Billions and Billions of Constraints:
Whitebox Fuzz Testing in Production

Ella Bounimova
Microsoft Research, USA

Abstract—We report experiences with constraint-based white-
box fuzz testing in production across hundreds of large Windows
applications and over 500 machine years of computation from
2007 to 2013. Whitebox fuzzing leverages symbolic execution
on binary traces and constraint solving to construct new inputs
to a program. These inputs execute previously uncovered paths
or trigger security vulnerabilities. Whitebox fuzzing has found
one-third of all file fuzzing bugs during the development of
Windows 7, saving millions of dollars in potential security
vulnerabilities. The technique is in use today across multiple
products at Microsoft.

We describe key challenges with running whitebox fuzzing in
production. We give principles for addressing these challenges
and describe two new systems built from these principles:
SAGAN , which collects data from every fuzzing run for
further analysis, and JobCenter, which controls deployment of
our whitebox fuzzing infrastructure across commodity virtual
machines. Since June 2010, SAGAN has logged over 3.4 billion
constraints solved, millions of symbolic executions, and tens of
millions of test cases generated. Our work represents the largest
scale deployment of whitebox fuzzing to date, including the
largest usage ever for a Satisfiability Modulo Theories (SMT)
solver. We present specific data analyses that improved our
production use of whitebox fuzzing. Finally we report data on the
performance of constraint solving and dynamic test generation
that points toward future research problems.

I. INTRODUCTION

Fuzz testing is the process of repeatedly feeding modified
inputs to a program in order to uncover security bugs, such
as buffer overflows. First introduced by Miller et al. [19],
traditional blackbox fuzzing is a form of random testing where
an initial seed input is randomly mutated to generate new
fuzzed inputs. While simple, the technique has been shown to
be startingly effective, as thousands of security vulnerabilities
have been found this way. At Microsoft, fuzz testing is
required by the Security Development Lifecycle [18] for any
code that handles untrusted input.

Unfortunately, random testing likely misses bugs that de-
pend on specific trigger values or special structure to an input.
More recently, advances in symbolic execution, constraint
generation and solving have enabled whitebox fuzzing [17],
which builds upon recent advances in systematic dynamic test
generation [15], [5], and extends its scope from unit testing to
whole-program security testing. Starting with a well-formed
input, whitebox fuzzing consists of symbolically executing
the program under test dynamically, gathering constraints
on inputs from conditional branches encountered along the
execution. Each of those constraints are then negated and

Patrice Godefroid
Microsoft Research, USA

David Molnar
Microsoft Research, USA

solved with a constraint solver, whose solutions are mapped
to new inputs that exercise different program execution paths.
This process is repeated using systematic state-space search
techniques, inspired by model checking, that attempt to sweep
through as many as possible feasible execution paths of the
program while checking simultaneously many properties using
a runtime checker (such as Purify, Valgrind or AppVerifier).

In this paper, we report on the first large-scale usage of
whitebox fuzzing. Earlier applications of dynamic test gener-
ation focused on unit testing of small programs [15], [5], [23],
typically consisting of a few thousand lines of code, for which
these techniques were able to achieve high code coverage
and find new bugs, for instance, in Unix utility programs [4]
or device drivers [7]. While promising, this prior work did
not report of any daily use of these techniques and tools.
In contrast, we present here our experience running whitebox
fuzzing on a much larger scale and in production.

We achieve this scale because the current “killer app” for
dynamic test generation is whitebox fuzzing of file parsers.
Many security vulnerabilities are due to programming errors
in code for parsing files and packets that are transmitted over
the internet. For instance, the Microsoft Windows operating
system includes parsers for hundreds of file formats. Any
security vulnerability in any of those parsers may require the
deployment of a costly visible security patch to more than a
billion PCs worldwide, i.e., millions of dollars. Because of the
magnitude of this problem, Microsoft has invested significant
resources to hunt security vulnerabilities in its products, and
provided the right environment for whitebox fuzzing to mature
to this level.

Today, our whitebox fuzzer SAGE [17] is running every
day on an average of 200 machines, and has been running for
over 500 machine years since 2007. In the process, it has found
many previously-unknown security vulnerabilities in hundreds
of Microsoft applications, including image processors, media
players, file decoders, and document parsers. Notably, SAGE
found roughly one third of all the bugs discovered by file
fuzzing during the development of Microsoft’s Windows 7.
Because SAGE is typically run last, those bugs were missed
by everything else, including static program analysis and
blackbox fuzzing.

Achieving this milestone required facing key challenges in
scalability across several dimensions:

1) Symbolic execution: how to efficiently perform sym-

bolic execution on x86 execution traces with billions of

instructions and tens of thousands of symbolic variables
for applications with millions of lines of code (like
Microsoft Excel).

2) Constraint generation and solving: how to generate,
solve and manage billions of constraints.

3) Long-running state-space searches: how to perform
systematic state-space explorations (akin model check-
ing) effectively for weeks or months at a time.

4) Diversity: how to easily configure, check and monitor
whitebox fuzzing so that it is applicable to hundreds of
diverse applications.

5) Fault tolerance and always-on usage: how to manage
hundreds of machines running whitebox fuzzing 24/7
with as little down-time as possible.

While the first challenge was previously discussed in [17], we
describe in this paper how to address the other four challenges.

In addition, we faced new challenges from running in
production, instead of in a research environment. Specifically,
large product groups at Microsoft, such as the Windows and
Office divisions, have large fuzzing labs of machines allocated
to fuzz testing. Over the last few years, our whitebox fuzzer
was gradually deployed on a larger and larger scale in those
labs which were not under our control. Since our internal
customers were not mandated to use this new technology, we
had to progressively gain their trust and business, by consis-
tently finding new security-critical bugs in many applications
while growing our initial research prototype to a large-scale
operation. For this, we had to gain a better understanding of
how SAGE is being used and configured “in the field”, as
well as monitor its progress, while addressing the scalability
challenges listed above and continually improving our tool and
infrastructure.

To help meet these new scalability and production chal-
lenges, we have developed and deployed two new systems:
SAGAN and JobCenter.

o« SAGAN is a monitoring system which records informa-
tion from every SAGE run and displays it via a Web site,
making it easy to drill down into the progress of a run.
Since June 2010, SAGAN has recorded over 3.4 billion
constraints solved, millions of symbolic executions, and
tens of millions of test cases generated for hundreds of
applications.

o JobCenter is a control system which can auto-assign
SAGE jobs to machines as they become available and
monitor progress of each run. JobCenter also helps us
manage the complexity of different configurations re-
quired for different programs under test.

We are not aware of any previous similar system in operation
for monitoring and controling program analysis, testing, model
checking, or verification tasks at such a scale.

Our novel infrastructure enables data-driven improvement,
where feedback from previous runs helps us focus limited
resources on further research and improve future runs. In
Section IV, we demonstrate this with analyses enabled by
SAGAN data that have led directly to changes in our whitebox

fuzzing practice.
Our research contributions are the following:

e We describe key challenges with running whitebox
fuzzing on a large scale. We give principles for addressing
these challenges. We built two new systems following
these principles, SAGAN and JobCenter, that allowed
us to manage multi-week deployments over hundreds of
distinct application configurations.

o We analyze the data from our whitebox fuzzing to make
two specific contributions. First, we present specific data
analyses that address the challenges with production use
of whitebox fuzzing. We show how these analyses led to
changes in our actual practice of whitebox fuzzing over
the course of multiple test passes. Second, we investigate
the performance of the whitebox fuzzing technique across
a large corpus of applications, shedding light on how
symbolic execution and test generation behave at scale.
We use this to highlight future research directions.

This paper is organized as follows. In Section II, we review
whitebox fuzzing and SAGE. In Section III, we present our
two new systems, SAGAN and JobCenter, and their main
features. Then we present in Section IV several original
analyses on the performance of whitebox fuzz testing for runs
of multiple weeks on many different programs. Each of those
analyses was designed to lead to concrete actionable items that
led to further improvements in our tool and infrastructure. We
discuss other related work in Section V, before concluding in
Section VI.

II. BACKGROUND: WHITEBOX FUZZING
A. Blackbox Fuzzing

Blackbox fuzzing is a form of blackbox random testing
which randomly mutates well-formed program inputs, and then
tests the program with those modified inputs [11] with the
hope of triggering a bug like a buffer overflow. In some cases,
grammars are used to generate the well-formed inputs, which
also allows encoding application-specific knowledge and test-
generation heuristics.

Blackbox fuzzing is a simple yet effective technique for
finding security vulnerabilities in software. Thousands of
security bugs have been found this way. At Microsoft, fuzzing
is mandatory for every untrusted interface of every product,
as prescribed in the “Security Development Lifecycle” [18]
which documents recommendations on how to develop secure
software.

Although blackbox fuzzing can be remarkably effective, its
limitations are well-known. For instance, the then branch of
the conditional statement in

int foo(int x) { // x is an input
int v = x + 3;
if (y == 13) abort();
return 0;

// error

}

has only 1 in 232 chance of being exercised if the input variable
x has a randomly-chosen 32-bit value. This intuitively explains
why blackbox fuzzing usually provides low code coverage and

can miss security bugs.

B. Whitebox Fuzzing

Whitebox fuzzing [17] is an alternative approach, which
builds upon recent advances in systematic dynamic test gen-
eration [15], [5], and extends its scope from unit testing to
whole-program security testing. Starting with a well-formed
input, it symbolically executes the program under test dynam-
ically, while gathering constraints on inputs from conditional
branches encountered along the execution. The collected con-
straints are then systematically negated and solved with a
constraint solver, whose solutions are mapped to new inputs
that exercise different program execution paths. This process
is repeated using search techniques that attempt to sweep
through all (in practice, many) feasible execution paths of the
program while checking simultaneously many properties using
a runtime checker.

For example, symbolic execution of the above program
fragment with an initial value O for the input variable x takes
the else branch of the conditional statement, and generates
the path constraint x + 3 # 13. Once this constraint is
negated and solved, it yields x = 10, which gives us a new
input that causes the program to follow the then branch of the
conditional statement. This allows us to exercise and test addi-
tional code for security bugs, even without specific knowledge
of the input format. Furthermore, this approach automatically
discovers and tests “corner cases” where programmers may fail
to properly allocate memory or manipulate buffers, leading to
security vulnerabilities.

In theory, systematic dynamic test generation can lead to full
program path coverage, i.e., program verification. In practice,
however, the search is typically incomplete both because the
number of execution paths in the program under test is huge,
and because symbolic execution, constraint generation and
constraint solving can be imprecise due to complex program
statements (pointer manipulations, floating-point operations,
etc.), calls to external operating-system and library functions,
and large numbers of constraints which cannot all be solved
perfectly in a reasonable amount of time. Therefore, we are
forced to explore practical tradeoffs.

C. SAGE

The basis of our work is the whitebox fuzzer SAGE [17].
Because we target large applications where a single execution
may contain hundreds of millions of instructions, symbolic
execution is the slowest component. Therefore, we use a gen-
erational search strategy to maximize the number of new input
tests generated from each symbolic execution: given a path
constraint, all the constraints in that path are systematically
negated one-by-one, placed in a conjunction with the prefix
of the path constraint leading to it, and attempted to be solved
by a constraint solver. This way, a single symbolic execution
can generate thousands of new tests. (In contrast, a standard

instructions executed 1,455,506,956

instr. executed after 1st read from file 928,718,575
constraints generated (full path constraint) 25,958

constraints dropped due to cache hits 244,170
constraints dropped due to limit exceeded 193,953
constraints satisfiable (= # new tests) 2,980

constraints unsatisfiable 22,978

constraint solver timeouts (>5 secs) 0
symbolic execution time (secs) 2,745
constraint solving time (secs) 953

Fig. 1. Statistics for a single symbolic execution of a large Office application
with a 47 kilobyte input file.

Data

Check for Code Generate Solve

Crash C Constraints Constraint:
v [T | sy | B | Sy | W | e
Fig. 2. Architecture of SAGE.

depth-first or breadth-first search would negate only the last
or first constraint in each path constraint, and generate at most
one new test per symbolic execution.)

To give the reader an idea of the sizes of path constraints
for large applications, Figure 1 shows some statistics about a
single sample symbolic execution of a large Office application
while parsing an input file of about 47 kilobytes. For file
parser fuzzing, each byte read off the untrusted input file
corresponds to a symbolic variable. Our whitebox fuzzer uses
several optimizations that are crucial for dealing with such
huge execution traces. These optimizations are discussed later
in Section 4.

Our whitebox fuzzer performs dynamic symbolic execution
at the x86 binary level. It is implemented on top of the
trace replay infrastructure TruScan [22] which consumes trace
files generated by the iDNA framework [1] and virtually re-
executes the recorded runs. TruScan offers several features
that substantially simplify symbolic execution, including in-
struction decoding, providing an interface to program symbol
information, monitoring various input/output system calls,
keeping track of heap and stack frame allocations, and tracking
the flow of data through the program structures. Thanks to
off-line tracing, constraint generation in SAGE is completely
deterministic because it works with an execution trace that
captures the outcome of all nondeterministic events encoun-
tered during the recorded run. Working at the x86 binary level
allows SAGE to be used on any program regardless of its
source language or build process. It also ensures that “what
you fuzz is what you ship” as compilers can perform source
code changes which may impact security.

D. SAGE Architecture

The high-level architecture of SAGE is depicted in Figure 2.
Given an initial input, Input0, SAGE starts by running the
program under test with AppVerifier to see if this initial
input triggers a bug. If not, SAGE then collects the list of
unique program instructions executed during this run. Next,
SAGE symbolically executes the program with that input
and generates a path constraint, characterizing the current
program execution with a conjunction of input constraints.
Then, implementing a generational search, all the constraints
in that path constraint are negated one-by-one, placed in a
conjunction with the prefix of the path constraint leading to it,
and attempted to be solved by a constraint solver (we currently
use the Z3 SMT solver [8]). All satisfiable constraints are then
mapped to N new inputs. These /N new inputs are then tested
and ranked according to incremental instruction coverage. For
instance, if executing the program with new Inputl discovers
100 new instructions, Inputl gets a score of 100, and so on.
Next, the new input with the highest score is selected to go
through the (expensive) symbolic execution task, and the cycle
is repeated, possibly forever. Note that all the SAGE tasks can
be executed in parallel on a multi-core machine or on a set of
machines; we discuss this in the next section.

III. PRODUCTION CHALLENGES AND INFRASTRUCTURE
A. Monitoring

On a single machine, a multi-week whitebox fuzz testing
run can consume hundreds of gigabytes of disk, perform thou-
sands of symbolic executions and create many test cases. Each
task in the SAGE pipeline offers opportunities for something
to go wrong, potentially causing the fuzz run to halt. Moreover,
each task offers room for improvement by observing statistics,
starting with the basic time taken in each task. When we first
started running whitebox fuzzing at scale, we did not have a
systematic way to capture this information, short of logging
in remotely to computers that had participated in fuzz runs.
To avoid running out of disk space, we configured SAGE to
delete intermediate results. As a result, we had limited ability
to detect failures and learn from our test runs.

Principles. We designed a logging service called SAGAN that
follows these principles:

First, every run of SAGE creates a unique log. Even if the
run fails to start properly, we assign a globally unique identifier
to the run. This allows us to unambiguously identify specific
SAGE runs, aiding our debugging and statistics gathering.

Second, every log contains enough information to reproduce
the run, including all configuration files and command line
options. This principle allows us to quickly reproduce failing
runs and search for the cause of a problem. In the case of
failed tasks, we also send back stdout and stderr files, which
helps us diagnose previously unseen errors.

Third, every log has a unique URL that exposes the log
information in a web browser. We have found this simplifies
collaborative troubleshooting and brainstorming over our next
directions, because we can simply e-mail relevant links back

and forth. We have also created a summary web front end that
shows recent runs and summary statistics, such as number
of crashing test cases found or number of runs that have a
certain percentage of tasks failing. Using this front end, we
can quickly check ongoing lab runs and highlight those with
failing tasks or those which are finding many crashing test
cases. In cases where users of SAGE need to change their
configuration, we can then send them the URL for the log
and highlight the problem.

Fourth, the logging infrastructure should be low impact for
the client. Low impact starts with an infrastructure that takes
a small amount of overhead for each client. Beyond this, low
impact means that even if the logging server fails, we ensure
that the SAGE run can still continue.

Finally, the central logs contain enough information for

all analyses. Prior to SAGAN, we would perform analyses
in support of our research by running SAGE on a target of
interest, then investigating files on disk to gather statistics
and test hypotheses. While this could be scripted, it could
be done only on a machine by machine basis. In addition
because this operation required running SAGE in a way that
kept all intermediate data, it was not the same as the real test
runs. With SAGAN, we can perform analyses, including all the
analyses reported in this paper, without accessing individual
machines.
Architecture. We built the SAGAN logging service to support
hundreds of simultaneously active machines. A central server
runs Microsoft SQL Server and Internet Information Server
on Windows Server 2008 R2. Each of the client machines
makes a direct connection to the SQL Server to insert log
updates. Updates happen at the beginning of every SAGE run,
after every new crashing test case, after every failed task, and
then at random intervals ranging between 30 to 45 minutes
during the run. We randomize the intervals for updates to
avoid synchronization of periodic messages, as recommended
by Floyd and Jacobson [10].

While the overall disk usage of a SAGE run can total
hundreds of gigabytes, our principles reduced the amount
of information that must be shipped to our central server.
First, we limit the initial information sent to the configuration
options and command line, which are a few kilobytes each.
Second, each heartbeat contains counters representing the
number of files created, number of crashes found, coverage,
and a small log file from our whitebox fuzzer, which is
also typically under 10 kilobytes. For a run with no failed
tasks, no constraint solver timeouts, and no crashing test cases
found, our space and bandwidth requirements are modest.
For constraint solver timeouts, while we do ship the entire
constraint to SAGAN for later analysis, we limit the number
of such constraints shipped on each run. Finally, while in
the case of failed symbolic execution tasks we may need
to ship instruction traces in the hundreds of megabytes, we
probabilistically decide whether or not to ship individual traces
and ship at most 5 such traces per run.

Data Presentation. We present the data in two main ways.
First, we designed a web front end to expose information from

the server. Every run has its own unique URL that shows con-
figuration information, health, and number of crashes found at
a glance. By clicking on a link, we can drill down into statistics
from any of the symbolic execution tasks that have completed
during that fuzzing run. For example, we can see how many
constraints were generated and how often optimizations in
constraint generation were invoked.

Second, we run SQL queries against the tables holding
data from SAGE runs. This gives us the flexibility to answer
questions on the fly by looking at the data. For example, we
can create a list of every SAGE run that has at least one
symbolic execution task where more than 10 queries to Z3
timed out. We use this capability to work with our partners and
understand if there are specific features of programs that might
cause long-running constraint solver queries or other strange
behavior. All the analyses in Section IV were performed using
our infrastructure.

B. Control

The SAGAN system gives us insight, but it is only one
piece of the puzzle. We need an active control system for
the machines running SAGE. In particular, the programs on
which we test SAGE are not static. While SAGE is running,
developers are continually updating the code, fixing bugs
and adding new features. Periodically we must upgrade the
programs SAGE tests to the most recent version, to ensure
that the bugs SAGE finds are most likely to reproduce on
developers’ machines and have not been fixed already.
Configuration Management. We run SAGE against multiple
configurations. A configuration consists of a set of initial test
cases, or seed files, a target program for execution with its
arguments, and a set of parameters that define timeout values
for each of the different SAGE tasks. One program of interest
may have many configurations. For example, a single large
program may have parsers embedded for many different file
formats. Together with our partners who run SAGE, we have
defined hundreds of distinct SAGE configurations in use today.

Manually starting SAGE with correct configurations on
hundreds of machines would be a nightmare. We designed a
control service called JobCenter that automates this work, in
conjunction with additional infrastructure created by different
partners of SAGE. Our partners typically have infrastructure
that can automatically upgrade a machine to the latest build
of the software under test and reset the disk to a clean state.
JobCenter then deploys the right version of SAGE and the
right configuration to start the fuzz testing run. While we still
need manual effort to determine if a configuration has the right
parameters and options, JobCenter allows us to do this work
once and re-use it across multiple machines automatically.
Control and Recovery. We have made changes to SAGE that
integrate it with JobCenter for runtime control. A JobCenter
web service allows changing configuration values on the
fly, which we use for fine-tuning and experimentation. For
example, we can change how long to wait while tracing the
execution of the test program. We can also pause a SAGE
job, allowing us to upgrade the version of SAGE used or

SAGECloud

\'/

\'/
SAGE

Job
Center

\'/

VM

HNERERENE

Vi

share for crashes

bug triage

E

Fig. 3. Architecture for SAGAN and JobCenter. Machines running SAGE
communicate to SAGAN for logging and to JobCenter for control. Crashing
test cases are placed on a network share, where they are picked up for
automatic triage to identify new bugs from duplicates or known bugs, which
humans then review and file in a bug database.

perform in depth analysis. We have implemented facilities for
controlling multiple jobs at once, as well.

JobCenter can detect when a SAGE run has terminated, and
then re-start a new SAGE run with a new configuration. This
means that even if a particular configuration is faulty and leads
to a paused run, we can try to recover and continue to use the
machine; we developed this after looking at the utilization data
in Section IV. We currently have at least 90 concurrent virtual
machines reporting to JobCenter at any given time.

Finally, our test machines run Windows and typically need

periodic reboots for security patches. Power outages, servicing,
or other events may also cause unexpected reboots. We have
modified SAGE to persist run information to disk in a way that
ensures we can pick up after such an event when the machine
comes back up. The JobCenter remembers which configuration
is associated with a machine and on machine boot can re-
start an interrupted whitebox fuzzing run. Prior to this, we
had difficulty achieving runs of more than a month in length.
Figure 3 shows the overall architecture, with VMs running
SAGE talking to JobCenter and SAGAN.
Task Partitioning. As we discussed in Section II, a SAGE
fuzzing run consists of four different types of tasks. In
principle, these tasks could be run on separate machines. For
example, we could perform all tracing on one machine, then
send the resulting instruction traces to a second machine for
symbolic execution, and forward the resulting constraints to
another machine. Finally, we could run the newly created tests
and measure coverage on yet another machine.

In our runs, we typically keep all the SAGE tasks on
the same machine. We do this for two reasons. First, the
instruction-level traces we create are hundreds of megabytes
in size, which means we would incur delays in moving them
between machines; we do not have the ability to control the
network infrastructure used by our partners, so we cannot
assume fast links between pairs of machines. Second, as we

Fig. 4. Utilization graph for three sequential sessions with SAGAN. Each
session consists of between two hundred and three hundred SAGE runs on
the same set of test programs. The x-axis shows time in days, and the y-axis
shows the number of active SAGE runs.

will see in Section IV, most constraints are solved within a
tenth of a second, meaning that it is cheaper to solve them
locally on the machine than remotely.

IV. DATA-DRIVEN WHITEBOX FUZZING

SAGAN data collected from runs of SAGE at scale enable
multiple analyses, both for operational improvements and for
suggesting future research. The data we present span several
major sessions each consisting of hundreds of individual
executions of the SAGE tool. Each SAGE run itself fuzzes a
different application during two to four weeks on a dedicated
multi-core machine.

We note that the data analyzed here have been collected not
from controlled experiments, but from production test runs.
We did not choose which applications to test in each session,
the length of the run, or the specific configuration settings.
This means that sometimes, the data for different sessions
might be more difficult to compare. Because the data that are
being collected are so diverse, however, we were able to gain
valuable feedback to track issues and evaluate improvements.
Utilization and Failure Detection. The first key analysis is
monitoring utilization and detecting failures in SAGE deploy-
ments. First, we can determine failing runs by monitoring
heartbeats. Before SAGAN, we had no way to know how the
runs progressed, meaning that runs could die, perhaps due to
a wrong test setup or running out of disk space, and it would
not be apparent until we examined the results, which could be
weeks later.

Using data from SAGAN, we improved our lab-machine
utilization over time. We show here data for three successive
sessions. Each session used the same set of test programs and
had between two hundred and three hundred different SAGE
runs with different configurations of those programs.

In the first session with SAGAN, we were able to detect
that many of the machines died unexpectedly, as shown on
the leftmost chart of Figure 4. We then used the configuration
files sent back by SAGAN to diagnose potential failures, then
develop a fix. As a result, we saw improved utilization in the
second and third major sessions, as shown on the middle and
right charts of Figure 4. For example, in one case after runs
had started, we were able to detect within hours that all of the
symbolic execution tasks failed due to a temporary networking
problem that happened during the setup of the session. We then
corrected the problem and re-started the session.

Second, besides obvious symptoms of a failing run, we
check data on SAGAN that indicate how the run is proceeding.
In particular we check whether the run generated any new

tests, whether the symbolic execution task detected symbolic
inputs, and how many bugs have been found. This in turn
helps detect configuration errors. For example, if the timeout
for tracing the application is set too low, then the trace will end
before the application even reads from an input file. We then
see this show up in SAGAN as a large percentage of symbolic
execution tasks that fail to detect any symbolic inputs. For runs
with problems, the JobCenter infrastructure allows adjusting
configuration parameters of the run. In this example, we can
increase the maximum time allowed for creating the execution
trace to solve the problem. We performed these changes by
hand, but we see this data as potentially enabling auto-tuning
of parameters in the future.

SAGAN data also showed us that in the first and second
sessions, 7% and 3% of all SAGE executions died due to
the machines exhausting disk space. We modified SAGE to
remove non-critical files automatically during low disk space
conditions. All subsequent runs have had 0% failures due to
low disk space.

We have also used SAGAN to detect which SAGE tasks

have failed most, and why. For example, in one session, 62%
of the 300 SAGE runs had failures in symbolic execution.
These failures did not appear in the previous session covering
the same test programs. When we analyzed SAGAN data
about these failures, we found a common problem and traced
it to changes in the compiler generating the binaries under
test. Working with the owners of our Truscan infrastructure,
we fixed the problem. In the next session, we had only 11%
of all SAGE runs failing due to symbolic execution failures,
with none of these remaining failures due to these compiler
changes.
Incompleteness and Divergences. Another key analysis we
performed was tracking incompleteness in symbolic execution.
The x86 instruction set has over a thousand different instruc-
tions. New extensions are added frequently for supporting
SIMD operations, such as Intel’s SSE instruction set. Unfor-
tunately, SAGE does not understand how to symbolically exe-
cute every such instruction. This is important because failures
to properly symbolically execute can lead to an incomplete or
wrong path constraint generation. This can lead to divergences:
an input that is expected to drive the program along a new
specific path actually follows a different path.

We added instrumentation to SAGE to detect whenever we
found an instruction or an instruction sequence not properly
handled by our symbolic execution engine. We then configured
SAGE to send back counts of how many of such cases
and of which type were encountered during every symbolic
execution. We prioritized the incompleteness cases into “high”
and “low” severity categories. The high severity case indicates
instructions not handled at all by our symbolic execution. Low
severity means that the handling has known shortcomings but
still creates some kind of approximate constraint.

After a first session with this new instrumentation, we
analyzed the new resulting SAGAN data to determine which
instructions and sequences of instructions had the highest
counts. For example, we found that over 90% of the high

123 456 7 8 9101112131415 1617 18 19 20 21 22 23

Fig. 5. New unique crash buckets found per day over 23 days of running
SAGE on about 200 programs from a typical SAGE session. The data
suggests that running longer would yield more unique crashes, although the
return becomes lower.

severity instructions were shift instructions. We implemented
symbolic instruction handlers for these instructions. As a
result, the data from the next session showed that in the high
severity category, the vast majority of the instructions had
now been handled. We now reguarly track this data across
all programs tested by SAGE, in order to address remaining
holes in symbolic execution and prioritize the writing of new
symbolic instruction handlers.

Unique Bugs Found by Day. We investigated when unique
bugs are detected over the course of sessions. Our whitebox
fuzzer SAGE uses AppVerifier configured to check for heap
errors. Each memory corruption found (such as buffer over-
flow) is mapped to a crash. Because SAGE can generate many
different test cases that exhibit the same bug, we “bucket”
crashing files by the stack hash of the crash, which includes
the address of the faulting instruction. It is possible for the
same bug to be reachable by program paths with different
stack hashes for the same root cause. Our experiments always
report the distinct stack hashes.

We collected earliest detection timestamps for each bucket
found during a session. Figure 5 presents this chart for a
session with over two hundred programs over three weeks.
The first few days were the most productive, due to exercizing
new code quickly thanks to symbolic execution'. The chart
also shows two more “peaks” of new crash buckets on days
13 and 21. This shows that new crashes were found throughout
the session.

Constraint Generation and Solving. Another large amount
of data we have collected during our 500 machine-years of
running SAGE relates to symbolic execution and constraint
solving. We now present such data for a set of 304,190
symbolic execution tasks performed on about 300 different
applications running on Windows, and their corresponding
constraints. The sum of all constraints generated and solved
during those symbolic executions is 129, 648,907 constraints,
thus an average of 426 constraints generated for each sym-
bolic execution (after all the constraint pruning done by the

lUnfortunately, we cannot reveal absolute numbers of crashes found.

90000

e 98.21% 99.18% 100.00% 100.00% 100.00%
70000
60000
50000
40000
30000

20000

10000

0001 0.005 001 0.05 0.1 05 1 30 60 >60
B Frequency -m-Cumulative %

Fig. 6. Average time for solving constraints for each symbolic execution
task. The bars show the number of tasks with an average solving time in
the labeled bin. The line is a cumulative distribution function over all tasks.
90.18% of all tasks have an average solving time of 0.1 seconds or less.

250000

97.18%

99.78% 99.96% 100.00% ~ 100.00%

200000

150000

100000

23.07%

50000

0 .

0-20 20-200 200-2000 2000-20000 20000-2000000 >2000000

B Frequency —#-Cumulative %

Fig. 7. Histogram and cumulative distribution function for time to create
constraints during symbolic execution tasks. The tasks come from a typical
SAGE session with roughly 300 test program configurations. Note 99.78%
of tasks created all their constraints in less than 2000 seconds.

techniques and heuristics described later in this section).
Constraint Solving Time. Figure 6 presents the average solver
time per constraint for each symbolic execution. From this
chart, one can see that about 90% of all constraints are solved
by Z3 in 0.1 seconds or less, and that about 99% of all
constraints are solved in 1 second or less. Thus, most solver
queries are fast.

Time Spent on Creating vs Solving Constraints. Figure 7
examines the total amount of time spent in symbolic execution
tasks on creating constraints, while Figure 8 looks at the total
amount of time during each task spent on solving constraints.
In both cases, the 99th percentile times are modest, but there
are a significant number of outliers that take a long time to
generate or to solve constraints. There is little correlation,
however: Figure 9 shows a plot of the total time in sec-
onds spent symbolically executing programs versus solving
constraints for each task, examining the 304,109 symbolic

300000

86.26%

250000 99.21% 99.90% 100.00% 100.00%

96.93%
200000

/

150000

100000

50000

0 .

020 20-200

I
200-2000

2000-20000 20000-2000000 >2000000

mm Frequency ==Cumulative %

Fig. 8. Histogram and cumulative distribution function for time to solve
constraints during symbolic execution tasks. The tasks come from a typical
SAGE session with rouhgly 300 test program configurations. Note that
99.21% of tasks took less than 2000 seconds to solve all their constraints.

2% 0.82%

Constraitnt generation time

200 sec:

94.93% 2.25%

200 secs .
solver time

Fig. 9. On the X axis, solver time, and on the Y axis, constraint generation
time. The percentages show the proportion of symbolic execution tasks that
fall into each region. The main finding is that 94.93 percent of tasks have
less than 200 seconds of constraint generation and 200 seconds for solving.
Furthermore, less than one percent of all tasks have a large number of
constraints and a large solving time.

execution tasks considered. The main finding is that 94.93%
of all the symbolic execution tasks fit in the lower left corner
of the graph, in a box bounded by 200 seconds for creating
constraints by 200 seconds for solving them.

Following this observation, we implemented new features
in SAGE to limit (1) the time spent in constraint generation
and (2) the number of constraints being generated. Further
analysis of the constraints generated from runs outside the
200 by 200 region revealed that most of those constraints
are actually unsatisfiable, and therefore do not contribute to
new tests. Intuitively, the more symbolic execution generates
constraints, the longer the path constraint (by definition), the
more constrained the “tail” of the path constraint is (since
every negated constraint is put in a conjunction with all the
constraints before it in the path constraint), and the more unsat-
isfiable the constraints in the tail usually are. Therefore, most
constraints in long tails are usually unsatisfiable. Moreover,

180000

160000

100.00%
91.76%

140000 9.04% _/.
93.26%
80_792/././.—’-
120000 84.34%
5.18%
9.54%

2.31%

100000

80000

60000

40000

20000

0

0-10 1020 2030 3040 4050 5060 60-70 70-80

80-90 90-100

mmFrequency -#=Cumulative %

Fig. 10. Histogram and cumulative distribution function for the ratio of
satisfiable constraints to total constraints. We see that for 80.79% of symbolic
execution tasks, 50% or less of the constraints generated are satisfiable.

dropping unsatisfiable constraints is harmless for the purpose
of test generation and finding bugs.

After enforcing such new limits on constraint generation

time and the number of constraints generated by each symbolic
execution, we saw in the next session increases in the number
of symbolic execution tasks per SAGE run (5.3 times) as
expected, but also an increase in the average number of
constraints per symbolic execution task (2.3 times) and an
increase in the total number of constraints per SAGE run (12
times).
Unsatisfiable Constraints. Figure 10 plots the histogram and
cumulative distribution function for the ratio of satisfiable
constraints to total constraints in symbolic execution tasks.
This figure ranges over 298,354 tasks, representing 98.08% of
all tasks in the previous data set minus outliers that were hard
to visualize in this form and therefore omitted. This figure
illustrates that most constraints generated by most symbolic
executions are unsatisfiable — most runs are below the 50
percent mark for satisfiable constraints.

Why are most constraints generated by SAGE solved in a
fraction of a second (see Figure 6)? An important optimization
we use is related constraint optimization [17] which removes
the constraints in the path constraint that do not share sym-
bolic variables with the negated constraint (a simple syntac-
tic form of “cone-of-influence” reduction); this optimization
often eliminates more than 90% of the constraints in the
path constraint. Another critical, widely used optimization is
symbolic-expression caching which ensures that structurally
equivalent symbolic terms are mapped to the same physical
object, and avoids an exponential blow-up when the same sub-
terms appear in different sub-expressions. We also use local
constraint caching which skips a constraint if it has already
been added to the path constraint (since its negation cannot
possibly be satisfiable with the first constraint in the path
constraint, i.e., p A —p is always unsatisfiable no matter what
p is). These three optimizations are sound, that is, they cannot
themselves cause to miss bugs.

20000

18000

16000 \'

lm)o\

12000

8000

10000 1
|
\

6000

2000 e

Fig. 11. On the x-axis, we place different branches observed during whitebox
fuzzing. On the y-axis we have the frequency of occurrence. The graph shows
only the 100 first most common branches out of 3, 360 total. The branches to
the left are those who would benefit the most from symbolic test summaries.

We also use other optimizations which are necessary in
practice to avoid the generation of overly long path constraints,
but which arbitrarily prune the search space and are therefore
unsound, i.e., can force the search to miss bugs. Specifically,
a flip count limit establishes the maximum number of times a
constraint generated from a particular program branch can be
“flipped”, that is, negated and then solved. Moreover, using
a cheap syntactic check, constraint subsumption eliminates
constraints logically implied by other constraints injected at
the same program branch (mostly likely due to successive
iterations of an input-dependent loop). For whitebox fuzzing,
the art of constraint generation is as important as the art of
constraint solving.

Commonality Between Programs. The Windows operating
system packages functionality in DLLs (dynamically loaded
libraries) that are shared by many applications. How much
sharing is there between applications tested by whitebox
fuzzing? Answering this question shows us whether invest-
ment in caching symbolic execution between SAGE runs is
worthwhile.

Figure 11 shows statistics about all the program branches
flipped during a whitebox fuzzing session for about 200
applications running on Windows. Each program branch is
identified by a DLL name and an offset in that DLL, and
corresponds to a conditional statement (typically a jump)
where a symbolic input-dependent constraint was generated.
The data represent 290,430 program branches flipped. There
are 3,360 distinct branches, with a maximum frequency of
17,761 (extreme left) and minimum frequency 592 in the
extreme right, which is not shown here — the tail is shown
only up to distinct branch ranked as 100, and there is a very
long and flat tail up to distinct branch 3, 360 after this.

As one can clearly see from the figure, a small percentage
of unique program branches (to the left) are flipped over
and over again, and represent the part of the search space
where most constraints were generated. Remember the data
shown here was obtained affer the pruning described in the
previous subsection preventing the same branch to be flipped
over a specific limit; without this pruning, the data would be
even more tilted towards these few instructions. This behavior
is typical, even in a single application. For instance, when
whitebox fuzzing a structured non-binary parser, most of the

input constraints generated are in the lexer, of course.

Re-fuzzing over and over again the same sub-components
and DLLs is wasteful. In principle, this can be avoided with
compositional testing [13], which creates test summaries from
symbolic execution. These summaries are not only re-usable
during a fuzzing session, but also apply across applications
that share common components (such as DLLs), and over
time from one fuzzing session to the next [16]. Compositional
testing can result in a search algorithm that is exponentially
faster than a non-compositional one. Every test run in a
centralized infrastructure can create new test summaries to
improve all future test runs through this component. A key
open problem we see is how to best build and deploy a
centralized repository of test summaries for all programs tested
by the SAGE tool.

V. RELATED WORK

Blackbox fuzz testing in clusters at a large scale is not
new. Nagy described a custom-built cluster dedicated to high
volume testing of Microsoft Word that processes 1.7 million
test cases per day [21]. The Office team at Microsoft has built
a distributed fuzzing framework that works across “nights and
weekends” use of idle desktops, as well as in clusters [12].
Google’s security team devoted 2, 000 cores over roughly four
weeks to fuzz testing Adobe Flash [9]. We leverage previous
work in this area on the classification of crashing test cases,
prioritization of bugs, and automatic reporting of important
bugs to developers.

What is new is the use of whitebox fuzzing at the scale
described in this paper. Whitebox fuzzing combines and ex-
tends program analysis, testing, verification, model checking
and automated theorem proving techniques that have been
developed over many years. Specifically, it builds upon recent
advances in fest generation using dynamic symbolic execu-
tion [15] [5], because this is the most precise form of test
generation known today (see [14]) and better precision is
key to finding bugs missed by previous tools, like blackbox
random fuzzers. Precision is why SAGE finds bugs missed by
everything else.

Over the last few years, test generation with dynamic sym-
bolic execution has been implemented in many tools, such as
APOLLO, KLEE, PEX and S2E (see [6] for a recent survey).
For instance, the KLEE tool showed these techniques could
yield high coverage on all programs in the coreutils and
busybox suites, outperforming hand-generated tests created
over multiple years. Follow-on tools applied these techniques
to testing drivers [7], and finding “trigger behavior” in mal-
ware [2]. While promising, this prior work did not report of
any daily use of these techniques and tools.

Another recent significant milestone is the emergence of
whitebox fuzzing of file parsers [17] as the current main “killer
app” for dynamic test generation. This in turn has allowed the
developmemt of the next step in this decades-long journey:
the first “productization” of large-scale symbolic execution
and constraint solving. This paper is the first to report on this
development.

Our work extends previous dynamic test generation tools
with logging and control mechanisms. These mechanisms
allow us to run whitebox fuzz testing for weeks, and now
even months, with low effort and cost, and they enable data-
driven improvements to our fuzzing platform. The closest
related work is Metafuzz [20] and Cloud9 [3]. Metafuzz
also performed logging of whitebox fuzzing on Linux, using
the SmartFuzz plugin for Valgrind [20]. Unlike our current
work, however, Metafuzz has no automatic control features.
Furthermore, the authors do not show how data from Metafuzz
directly inform future research or operations of whitebox
fuzzing. Finally, the Metafuzz authors report experiments of
24 hours in length, while we report on multiple multi-week
runs of whitebox fuzzing on many more applications.

Cloud9 [3] is a system for scaling KLEE-style symbolic
execution across a cluster of commodity machines; the authors
use Amazon’s Elastic Compute Cloud in their experiments.
Like KLEE, Cloud9 focuses on creating high coverage test
suites for commodity programs. Their techniques for scaling
symbolic execution across multiple machines are complemen-
tary to ours and could be used to inform the task partitioning
we described in Section III. Again, however, they do not report
on multiple multi-week runs against hundreds of different test
programs. Our work reports on usage and deployments which
are orders of magnitude larger in all five scalability dimensions
identified in Section I than any prior work in this space.

VI. CONCLUSION

We reported the first production use of whitebox fuzz
testing, consisting of multiple Microsoft product releases and
over 500 machine years of testing. We built two new systems,
SAGAN and JobCenter, to manage multi-month deployments
over hundreds of distinct application configurations. We pre-
sented several data analyses which led to short-term, concrete
actions that improved whitebox fuzzing.

Our data also points to longer-term research directions, as
discussed in Section IV. For example, SAGE would greatly
benefit from automatic parameter tuning to reduce the cost
to set it up with a new binary. Even with the JobCenter
improvements, the initial parameters must be set by hand
before being replicated to test machines. Much of our time
to set up SAGE with a new program is in fact taken with
discovering the correct parameter values. As another example,
our data clearly shows wide sharing between over 200 apps
on Windows, which should be leveraged to avoid costly
recomputation of constraints, possibly using test summaries, as
discussed in Section IV. Our end goal is a “testing cloud” that
can accept applications, explore them, and report the results
to developers with minimum manual work.

ACKNOWLEDGMENTS

This work was performed in collaboration with our partners
in Windows and Office. We thank Mehdi Bouaziz for his
substantial contributions to JobCenter. We thank Rich Draves,
Jon Howell, Stuart Schecter, and Helen Wang for feedback on
early drafts of this paper.

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

S. Bhansali, W. Chen, S. De Jong, A. Edwards, and M. Drinic.
Framework for instruction-level tracing and analysis of programs. In
Second International Conference on Virtual Execution Environments
VEE, 2006.

D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin.
Automatically identifying trigger-based behavior in malware. In Botnet
Detection, pages 65-88. Springer, 2008.

S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In Proceedings
of the sixth conference on Computer systems, EuroSys *11, New York,
NY, USA, 2011. ACM.

C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
0SDI, 2008.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically Generating Inputs of Death. In ACM CCS, 2006.
C. Cadar, P. Godefroid, S. Khurshid, C.S. Pasareanu, K. Sen,
N.Tillmann, and W. Visser. Symbolic Execution for Software Testing
in Practice — Preliminary Assessment. In ICSE’2011, Honolulu, May
2011.

V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo
multi-path analysis of software systems. In ASPLOS, 2011.

L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In
Proceedings of TACAS 2008, volume 4963 of Lecture Notes in Computer
Science, pages 337-340, Budapest, April 2008. Springer-Verlag.

Ch. Evans, M. Moore, and T. Ormandy. Fuzzing at scale, 2011. http:
//googleonlinesecurity.blogspot.com/2011/08/fuzzing-at-scale.html.

S. Floyd and V. Jacobson. The synchronization of periodic routing
messages. [EEE/ACM Trans. Netw., 2(2):122-136, April 1994.

J. E. Forrester and B. P. Miller. An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing. In Proceedings
of the 4th USENIX Windows System Symposium, Seattle, August 2000.
T. Gallagher and D. Conger. Under the kimono of office security
engineering. In CanSecWest, 2010.

P. Godefroid. Compositional Dynamic Test Generation. In Proceedings
of POPL’2007 (34th ACM Symposium on Principles of Programming
Languages), pages 47-54, Nice, January 2007.

P. Godefroid. Higher-Order Test Generation. In PLDI’2011 (ACM
SIGPLAN 2011 Conference on Programming Language Design and
Implementation), pages 258-269, San Jose, June 2011.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated
Random Testing. In Proceedings of PLDI’2005 (ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation),
pages 213-223, Chicago, June 2005.

P. Godefroid, S. K. Lahiri, and C. Rubio-Gonzalez. Statically Validating
Must Summaries for Incremental Compositional Dynamic Test Gener-
ation. In Proceedings of SAS’2011 (18th International Static Analysis
Symposium), volume 6887 of Lecture Notes in Computer Science, pages
112-128, Venice, September 2011. Springer-Verlag.

P. Godefroid, M.Y. Levin, and D. Molnar. Automated Whitebox Fuzz
Testing. In Proceedings of NDSS’2008 (Network and Distributed
Systems Security), pages 151-166, San Diego, February 2008.

M. Howard and S. Lipner. The Security Development Lifecycle.
Microsoft Press, 2006.

B.P. Miller, L. Fredriksen, and B. So. An empirical study of the
reliability of UNIX utilities. Communications of the ACM, 33(12),
December 1990.

D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation to
find integer bugs in x86 binary linux programs. In USENIX Security
Symposium, 2009.

B. Nagy. Finding microsoft vulnerabilities by fuzzing binary files with
ruby - a new fuzzing framework. In SyScan, 2009. http://www.youtube.
com/watch?v=u--j4YY_7cg.

S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically classifying benign and harmful data races using replay
analysis. In Programming Languages Design and Implementation
(PLDI), 2007.

N. Tillmann and J. de Halleux. Pex - White Box Test Generation for
NET. In Proceedings of TAP’2008 (2nd International Conference on
Tests and Proofs), volume 4966 of Lecture Notes in Computer Science,
pages 134—153. Springer-Verlag, April 2008.

