

special type.) This processor or timer is introduced in set P (step 1). Then, all processors

or timers that contain at least one transition that \might interfere with" the initial enabled

transition are included in set P (step 2). This relation \might interfere with" is further

discussed below. Step 2 is repeated until no more processors need be added to P (step 3).

Finally, all enabled transitions contained in a processor or timer in set P are returned.

The purpose of step 2 of the algorithm is to ensure that all processors not in set P do

not contain transitions that are or could become dependent with the enabled transitions

of the processors in set P (cf. De�nition 2 above). Let us consider �rst the case where

there are no timers in the system to be analyzed. In that case, steps 2.c and 2.d can be

ignored.

Step 2.a of the algorithm makes use of the function Sensitive(P

i

; s), which is de�ned

as follows. Let enabled(P

i

; s) denote the transition of processor P

i

that is enabled in s, if

there exists one. Given a processor P

i

and a global state s, the function Sensitive(P

i

; s)

returns the set of low-priority queues of processor P

i

such that sending a message to

one of these queues might change the value of enabled(P

i

; s), or might change the e�ect

of the execution of the transition in enabled(P

i

; s), if there is one. (A transition that

sends a message to a queue in Sensitive(P

i

; s) might be dependent with the transition in

enabled(P

i

; s).)

19

We now describe how to compute Sensitive(P

i

; s). Let sends on queues by(t) de-

note the set of queues on which transition t can perform a Send operation, and let

next active process(P

i

; s) denote the process in processor P

i

that contains the transi-

tion enabled(P

i

; s) (if enabled(P

i

; s) is empty, next active process(P

i

; s) is empty as well).

Then, let empty ordered queues(P

i

; s) be the set of queues that are associated with pro-

cesses in P

i

that are of higher priority than next active process(P

i

; s) (if next active process(P

i

; s)

is empty, empty ordered queues(P

i

; s) is the set of all the queues in processor P

i

). If

enabled(P

i

; s) is a transition of a free VFSM and if both queues of next active pro-

cess(P

i

; s) are empty in state s, then empty ordered queues(P

i

; s) also contains the two

queues associated with next active process(P

i

; s). Then, Sensitive(P

i

; s) is the union of

empty ordered queues(P

i

; s) and of sends on queues by(enabled(P

i

; s)).

Step 2.b of the algorithm uses the function may be a�ected by(enabled(P

i

; s)), which

returns the set of processors that contain a transition whose execution may be a�ected

by the execution of the transition in enabled(P

i

; s). Precisely, may be a�ected by(ena-

bled(P

i

; s)) contains the processors P

j

that have a queue q in sends on queues by(ena-

bled(P

i

; s)) and such that either q is not the queue of lowest priority in P

j

or the process

of lowest priority in P

j

contains a free VFSM.

Let us now consider the general case where there are timers in the system. In that

case, interactions between processors of type \timer" and the other processors must be

taken into account as well. This is done in steps 2.c and 2.d of the algorithm of Fig. 5.

Moreover, if P

i

is of type \timer," then Sensitive(P

i

; s) is de�ned as follows: if P

i

is

running, Sensitive(P

i

; s) = fL

(timer)

g, where L

(timer)

denotes the low-priority queue of the

process that has started the timer; otherwise, we have Sensitive(P

i

; s) = ;. Finally, in

the presence of timers, may be a�ected by(enabled(P

i

; s)) also contains all the processors

of type \timer" that are running and that can be stopped by enabled(P

i

; s).

By step 2 of the algorithm of Fig. 5, sets of transitions t

0

that are potentially reachable

from the current global state s and that can perform either a Send operation (step 2.a)

or speci�c operations on timers (step 2.c and 2.d) need to be determined. Obviously, an

exact determination of these sets of transitions is as di�cult as exploring the whole state

space of the system. However, supersets, i.e., conservative approximations, of these sets

20

of transitions t

0

can be obtained by statically analyzing the state-transition graphs of each

VFSM individually: for each VFSM, the set of all operations of a given type that are

statically reachable in the state-transition graph of this VFSM from any given local state

of the VFSM can be determined at compile-time, before the state-space exploration is per-

formed. This information can then be used during state-space exploration to approximate

the sets of transitions t

0

reachable from the current state that can perform operations of

speci�c types. Two algorithms for computing such approximations are discussed in the

next section.

We now prove the correctness of the algorithm of Fig. 5.

Theorem 1: Any set of transitions that is returned by the algorithm of Fig. 5 is a per-

sistent set in the current state s.

Proof

Let T be a set of transitions that is returned by the algorithm of Fig. 5, and let P denote

the �nal set of processors computed by step 2 of the algorithm during this run.

The proof is by contradiction. Suppose that T is not persistent in s. Then, by De�ni-

tion 2, there exists in A

G

a sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

of transitions

t

1

; t

2

; : : : ; t

n

62 T such that t

n

is dependent in s

n

with some transition t 2 T . Consider

the shortest such sequence. For this sequence, not only is t

n

dependent in s

n

with some

transition t 2 T , but also, for all 1 � i < n, t

i

is independent in s

i

with all transitions in

T . Let us show that such a sequence cannot exist.

Let P denote the processor that contains transition t, and let P

n

be the processor that

contains transition t

n

. Since for all transitions t

i

, 1 � i < n, t

i

is independent in s

i

with

all transitions in T , t and t

n

are both enabled in s

n

. Since t and t

n

are dependent in s

n

,

three cases are possible.

1. After the execution of t

n

in s

n

, t becomes disabled in s

n+1

. If P is not of type \timer,"

this can happen only if t

n

sends a message to a queue in empty ordered queues(P; s

n

).

Since empty ordered queues(P; s

n

) = empty ordered queues(P; s) and since emp-

ty ordered queues(P; s) � Sensitive(P; s), t

n

is a transition \ t

0

" satisfying the con-

ditions stated in step 2.a of the algorithm, and P

n

is included in set P . If P is of type

\timer," then it is running in state s

n

, as well as in state s, and is stopped by t

n

. By

21

step 2.c, P

n

is included in set P .

2. After the execution of t in s

n

, t

n

becomes disabled in the state s

0

such that s

n

t

! s

0

.

If P

n

is not of type \timer," this can happen only if t sends a message to a queue

in empty ordered queues(P

n

; s

n

). Note that, since t

n

is enabled in s

n

, empty orde-

red queues(P

n

; s

n

) does not contain the queue of lowest priority in processor P

n

if

the process of lowest priority of P

n

does not contain a free VFSM. Therefore, P

n

is in may be a�ected by(enabled(P); s), and is included in set P by step 2.b of the

algorithm. If P

n

is of type \timer," then it is running in s

n

, and is stopped by t.

Consequently, P

n

is in may be a�ected by(enabled(P); s), and is included in set P by

step 2.b of the algorithm.

3. The two sequences of transitions tt

n

and t

n

t are both executable from s

n

, but their exe-

cutions do not lead to the same global state. This means that both t and t

n

send at least

one message to the same queue, i.e., a queue in sends on queues by(enabled(P; s

n

)).

Since sends on queues by(enabled(P; s

n

)) = sends on queues by(enabled(P; s)), and

since sends on queues by(enabled(P; s)) � Sensitive(P; s), P

n

is included in set P

by step 2.a of the algorithm.

In all cases, we conclude that P

n

is in set P . Let t

k

be the �rst transition in the sequence

t

1

t

2

: : : t

n

that is contained in processor P

n

. If t

k

is enabled in s, then t

k

is in the set T

returned by the algorithm, which contradicts the assumption that t

i

62 T , for 1 � i � n.

Therefore, t

k

is disabled in s.

Since t

k

is disabled in s and enabled in s

k

, let t

l

be the �rst transition in the sequence

t

1

t

2

: : : t

k�1

such that t

k

is disabled in s

l

and enabled in s

l+1

. (In other words, t

l

and t

k

are dependent in s

l

.) By construction, we know that t

l

is in a processor other than P

n

.

If P

n

is not a processor of type \timer," then t

l

can make t

k

enabled in s

l+1

only

by sending a message to a queue in empty ordered queues(P

n

; s

l

). Since no transitions

of P

n

are executed from s to s

l

, we have empty ordered queues(P

n

; s

l

) � empty orde-

red queues(P

n

; s). Since empty ordered queues(P

n

; s) � Sensitive(P

n

; s), t

l

is a transi-

tion \ t

0

" satisfying the conditions stated in step 2.a of the algorithm, and the processor

of t

l

is included in set P .

If P

n

is a processor of type \timer," then it is stopped in state s

l

, as well as in state s,

22

and t

l

starts it. By step 2.d of the algorithm, the processor of t

l

is included in set P .

In summary, in both cases, there exists a transition t

l

, with 1 � l < k, such that the

processor of t

l

is in P . If t

l

is enabled in s, it is returned by the algorithm and is thus in

T , which contradicts the assumption that t

l

62 T . Therefore, t

l

is disabled in s.

By repeating the same reasoning, one comes to the conclusion that the processor of t

1

is in P . Since t

1

is enabled in s, this means that t

1

2 T , which contradicts the assumption

that t

1

; : : : ; t

n

62 T .

We have implemented a persistent-set selective search using the algorithm of Fig. 5.

Whenever a new state s is visited during the search, the smallest persistent set that can

be computed by the algorithm of Fig. 5 is computed. This is done by executing the

algorithm of Fig. 5 with every transition enabled in s as the initial transition t taken in

step 1 of the algorithm, and then selecting the smallest returned set.

1

Then, only the

transitions in the smallest persistent set are explored.

VI. Determining VFSM Queue and Timer Operations

The algorithm in Fig. 5 requires knowledge of the queue and timer operations performed

by each VFSM in the system. The knowledge used by the algorithm is of two types:

� \Long-term" knowledge about the operations that each VFSM might perform at some

point in an execution sequence beginning at the current global state. This knowledge

is required for the VFSM transitions in Fig. 5 that are \potentially reachable" from

the current global state.

� \Short-term" knowledge about the operations that the enabled VFSM, if any, of a pro-

cessor will perform in its next transition only. This knowledge is needed for calculation

of the set Sensitive(P

i

; s) in Fig. 5.

In order to explore the tradeo� between the accuracy of this knowledge and the cost of

obtaining it, we used three di�erent approaches to its calculation. The �rst two approaches,

described in Sections VI.A and VI.B, employ static analysis to compute both the long-

and short-term knowledge just mentioned. The third approach, described in Section VI.C,

1

Optimizations like those described in [14], [15], [4] for avoiding redundant work during successive executions of

the algorithm of Fig. 5 when searching for a minimal persistent set have also been implemented.

23

uses a more accurate, but more costly, means of obtaining the short-term knowledge

that involves executing the enabled VFSMs in the current global state to determine the

operations they will perform.

A. Per-VFSM Information

The �rst approach is to determine all the operations a VFSM might possibly perform

in its lifetime. Fig. 6 shows the state-transition graph of a VFSM; each node of the graph

is a VFSM state, de�ned by a textual representation like that in Fig. 1, and there is an

edge of the graph for each next-state (NS:) transition. By performing a static analysis

of the textual representation of each state, we can determine the operations the VFSM

might perform in that state; these are denoted by the �rst (bold-faced) labels next to each

state in Fig. 6. Taking the union of the sets labeling each state, we see that the VFSM in

this example can perform send operations on queues 1, 2 and 3, and can start and stop

timer 1. We refer to this information as per-VFSM information, since there is one set of

data computed for each VFSM.

B. Per-State Information

The information computed on a per-VFSM basis clearly overestimates the operations a

VFSM might perform in its lifetime. For example, if the VFSM in Fig. 6 is in state S2,

then it can never send on queue 1 or start timer 1 again: these operations are performed

only in state S0, which is not reachable from S2. Our second approach to calculating

the information needed for the partial-order algorithm is to determine, for each VFSM

state, the operations that can be performed in that state or in states reachable from it.

We refer to this as per-state information, since a set of operations is associated with each

VFSM state. In Fig. 6, the per-state information is represented by the second set of

labels next to each state. Since all other states are reachable from S0, the per-VFSM and

per-state information are the same in this state; in states S1, S2, and S3, however, the

per-state information is strictly \better" than the per-VFSM information, so the use of

per-state information may result in the computation of smaller persistent sets. Note that

the e�ectiveness of per-state information depends on the structure of the state-transition

graph. If, as in Fig. 6, the graph is acyclic, then per-state information can yield much

24

{send(2)}, {stop(1)}
S2

S3

S1

S0
{send(1)}, {start(1)}

{}, {}

{send(3)}, {}

{send(1), send(2), send(3)}, {start(1), stop(1)}

{send(2), send(3)}, {stop(1)}

{send(3)}, {}

{}, {}

Fig. 6. Example VFSM state transition graph

bene�t; however, if the graph is strongly connected, so that each state is reachable from

every other state, then the per-VFSM and per-state information would be identical in all

states.

C. Run-time Information

When considering the enabled VFSM of a processor, both the per-state and per-VFSM

information de�ne the operations it might perform in its next transition, not which op-

erations it actually will perform, which depends on the message it will receive next. In

the example in Fig. 6, the VFSM may start in S0 and end in state S1 when processing a

given message, but both types of information described so far would erroneously assume

that the VFSM sends messages on queues 2 and 3 and stops timer 1. Use of per-state or

per-VFSM information to compute the short-term knowledge needed by the algorithm in

25

Fig. 5 can therefore result in a value for the set Sensitive(P

i

; s) that is too large, limiting

the reduction obtained by the partial-order algorithm.

Unfortunately, it is di�cult to predict, using only static analysis, the operations an

enabled VFSM will perform in response to a given message. However, it is possible to

execute an instrumented version of the VFSM and record the operations it performs in

the course of processing a received message, and then use this information in the persistent-

set algorithm. We refer to this third type of information as run-time information, because

it makes use of knowledge obtained during the execution of validation, as opposed to the

static, a priori information used by the per-state and per-VFSM approaches.

We implemented a special \shadow" mode of VFSM execution for the purpose of collect-

ing run-time information. When a VFSM is executed in normal mode during validation,

it performs local, timer and queue operations on the current global state, resulting in a

new global state (see step 9 in the validation algorithm in Fig. 4). Execution in \shadow"

mode is exactly the same, except that no changes to the current global state are made:

the VFSM simply records information about each queue and timer operation it encoun-

ters during the \shadow" execution, but does not actually perform the operations. Upon

completion of the \shadow"-mode execution, we therefore know exactly which operations

the VFSM will perform when executed in the current global state, and we can use this

information to compute a more accurate value for the set Sensitive(P

i

; s).

To summarize, validation with the partial-order algorithm using run-time information

proceeds from a particular global state as follows:

1. Each enabled VFSM is executed in \shadow" mode to determine the queue and timer

operations it will perform.

2. The information collected from the \shadow"-mode executions is employed in the

calculation of Sensitive(P

i

; s) by the algorithm in Fig. 5.

3. Each enabled transition in the persistent set that results is executed (in normal mode)

to produce a new global state (steps 8-11 in the algorithm in Fig. 4).

The use of \shadow"-mode executions would seem to defeat the purpose of the partial-

order algorithm, which is to compute a persistent set that is strictly smaller than the set

of all enabled transitions and thereby avoid executing all of them. Note from the above

26

discussion that each VFSM transition in the persistent set is in fact executed twice, once

in \shadow" mode and once in normal mode. However, if the persistent sets that result

are smaller than those computed with per-VFSM or per-state information, then the num-

ber of global states explored might also be smaller. Since the persistent-set calculation is

carried out once for each global state encountered, the net reduction that results from ex-

ploring fewer states may be su�cient to compensate for the added overhead of performing

\shadow"-mode executions in each global state.

Run-time information can be computed and used only for the enabled transition, if any,

of each processor when considering the other transitions in the system that might be de-

pendent with it; it cannot be used to calculate the long-term knowledge needed by the

algorithm in Fig. 5. We have therefore used per-state information for the long-term knowl-

edge about the operations that the VFSMs might perform in the \potentially reachable"

transitions in Fig. 5, along with run-time information for the short-term knowledge about

the enabled VFSM needed to calculate Sensitive(P

i

; s); for simplicity, we refer to this

combination as \run-time information" below.

VII. Experimental Results

To determine the reductions that can be obtained with the partial-order algorithm, we

selected four VFSM examples that represent a cross-section of the application domains

in which VFSM has been used. The Voice Storage example, which was described in

Section III, implements a feature that allows mobile-phone users to access their voice

mail. The MFC signalling example is a protocol for transmitting the digits of a telephone

number over an intero�ce trunk line. This example consists of three VFSMs, each of

which is on a separate processor. The CD Remove/Restore example is a part of the 5ESS

hardware maintenance software; it is responsible for removing and restoring groups of

trunk lines. It consists of four VFSMs, three of which are in the same process (the fourth

is on a separate processor). The Speech Handler example is a protocol for setting up a

connection and transferring speech data between the 5ESS switch and a cellular relay site.

It consists of six VFSMs distributed among three processors.

Table I presents the results of validating the four examples described above

2

. For each

2

The results in Table I di�er signi�cantly from those presented in the initial version of this paper [7] because

27

example, we provide four sets of numbers: the �rst is for a normal validation run, and the

last three are for runs with the partial-order algorithm enabled using either per-VFSM,

per-state or run-time information about the operations performed by each VFSM. \States"

gives the number of unique global states explored. \Matches" gives the number of times the

validator determined, using the bitstate-hashing technique, that a global state it produced

had been explored previously. \Transitions" is the number of state transitions explored,

which is a good indicator of the total e�ort expended during validation; it is equal to the

sum of \States" and \Matches". \Time" is the running time of each validation run in

seconds (\user" time obtained with the Unix time command; all runs were performed on

a SparcStation 20 with 190 MB of main memory). For all examples, a bitstate hash array

of 128 MB, or over one billion bits, was used. The ratio of bits in the hash array to global

states ranges from 60 to over 10,000, so the likelihood of hash collisions is reasonably small.

As the table shows, the partial-order algorithm achieves a reduction in the number of

transitions explored in all cases; the reductions range from 13% for the CD Remove/Restore

example to more than a factor of 5 for the Speech Handler example. The algorithm ob-

tains the smallest reductions on the CD Remove/Restore example. This is due to its small

amount of concurrency: there is little message communication between the two processors

in the system; most interaction occurs among the three VFSMs in the same process, at

most one of which is enabled at any given time. One of these VFSMs can start and stop

timers, resulting in dependency whenever a timer is running and this VFSM is enabled.

Hence, the partial-order algorithm is seldom able to �nd a persistent set that is smaller

than the set of all enabled transitions.

The Voice Storage and MFC Signalling examples are both part of the 5ESS call-processing

software, and they have a similar structure: each consists of a \main" VFSM and two or

more \environment VFSMs" that exchange messages with it, but not with each other. All

of the VFSMs in both examples have state-transition graphs that are acyclic, which ex-

plains the signi�cant reductions obtained with per-state information relative to per-VFSM

information. Run-time information yields additional reduction in both cases.

For the Speech Handler example, a substantial reduction is obtained only by using run-

condition 2.b in the algorithm in Fig. 5 was incorrectly omitted from the algorithm of [7].

28

time information. The reason is that there is quite a bit of interaction among the six

VFSMs in this example; because four of the VFSMs have state-transition graphs that are

strongly connected, both the per-VFSM and per-state information severely overestimate

the queue and timer operations these VFSMs actually perform in a given transition.

The running times given in Table I provide information about the computational over-

head introduced by partial-order methods. Comparing the running times for the Speech

Handler example for the normal validation run and the run with the partial-order algo-

rithm using per-VFSM information, we see that the latter running time is much greater,

even though slightly fewer transitions are explored; this is due to the overhead added by

the calculation of persistent sets. Comparison of the per-state and run-time experiments

for the MFC Signalling example illustrates the overhead introduced by execution of all

enabled transitions: the run-time information reduces the number of transitions explored

substantially relative to per-state information, but the running times are nearly identical.

This suggests that the use of run-time information must reduce the number of transi-

tions executed by about 40%{50% relative to per-state information before any reduction

in execution time will be obtained.

VIII. Conclusions

We have presented a partial-order algorithm for a validation tool that models the concur-

rent execution of a collection of VFSMs executing under the control of the 5ESS operating

system. The success of the algorithm on a given example is very much a function of the

structure of its VFSMs. For example, the acyclic structure of the VFSMs in the MFC

Signalling and Voice Storage examples led to great reductions when per-state information

was used. Both examples are processes that are created to handle the set-up of a tele-

phone call and terminated when the call ends; termination is represented by \end states"

in their VFSMs that have no successors. This structure is somewhat surprising: concur-

rent programs are sometimes distinguished from their sequential counterparts by the fact

that the latter are terminating, while the former are non-terminating. We have found

that terminating programs like these, which exhibit all the characteristics of a concurrent

program during their lifetimes, are common in our application domain.

Partial-order methods improve the e�ectiveness of validation in two ways. The �rst is

29

TABLE I

Results of Partial-Order Algorithm

Example Algorithm States Matches Transitions Time

Speech Handler normal 8,650,617 16,126,440 24,777,057 1,729s

PO (per-VFSM) 8,624,565 15,581,858 24,206,423 2,662s

PO (per-state) 8,264,211 14,275,789 22,540,000 2,524s

PO (run-time) 2,399,136 1,920,942 4,320,078 721s

Voice Storage normal 485,666 672,370 1,158,036 100s

PO (per-VFSM) 455,535 567,534 1,023,069 121s

PO (per-state) 205,108 127,140 332,248 39s

PO (run-time) 153,453 79,150 232,603 54s

CD Rmv/Rst normal 626,613 2,873,113 3,499,726 398s

PO (per-VFSM) 590,406 2,729,769 3,320,175 414s

PO (per-state) 505,511 2,650,478 3,155,989 403s

PO (run-time) 505,119 2,541,350 3,046,469 646s

MFC signalling normal 17,587,557 44,106,215 61,693,772 3,413s

PO (per-VFSM) 17,478,778 43,152,269 60,631,047 4,304s

PO (per-state) 11,911,066 24,704,227 36,615,293 2,735s

PO (run-time) 7,566,598 12,265,716 19,832,314 2,698s

that they decrease the amount of time needed to complete a validation run, allowing more

runs to be completed in a given time period. The second is that, because the number of

global states explored is usually much less with partial-order methods, the likelihood of a

collision in the bitstate hash array is also less, increasing one's con�dence that no errors

have been missed.

Comparing the three approaches for determining the queue and timer operations a VFSM

can perform, we can conclude that per-state information is a clear winner relative to per-

VFSM information: the former requires only slightly more memory and processor overhead

than the latter, but can yield signi�cantly greater reductions. Run-time information often

30

results in substantial reduction in the number of global states and transitions but may

increase the overall running time.

Use of the partial-order algorithm described in this paper results in the exploration of a

reduced state space that contains all the deadlocks of the complete state space; however,

the reduced state space may not contain other kinds of errors, such as unexpected inputs

and livelocks. We plan to modify our tool so that it checks for violations of application-

speci�c correctness conditions speci�ed in temporal logic. A slight modi�cation to the

partial-order algorithm will guarantee that the reduced state space contains all violations

of safety and liveness properties.

References

[1] A. R. Flora-Holmquist and M. G. Staskauskas, \Formal validation of virtual �nite state machines," Proc.

Workshop on Industrial-Strength Formal Speci�cation Techniques (WIFT95), Boca Raton, FL, pp. 122-129,

April 1995.

[2] A. R. Flora-Holmquist, J. D. O'Grady and M. G. Staskauskas, \Telecommunications software design using

virtual �nite state machines," Proc. Intl. Switching Symposium (ISS'95), Berlin, Germany, April 1995.

[3] P. Godefroid, \Using partial orders to improve automatic veri�cation methods," Proc. 2nd Workshop on

Computer Aided Veri�cation, volume 531 of Lecture Notes in Computer Science, pages 176{185, Rutgers, June

1990. Springer-Verlag. Extended version in ACM/AMS DIMACS Series, volume 3, pages 321{340, 1991.

[4] P. Godefroid, Partial-Order Methods for the Veri�cation of Concurrent Systems { An Approach to the State-

Explosion Problem, volume 1032 of Lecture Notes in Computer Science, Springer-Verlag, January 1996.

[5] P. Godefroid and D. Pirottin, \Re�ning dependencies improves partial-order veri�cation methods," Proc. 5th

Conference on Computer Aided Veri�cation, volume 697 of Lecture Notes in Computer Science, pages 438{449,

Elounda, June 1993. Springer-Verlag.

[6] P. Godefroid and P. Wolper, \Using partial orders for the e�cient veri�cation of deadlock freedom and safety

properties," Formal Methods in System Design, 2(2):149{164, April 1993.

[7] P. Godefroid, D. Peled, and M. Staskauskas, \Using partial-order methods in the formal validation of industrial

concurrent programs," Proc. Intl. Symposium on Software Testing and Analysis, San Diego, CA, January 1996,

pages 261-269.

[8] G. J. Holzmann, \An improved protocol reachability analysis technique," Software, Practice and Experience,

18(2):137{161, 1988.

[9] S. Katz and D. Peled, \De�ning conditional independence using collapses," Theoretical Computer Science,

101:337{359, 1992.

[10] S. Katz and D. Peled, \Veri�cation of distributed programs using representative interleaving sequences,"

Distributed Computing, 6:107{120, 1992.

[11] W. T. Overman, Veri�cation of Concurrent Systems: Function and Timing, PhD thesis, University of

California Los Angeles, 1981.

31

[12] D. Peled, \All from one, one for all: on model checking using representatives," Proc. 5th Conference on

Computer Aided Veri�cation, volume 697 of Lecture Notes in Computer Science, pages 409{423, Elounda,

June 1993. Springer-Verlag.

[13] D. Peled, \Combining partial order reductions with on-the-
y model-checking," Formal Methods in System

Design, vol. 8, pp. 39-64, 1996.

[14] A. Valmari, \Error detection by reduced reachability graph generation," Proc. 9th International Conference

on Application and Theory of Petri Nets, pages 95{112, Venice, 1988.

[15] A. Valmari, \Heuristics for lazy state generation speeds up analysis of concurrent systems," Proc. of the

Finnish Arti�cial Intelligence Symposium STeP-88, volume 2, pages 640{650, Helsinki, 1988.

[16] A. Valmari, \A stubborn attack on state explosion," Proc. 2nd Workshop on Computer Aided Veri�cation,

volume 531 of Lecture Notes in Computer Science, pages 156{165, Rutgers, June 1990. Springer-Verlag.

[17] A. Valmari, \On-the-
y veri�cation with stubborn sets," Proc. 5th Conference on Computer Aided Veri�ca-

tion, volume 697 of Lecture Notes in Computer Science, pages 397{408, Elounda, June 1993. Springer-Verlag.

[18] F. Wagner, \VFSM executable speci�cation," Proc. IEEE International Conference on Computer System

and Software Engineering, pages 226-231, The Hague, 1992.

[19] P. Wolper and P. Godefroid, \Partial-order methods for temporal veri�cation (invited paper)," Proc. CON-

CUR'93, volume 715 of Lecture Notes in Computer Science, pages 233{246, Hildesheim, August 1993. Springer-

Verlag.

Patrice Godefroid received the B.S. degree in electrical engineering (computer science elec-

tive) in 1989, and the Ph.D. degree in computer science in 1994, both from the University

of Li�ege, Belgium. Since 1994, he has been a member of the technical sta� in the Software

Production Research Department at Bell Laboratories, Naperville, IL. His research interests

include veri�cation and testing of communication protocols, software analysis tools, and design

methodologies for concurrent reactive systems.

32

Doron Peled received his B.Sc., M.Sc. and D.Sc. degrees in computer science from the Tech-

nion, Israel Institute of Technology, in 1984, 1987 and 1991, respectively. Between the years

1987 and 1991 he also did his military service. In 1991{1992, he was visiting the University

of Warwick, England for a post-doctoral year. Since 1992 he has been a member of technical

sta� at Bell Laboratories, Murray Hill, New Jersey. Dr. Peled is interested in speci�cation

and veri�cation of concurrent systems, formal semantics of programming languages, automata

theory, and mathematical logic.

Mark Staskauskas received the B.S. degree in computer science from Columbia University

in 1979, the M.S. degree in computer science from the University of California, Los Angeles,

in 1981, and the Ph.D. degree in computer science from the University of Texas at Austin

in 1992. From 1981 to 1984, he was with M/A-COM Linkabit, Inc., San Diego, CA, where

he participated in a number of network protocol implementations. While a student at the

University of Texas, he was employed by Bull HN Information Systems, Inc., Phoenix, AZ,

and MCC, Austin, TX, in a variety of projects involving the application of formal methods

to real-world hardware and software design problems. He is presently a member of the technical sta� in the

Software Production Research Department at Bell Laboratories, Naperville, IL. His research interests include

formal methods for concurrent programs, software testing, and software engineering. Dr. Staskauskas is a member

of Tau Beta Pi and Upsilon Pi Epsilon.

