
Software Model Checking in Practice:
An Industrial Case Study

Satish Chandra
Bell Laboratories

Lucent Technologies

schandra@bell-labs.com

Patrice Godefroid
Bell Laboratories

Lucent Technologies

god@bell-labs.com

Christopher Palm
Wireless Network Group

Lucent Technologies

snow72@lucent.com

ABSTRACT
We present an application of software model checking to the

analysis of a large industrial software product: Lucent Tech-

nologies' CDMA call-processing library. This software is

deployed on thousands of base stations in wireless networks

world-wide, where it sets up and manages millions of calls to

and from mobile devices everyday. Our analysis of this soft-

ware was carried out using VeriSoft, a tool developed at Bell

Laboratories that implements model-checking algorithms for

systematically testing concurrent reactive software.

VeriSoft has now been used for over a year for analyzing

several releases and versions of the CDMA call-processing

software. Although we started this work with a fairly ro-

bust version of the software, the application of model check-

ing exposed several problems that had escaped traditional

testing. Model checking also helped developers maintain a

high degree of con�dence in the library as it evolved through

its many releases and versions.

To our knowledge, software model checking has rarely

been applied to software systems of this scale. In this paper,

we describe our experience in applying this technology in an

industrial environment.

1. INTRODUCTION
During the last twenty years, tremendous progress in the

development of hardware and communication technologies

has enabled the emergence of a new class of programs: re-

active programs. While traditional programs transform an

input into an output in order to compute something, reactive

programs continually interact with their environment in or-

der to control something. Nowadays, reactive programs are

ubiquitous in our lives: they control telephones, airplanes,

ATMs, power plants, pacemakers, etc.

With the rise of reactive programs has grown what has

become the method of choice for verifying their correctness:

model checking [14, 6]. The term \model checking" means to

check whether all possible behaviors of a reactive program

are \models", in the classical logical sense, of a temporal-

logic formula representing a property. Since the 1980's, the

study of model checking has been an active area of research,

leading to signi�cant new results on temporal logics, au-

tomata theory, process algebras and state-space exploration

algorithms.

In the early 1990's, model checking evolved from a mostly

theoretical discipline in computer science to a practical de-

sign-veri�cation framework thanks to the development of

tools such as CAESAR [15], COSPAN [21], CWB [7], MUR-

PHI [12], SMV [28] and SPIN [22], among others. These

tools can automatically explore the state space of a concur-

rent/reactive system represented by a program speci�ed in

essentially a �nite-state modeling language. They have been

successfully applied to analyze the correctness of a large va-

riety of reactive systems, ranging from circuit designs to

communication protocols.

A typical success story in this context would consist of

showing that a thorough analysis of a system using model

checking had revealed important 
aws previously unknown

to the designers (for instance, see [5, 3]). The main practi-

cal contribution of model checking is thus that it can expose

subtle design errors that would be very hard to �nd other-

wise. Although model checking is a veri�cation framework,

it is closer to testing in practice since any veri�cation pro-

cess is inherently incomplete: only some abstract models or

system con�gurations can be checked against some proper-

ties in some environment, and veri�cation results can also

be approximate when an exact answer is too expensive to

compute.

During the last �ve years or so, researchers have started

investigating one of the most challenging open problems re-

lated to model checking: how to apply model checking to an-

alyze reactive software. By software, we do not mean mod-

els of software systems speci�ed in some �nite-state model-

ing language supported by traditional model-checking tools,

even when these models can be compiled to form the core of

software implementations as advocated in top-down design

methodologies supported by languages such as SDL [23], ES-

TEREL [2], and VFSM [17]. By software, we mean software

written in programming languages, such as C, C++ or Java,



and of realistic size, i.e., possibly hundreds of thousands lines

of code. While modeling languages are basically notations

for concurrent/extended �nite-state machines, programming

languages are much more expressive and complex since they

support procedures, recursion, dynamic data structures of

various shapes and sizes, pointers, etc.

Essentially two approaches to software model checking

have been proposed and are still actively being investigated.

The �rst approach [19] consists of adapting model checking

into a form of systematic testing that simulates the e�ect of

model checking while being applicable to processes execut-

ing arbitrary code: like a traditional model checker explores

the state space of a system model de�ned as the product

of its concurrent �nite-state components, one can explore

the state space of a software application by �rst de�ning it

as the \product" of its concurrent (Unix-like) processes and

then by using a run-time scheduler for driving the entire ap-

plication through all the states and transitions in its state

space de�ned this way; this approach is developed in the tool

VeriSoft. The second approach consists of automatically ex-

tracting a model out of a software application by statically

analyzing its code and abstracting away details, and then

applying traditional model checking to analyze this abstract

model; examples of tools that follow this paradigm are Ban-

dera [10], Feaver [24], JavaPathFinder [32] and SLAM [1].

We will discuss and compare both approaches in detail later.

A few applications of software model checking have been

reported in the research literature so far. For instance, [20]

describes the analysis of a critical component of a telephone

switch using VeriSoft, [24] reports the analysis of a network

server product using Feaver and [32] discusses the analysis of

a remote-agent spacecraft controller and of the kernel of an

avionics operating system using JavaPathFinder. It is worth

noting that the software analyzed in each case was described

by at most a few thousands lines of code. These encourag-

ing applications demonstrate that software model checking

is applicable for so-called unit testing, where a rather small,

well-delineated, yet complex and critical software applica-

tion is the focus of the analysis.

In this paper, we report our experience applying software

model checking to a much larger software application: Lu-

cent Technologies' CDMA call-processing library. This crit-

ical software application runs on every CDMA base station

sold by Lucent Technologies. A base station is a device con-

taining antennas and radio control hardware and software

to manage wireless transmissions. A typical wireless net-

work contains thousands of base stations which may be geo-

graphically distributed over large areas. The call-processing

library that is the focus of the present work is the software

that sets up and manages calls to and from mobile devices

(such as cellular phones). In addition to setting up a call ini-

tially, call-processing software must also support continuity

of connection as a mobile device changes location, also called

a hand-o�. In the third-generation wireless networks, which

use CDMA technology, call-processing software is further

complicated because multiple logical tra�c channels must

be maintained for each mobile to support high-quality hand-

o�s. Since these logical channels are a shared resource at a

base station, the call-processing software must implement

complex dynamic resource allocation algorithms to manage

them.

CDMA call processing presents several challenges from

a testing perspective. The �rst obvious challenge is the

large number of possible scenarios that a set of mobile calls

can go through; traditional testing techniques can only pro-

vide limited test coverage since they depend on the number

of scenarios that a human tester can create and execute.

Second, the call-processing module is not a simple, single-

process, stand-alone application: it is embedded in a highly

networked environment composed of multiple processes, in-

voking call-processing functions through multiple interfaces.

Third, the size of the whole application, i.e., hundreds of

thousands lines of mostly C and C++ code, and the com-

plexity of its architecture makes any kind of manual or au-

tomatic \model extraction" via static analysis problematic,

and hence unrealistic under the constraints (time pressure

and cost) faced by an industrial development organization.

Our solution takes advantage of VeriSoft, a general-purpo-

se \model checker" for systematically testing concurrent re-

active software [19]. We have integrated VeriSoft into the

existing execution environment for Lucent's wireless prod-

uct platform and with the testing interface available for the

CDMA call-processing software. We then created several

nondeterministic C programs representing in a very com-

pact way a multitude of realistic combinations of external

events the software should be able to handle. VeriSoft was

then used to systematically drive the execution of these non-

deterministic programs through all their possible behaviors,

thus exercising the call-processing software through millions

of scenarios. More than 1,500 runs of VeriSoft over a pe-

riod of more than a year have been executed for analyzing

several releases and versions of the CDMA call-processing

software. This thorough testing exposed several previously

unknown problems (software bugs) in various components

of the CDMA product.

The rest of this paper is organized as follows. In the

next section, we brie
y recall the main ideas and features of

VeriSoft. In Section 3, we present basic notions of wireless

networks and the role of the CDMA call-processing library

considered here. In Section 4, we describe the steps neces-

sary to carry out the analysis of the call-processing library

using VeriSoft. We then discuss in Section 5 the results ob-

tained and impact of this work. In Section 6, we discuss the

costs and limitations of our approach, and Section 7 com-

pares it with other approaches to software model checking

and automatic test generation. We conclude in Section 8

with some general remarks on technology-transfer and busi-

ness issues related to software model checking.



VeriSoft scheduler

System Processes

Figure 1: Overall Architecture of VeriSoft (in Au-

tomatic State-Space Exploration Mode)

2. MODEL CHECKING SOFTWARE WITH
VERISOFT

We brie
y recall in this section the main ideas of the

framework introduced in [19]. We consider a concurrent

system composed of a �nite set of processes and a �nite set

of communication objects. Each process executes a sequence

of operations described in a sequential program written in

a full-
edged programming language such as C or C++.

Such sequential programs are deterministic: every execu-

tion of the program on the same input data performs the

same sequence of operations. We assume that processes

communicate with each other by performing atomic oper-

ations on communication objects, such as shared variables,

semaphores, and FIFO bu�ers. Operations on communica-

tion objects are called visible operations, while other oper-

ations are by default called invisible. The execution of an

operation is said to be blocking if it cannot currently be com-

pleted; for example, waiting for the reception of a message

blocks until a message is received. We assume that only

visible operations may be blocking.

A concurrent system is said to be in a global state when

the next operation to be executed by every process in the

system is a visible operation. Every process in the system

is always expected to eventually attempt executing a visi-

ble operation. (If a process does not attempt to perform a

visible operation within a given amount of time, an error,

called divergence, is reported at run time.) This assumption

implies that initially, after the creation of all the processes

of the system, the system can reach a �rst and unique global

state s

0

, called the initial global state of the system. A pro-

cess transition is de�ned as one visible operation followed by

a �nite sequence of invisible operations performed by a sin-

gle process and ending just before a visible operation. The

state space of the concurrent system is then de�ned as the

global states that are reachable from the initial global state

s

0

, and of the transitions that are possible between these.

VeriSoft is a tool for systematically exploring the state

space of a concurrent system as de�ned above. System-

atic state-space exploration is performed by controlling and

observing the execution of all the visible operations of the

concurrent processes of the system. The execution of the

system processes is controlled by an external process, called

the scheduler (see Figure 1). This process observes the visi-

ble operations performed by processes inside the system, and

can suspend their execution. By resuming the execution of

(the next visible operation of) one selected system process in

a global state, the scheduler can explore one transition be-

tween two global states in the state space of the concurrent

system. By reinitializing the system, the scheduler can ex-

plore alternative paths in the state space. It is thus assumed

that there are exactly two sources of nondeterminism in the

concurrent systems considered here: concurrency and calls

to a speci�c visible operation named VS toss used to model

nondeterminism as described below. When this assumption

is satis�ed, the VeriSoft scheduler has complete control over

nondeterminism, and can thus reproduce any scenario lead-

ing to an error found during a state-space search.

As with most systematic state-space exploration tools,

VeriSoft requires an executable representation of the envi-

ronment (test driver) in which the system operates, in order

to close the system and make it self-executable. For this

purpose, the special visible operation VS toss is available to

express a valuable feature of modeling languages, not found

in programming languages: nondeterminism. This opera-

tion takes as argument a positive integer n, and returns

an integer in [0; n]. The operation is nondeterministic: the

execution of VS toss(n) may yield up to n+1 di�erent suc-

cessor states, corresponding to di�erent values returned by

VS toss.

Four main classes of errors can be detected by VeriSoft:

deadlocks, livelocks, divergences and assertion violations.

Deadlocks are states where the execution of the next op-

eration of every process in the system is blocking. A live-

lock occurs when the execution of the next visible opera-

tion of some process is blocking during a sequence of more

than a given (user-speci�ed) number of successive states

in the state space. Deadlocks and livelocks are notorious

problems in concurrent systems, and are extremely di�cult

to detect through conventional testing methods. A diver-

gence occurs when a process does not attempt to execute

a visible operation within a speci�ed (bounded) amount of

time. Divergences may be caused by segmentation faults,

non-terminating loops, etc. Assertions can be speci�ed any-

where in the application code with the special operation

VS assert. This operation can be used in any process, and

takes as its argument a boolean expression that can test

and compare the value of variables and data structures lo-

cal to the process. When VS assert(expression) is executed,

the expression is evaluated. If the expression evaluates to

false, the assertion is said to be violated. Many undesirable

system properties|such as unexpected message receptions,

bu�er over
ows, and application-speci�c error conditions|

can easily be expressed as assertion violations.

Since states of programs can be very complex (because of

pointers, dynamic memory allocation, large data structures

of various shapes, recursion, etc.), the VeriSoft scheduler

does not attempt to compute any representation for the

reachable states of the system being analyzed, and hence

performs a systematic state-space exploration without stor-



Base Station

Mobile
Switching

Center

PSTN

Internet

Mobile

Figure 2: Main Elements of a Wireless Network

ing any intermediate states in memory. It is shown in [19]

that the key to make this approach tractable when exploring

the state spaces of concurrent systems is to use a new search

algorithm built upon existing state-space pruning techniques

known as partial-order methods [18]. For �nite acyclic state

spaces, this search algorithm is guaranteed to terminate and

can be used for detecting deadlocks and assertion violations

without incurring the risk of any incompleteness in the veri-

�cation results. In practice, VeriSoft can be used for system-

atically and e�ciently testing the correctness of any concur-

rent system, whether or not its state space is acyclic. Indeed,

it can always guarantee, from a given initial state, complete

coverage of the state space up to some depth [19].

In practice, the user has the responsibility of declaring

what operations are visible to VeriSoft. Obviously, if all

the sources of nondeterminism are not under the control

of VeriSoft, completeness of veri�cation results and repro-

ducibility of error traces cannot be guaranteed anymore.

Hiding operations and processes to VeriSoft can be done on

purpose to be able to analyze very large applications. For in-

stance, an entire communication switch can be be viewed as

a huge black-box and multiple concurrent test-drivers con-

trolled by VeriSoft can simulate various sequences of ex-

ternal events occurring at di�erent interfaces of the switch

(simulating other switches, user tra�c and hardware fail-

ures, for example); even though VeriSoft does not control

the nondeterminism (if any) inside the black-box itself with

this approach, this can still be a very challenging test for

the application. This type of approximation is necessary

for analyzing applications of the size and complexity of the

CDMA call-processing software.

VeriSoft can be run in two modes. In automatic state-

space exploration mode, VeriSoft systematically searches the

state space of the application for errors. In manual simula-

tion mode, a user can interactively explore speci�c paths in

the state space of the system, such as paths leading to er-

rors found automatically from a previous state-space search;

the VeriSoft simulator provides a graphical user interface for

easily replaying and examining test scenarios.

3. CDMA CALL-PROCESSING SOFTWARE
Awireless communication network typically contains three

main types of network elements: mobiles (e.g., cellular pho-

nes) which are mobile communication devices; base stations

(or cell sites, or cells) which contain antennas and radio con-

trol hardware and software to manage the air interface; and

mobile switching centers which are larger switches handling

wireless speci�c features such as location management (to

keep track of where mobiles are located) and also interface

with core networks such as the public-switched telephone

network (PSTN) and the internet. Figure 2 shows these

components. For the purpose of this paper, we will be con-

cerned with testing the part of call-processing software that

resides in a base station.

The most critical resource in a wireless system is the ra-

dio frequency spectrum. Each carrier in a given geographical

area buys exclusive rights to a portion of the radio spectrum

from an administrative entity (e.g., the FCC in the US), and

must use that portion to support all subscribers in that re-

gion. Therefore, it is imperative to use the spectrum as

e�ciently as possible, while maintain acceptable quality of

service to subscribers. In older, so-called \�rst generation",

analog technology, each carrier divided its portion of spec-

trum into �xed 30 kHz bands, where each band supported

one call. To increase capacity, the second-generation digital

systems use one of two techniques, TDMA (time-division

multiple access) or CDMA (code-division multiple access).

In TDMA, to increase system capacity, each 30 kHz band

is shared by multiplexing digitized voice from multiple calls

into time slots. In CDMA, however, the entire carrier's spec-

trum is shared by all calls; the distinction between calls is

made by encoding and decoding each call using a separate

key. A commonly used key scheme is called Walsh codes,

which have the property that they are orthogonal in vector

space sense. To pick out a call coded with Walsh code a

from other calls coded with other Walsh codes b, c, etc.,

a receiver simply multiplies the input with code a, which

e�ectively zeroes out the contribution of other calls. The

number of voice channels in the system is determined by

the number of orthogonal codes supported by the system,

typically 64 for 1.25 MHz spectrum. Today, CDMA technol-



Base Stations

C

B

A

Center
Switching

Mobile

Mobile

Figure 3: Channel Diversity in CDMA

ogy is widely considered to be the one with the best spectral

e�ciency and the best voice quality.

Most wireless systems support the notion of a hand-o�,

which means that the mobile can interact with a di�erent

antenna if it gets a better signal reception than one with

which it is currently getting reception (each cell site may

have many antennas). CDMA systems also support soft

and softer hand-o�s, in which a mobile can add multiple

channels to a call in progress before dropping a channel due

to poor reception. Channel diversity also improves sound

quality in addition to making hand-o�s proceed smoothly.

Consider the case illustrated in Figure 3 where a mobile

maintains channels through two antennas A and B sharing

a physical connection to the mobile switching center, a sce-

nario called softer hand-o�. The mobile also participates in

a soft hand-o� by maintaining a channel through another

antenna C with a di�erent physical connection. Channel

diversity complicates call processing, because state for mul-

tiple channels and the signal strength for each channel needs

to be maintained for each call in progress. Recall also that

each tra�c channel requires a separate Walsh code, which

are bounded shared resources. Moreover, actions taken in

response to a signal strength change, also called a trigger,

depend on current state, which is the result of the cumu-

lative e�ect of previous triggers. For example, suppose an-

tenna A in Figure 3 is the \primary" channel and antennas

B and C are \secondary" channels. If signal reception for A

drops to an exceedingly poor level, it causes a trigger. If C

has currently the best signal, C becomes the new primary

channel|an action called primary transfer. If the signal

strength of A becomes high again later, channel A will be

added to the call as a secondary channel. All these consider-

ations makes testing through all possible hand-o� scenarios

a challenging task.

We performed testing on Lucent Technologies' CDMA

call-processing system with two main goals. One, to en-

sure that as the signal strength of a mobile changes with

respect to multiple antennas, it executes soft and softer

hand-o�s in a manner consistent with the system speci�-

cation. Two, when multiple calls are alive, the Walsh-code

allocation in the presence of hand-o�s is done correctly, in

the sense that no two channels are ever assigned con
icting

(i.e., non-orthogonal) codes.

4. TESTING INFRASTRUCTURE
In order to achieve the above goals with VeriSoft, we need

a model of the system's environment|the mobile phones

and their activity|such that the behaviors of interest are

exercised and checked. Moreover, we would like this envi-

ronment model to generate the smallest state space possible

that still contains these behaviors, so that veri�cation time

is not spent in exploring details that are not relevant to our

goals. We �rst describe the overall testing infrastructure

and then come back to the executable model we created for

the environment.

We performed our testing in the context of a simulated

wireless network environment, where the hardware for base

stations, mobile switching centers and mobile phones is sim-

ulated to a level of detail that preserves all relevant mes-

sage exchanges between these network elements. The call-

processing software under test is run unmodi�ed from its

product version on the simulated platform

1

. In manual test-

ing, a tester enters trigger commands in a shell that inter-

prets and translates them to calls into the simulator. Ac-

tions generated by the system are reported to the user. For

example, a tester may raise the signal power of another an-

tenna, expecting to trigger the action of adding the antenna

as a secondary channel to an ongoing call. The system in-

forms the tester whether a hand-o� took place, and option-

ally, which code was assigned to the new channel. Note that

ignoring such a trigger is also a valid system response. If

the tester �nds the response acceptable, he/she repeats the

process by trying another trigger based on the current state

of the system.

VeriSoft automates test generation and execution in a

seamless manner as described below. First, the simulation

system is coupled with a test driver, which replaces the hu-

man in the description above. This test driver is a nondeter-

ministic program that tries di�erent triggers based on a set

of nondeterministic choices. The test driver also maintains

its view of the state of the system under test, and updates

1

This infrastructure existed prior to this work.



Loop

Pick a call: C

Pick a (potential) channel for C: F

Pick a new strength on F: S

Send triggers for (C, F, S)

Expect back response

No response: ERROR

Check for correctness of hand-off response

Check for correctness of Walsh-code allocation

Endloop

Figure 4: Main Steps Executed by the Test Driver

this state based on the responses (or it reports an invalid

response and terminates the execution of the current sce-

nario). The pseudo-code in Figure 4 shows the main steps

executed by the test driver.

Next, this test driver is run under VeriSoft control, which

drives the test driver systematically and exhaustively through

all paths in its state space. The primitive \Pick" in the

above code is replaced by VeriSoft's VS toss(n) call. Cor-

rectness checks are made using VS assert calls.

The test driver just outlined is a model of the environment

of the CDMA call-processing library. In order to limit the

size of the state space being explored, a number of param-

eters are selected to have small but reasonable values. For

example, only three discrete signal strengths are used|high,

medium and low|since testing a more continuous range of

signal strengths would increase the size of the state space but

would have no bearing on the relevant behaviors of the sys-

tem. In contrast, we do need to simulate a su�ciently large

number of mobiles so that Walsh-code allocation is properly

exercised. The test driver also needs enough 
exibility to

initiate and terminate calls dynamically. In summary, in-

troducing nondeterminism where it is not relevant should

be avoided whenever possible since it will increase the size

of the state space unnecessarily.

The majority of work in creating this automated testing

infrastructure is in encoding trigger-response behavior of the

system under test in the test driver. Ideally, this behavior

should be derived from requirements. In practice, we had

to construct it by gathering information about the system

from available documentation and by talking to local system

architects, and in rare cases, by just trying it out on the real

system \to see what happens". Fortunately, this is a one-

time investment for several versions of the software, and for

multiple hardware platforms, as long as the call-processing

requirements are the same.

The test driver is implemented in about 1,500 lines of C

code for the hand-o� model, and another 2,000 lines of C++

code to verify the correctness of Walsh-code allocation. The

latter program includes primitive classes from the actual

product for performing basic operations on data structures

encoding Walsh-code allocations, and is implemented as a

separate Unix process for convenience (see below). We spent

about three man-months of e�ort in creating this test driver

CDMA
Call

Processing 
Library

system

Rest of the

Hw simulation environment

Automated testing interface

Walsh code
checkingTest drivervisible to

VeriSoft

processes

VeriSoft

Figure 5: Architecture of Testing Infrastructure

and the underlying test-automation interface. A notable

aspect of our approach is that it is possible to start testing

with a partial test driver and re�ne it incrementally, rather

than having to pay up-front the signi�cant cost of creating

a complete model of the system under test, as is required

with traditional model checkers.

The overall architecture of the testing infrastructure is

depicted in Figure 5. Only two processes are visible to

VeriSoft: one nondeterministic C process implementing the

pseudo-code described above and a second C++ process ver-

ifying the correctness of the current Walsh-code allocation.

These two processes run on the same Unix machine and

are synchronized using Unix semaphores which are also vis-

ible to VeriSoft. These two processes also interact with the

CDMA product via a common testing interface, by sending

and receiving strings of text, which correspond respectively

to commands to and responses from the CDMA product.

The latter is itself composed of the call-processing library

and of several other components. All these components are

implemented by many processes running on a simulation

platform which is distributed across multiple machines con-

nected in a network specially built for testing purposes.

In other words, the state space de�ned by this testing con-

�guration is the \product" (i.e., the set of all possible con-

current executions) of the two processes visible to VeriSoft

2

,

which interact with each other and with the system un-

der test whose processes themselves are hidden to VeriSoft.

The latter simpli�cation is needed to make an analysis of

the CDMA product possible and tractable. As pointed out

in Section 2, hiding possible sources of nondeterminisn to

2

Thanks to the partial-order reduction algorithms used in

VeriSoft, using two synchronized testing processes instead

of one does not yield any increase in the number of paths in

the state space.



VeriSoft has its price: race conditions due to invisible non-

determinism may be missed during state-space exploration,

and reproducibility of scenarios leading to errors may also

be compromised. Note that, during state-space exploration,

VeriSoft records the type of visible operation performed dur-

ing the execution of each transition in the state space; if,

when re-executing a transition, VeriSoft observes that the

type of that transition di�er from the type recorded for that

transition during a previous execution, it immediately re-

ports an error signaling that the system being tested does

not behave deterministically, which may be an indication

that something is wrong in the system.

5. RESULTS
At the time of this writing, the testing infrastructure de-

scribed in the previous section has been routinely used for

over a year by the development organization in charge of

Lucent's CDMA call-processing software. More than 1,500

runs of VeriSoft have been executed for systematically test-

ing several software releases for several products versions

(both 2G and 3G) for several target hardware platforms

(three main types of base stations are commercialized by

Lucent Technologies; the software for all three of them can

be tested using the testing infrastructure described in this

paper).

A vast majority of the VeriSoft runs were performed by

members of the development team in charge of the CDMA

call-processing library. Typically, when a new version of the

software was available for testing, a member of the devel-

opment team (often the third author of this paper) would

run VeriSoft overnight in automatic state-space exploration

mode, and then examine the next day erroneous scenarios

using the interactive simulator and the several log �les avail-

able to debug the entire product. Then, if the problem

was not due to a software error in the testing infrastruc-

ture itself but looked like a real problem in the CDMA

call-processing library (or in some other product compo-

nent, or in the simulation environment), other developers

with expertise in the parts of the software suspected to

cause the problem would be contacted, usually via email or

phone. In automatic state-space exploration mode, a single

12-hours (e.g., overnight) VeriSoft run typically generates,

executes and evaluates millions of individuals tests grouped

into thousands of call-processing scenarios (i.e, sequences of

such tests).

It is worth noting that most VeriSoft runs so far were

performed on software builds private to the development

team in charge of the CDMA call-processing library, i.e.,

prior to the new software being submitted to be part of

some o�cial public build shared with other development and

testing groups; this means that no defect-tracking tool was

used to precisely record bugs found with an estimate of their

severity (such tools are only used to track defects between

o�cial builds).

In the course of all these testing experiments, several pre-

viously unknown software bugs were found in the call-proces-

sing software, as well as in the simulation environment and

the testing infrastructure. Problems found in the CDMA

product were implementation errors, not errors in the high-

level design of key algorithms themselves, which is not sur-

prising since the core software being tested was already fairly

mature at the beginning of this work. Due to space limita-

tions and proprietary considerations, it is not possible to

discuss here speci�c examples of bugs. In a nutshell, the

most frequent types of errors found were improper initial-

ization of variables or data structures, missing or broken

case handlers in some states, and mismatched data formats

across platforms. In some cases, the source of these errors

could be traced to bug �xes applied inconsistently across

con�gurations.

Although the above errors are standard types of coding

errors, some of them were exposed only through very partic-

ular scenarios. Such errors would have been virtually impos-

sible to detect using conventional testing techniques. The

fact that VeriSoft detected errors that escaped traditional

testing is not surprising, considering the following factors:

� Complex reactive systems such as CDMA call process-

ing are notorious for exhibiting a very large number of

di�erent behaviors.

� Traditional testing is of limited help since test coverage

is bound to be only a minute fraction of all possible

behaviors of the system.

� Systematic state-space exploration can expose previ-

ously unknown bugs by exercising the system under

test in enormously more possible ways.

Given commonly-used cost estimates for the di�erence be-

tween bugs found early versus late during the development

process

3

, the project reported in this paper has contributed

signi�cant savings to Lucent Technologies. VeriSoft also

played a critical role in maintaining con�dence in the cor-

rectness of the library as it evolved through several versions,

both to add new features and to handle di�erent kinds of

cell sites.

Obviously, we cannot guarantee that the call-processing

library is now entirely free of bugs. The goal of this work

was to thoroughly test the library with respect to its han-

dling of hand-o�s and Walsh-code allocations. There could

be other software defects, such as out-of-bounds references

which did not have any e�ect in our tests, or bugs in other

features of the library (e.g., the operator-administration in-

terface) which were not exercised by VeriSoft at all. If de-

sired, our infrastructure could be extended to test for these

defects (additional test drivers for concurrently stimulating

and checking other product interfaces can simply be com-

posed in parallel to our current test driver under the control

of VeriSoft).

3

In the limit, debugging a single high-severity bug detected

in the �eld can cost well over hundreds of thousands of dol-

lars.



6. COSTS AND LIMITATIONS
Applying VeriSoft to systematically test the correctness

of a concurrent reactive software application requires some

e�ort. Here are the main costs and limitations associated

with this approach to software model checking.

Test automation. Using VeriSoft for testing the correct-

ness of a software product requires test automation,

i.e., the ability to run and evaluate tests automatically.

As testers know, developing a testing infrastructure

that provides test automation can be in itself a signi�-

cant e�ort. When test automation is already available,

starting taking advantage of VeriSoft to signi�cantly

increase test coverage is usually easy since it may just

involve modifying existing test scripts into nondeter-

ministic ones and/or running multiple test scripts in

parallel under the control of the VeriSoft scheduler.

Integration into testing environment. VeriSoft needs

to be integrated into the execution environment of the

system under test so it can control at run-time the exe-

cution of system processes. The primary task involved

here is to declare which system calls of which processes

are to be intercepted by VeriSoft and viewed as visi-

ble operations. Minimally, visible operations may sim-

ply include operations such as VS toss and VS assert

for \black-box" testing of large applications. In the

case of unit testing of applications containing only a

handful of processes, system calls related to commu-

nication can also be declared as visible by mapping

these to corresponding operations included in built-

in VeriSoft libraries; for instance, sending a message

(using whatever protocol is used by the application)

can be mapped to a VeriSoft send to queue opera-

tion. Note that the actual system/protocol call is not

replaced by send to queue, it is just annotated with

the occurrence of that event. Mapping system calls re-

lated to communication to operations understood by

VeriSoft can be tricky when complicated unusual com-

munication objects are used. Instrumenting the exe-

cution itself can be done by overriding system calls at

compile/link time, or via a binary-code or OS-kernel

instrumentation, or the use of wrap-up functions in-

tercepting events going in and out of the application

being tested.

Test drivers. Like most model checkers, VeriSoft requires

an executable representation of the environment of

the system under test in order to drive its executions.

Thanks to the VS toss operation supported by VeriSoft,

nondeterministic programs can be used as environment

models (test drivers). Nondeterminism makes it pos-

sible to write very compact and elegant programs for

generating large numbers of sequences of input events

(test scenarios). Since the size of the state space de-

pends on the amount of nondeterminism in the system,

VS toss should be used with care.

Specifying properties. Although VeriSoft can simply be

used to detect standard errors such as segmentation

faults, it is preferable to specify application-speci�c

properties by means of assertions in test drivers in or-

der to check the functional and behavioral correctness

of the software application. Obviously, assertions pre-

viously inserted in the code itself by application de-

velopers can also be tested. Another possibility is to

use tools (like Purify) that automatically insert asser-

tions to check for standard programming errors such

as memory leaks.

State explosion. The main practical limitation of VeriSoft,

and of model checking in general, is the state-explosion

problem: it is very easy for the user to de�ne a state

space that is too large to be explored exhaustively.

State explosion can be controled by limiting the amount

of nondeterminism visible to VeriSoft. Hiding nonde-

terminism due to concurrency inside the application

being tested may result in errors being missed.

7. COMPARISON WITH RELATED WORK
Closely related work falls mostly into the following three

broad categories.

7.1 Analysis-based Program Abstraction
As mentioned in the introduction, the other main ap-

proach to software model checking consists of (1) automat-

ically extracting a model out of a software application by

statically analyzing its code and abstracting away details,

(2) applying traditional model-checking algorithms to an-

alyze this abstract model, and then (3) mapping abstract

counter-examples back to the code. The investigation of

this approach can be traced back to early attempts to an-

alyze concurrent programs written in concurrent program-

ming languages such as Ada (e.g., [30, 26, 27, 9]). Other rel-

evant work includes static analyses geared towards analyzing

communication patterns in concurrent programs (e.g., [8, 11,

31]). Recently, several e�orts have started aiming at pro-

viding model-checking tools based on source-code abstrac-

tion for mainstream popular programming languages such

as C and Java. For instance, Bandera [10] can translate

Java programs to the (�nite-state) input languages of exist-

ing model checkers like SMV and SPIN, using user-guided

abstraction, slicing and abstract interpretation techniques.

SLAM [1] can translate sequential C programs to \boolean

programs", which are essentially inter-procedural control-


ow graphs extended with boolean variables, using an it-

erative automatic abstraction-re�nement process based on

the use of predicate abstraction and a specialized model-

checking procedure. JavaPathFinder [32] can perform model

checking of multi-threaded Java programs using a blend of

static and dynamic program-analysis techniques. Although

such tools have already been applied successfully to the anal-

ysis of several signi�cant applications, their scope of appli-

cability does not currently include applications as large and

heterogeneous as the CDMA call-processing library.



7.2 Pattern-based Program Abstraction
Another related approach is Feaver [24], a tool and frame-

work for translating annotated C programs into Promela,

the input language of the model-checker SPIN. The abstrac-

tion performed by Feaver is speci�ed by the user by de�ning

pairs of C and Promela code patterns. When the C pat-

tern is detected, the corresponding Promela pattern is gener-

ated as output in the abstract model. This simple approach

to source-code abstraction is very general and 
exible since

translation rules can be provided for a multitude of program

constructs and applications. On the negative side, specifying

translation rules requires detailed knowledge of the source

code and run-time architecture of the system being tested, as

well as of Promela and model checking; moreover, no guar-

antees are provided about the soundness and completeness

of the abstraction generated, which can be anything result-

ing from the translation rules speci�ed by the user. Applying

this approach to analyze the CDMA call-processing library

software would have likely required several additional man-

months of work to familiarize ourselves with the structure

of the implementation code and the run-time architecture

of the system and then write translation rules, in addition

to the work needed to develop an executable representation

of the system's environment and correctness properties; this

option was never considered viable in our context since we

did not have access to the developers whose expertise would

have been needed to assist us in such a project.

7.3 Specification-based Testing
The closest alternative to the type of software model check-

ing used in this work is perhaps speci�cation-based testing

frameworks for reactive programs (e.g., [33, 13, 29, 4, 25]).

Given a speci�cation of the input/output behavior of the

system being tested represented by a �nite-state machine

(or a product of �nite-state machines [16]) expressed in some

modeling language, these techniques and tools can automat-

ically generate a set of test sequences that cover the speci-

�cation according to various coverage criteria. In contrast,

VeriSoft generates test scenarios dynamically at run-time:

state-space exploration is performed while the system is ex-

ecuting, and the outcome of previous test sequences (i.e.,

paths in the state space) typically in
uences the generation

of following test sequences. Moreover, using VeriSoft does

not require a speci�cation of the input/output behavior of

the system under test written in some speci�c FSM model-

ing language; instead, the environment of an open system

can be represented by one or several processes executing ar-

bitrary code, and the joint behavior of all these processes

is then checked for \global" properties when exploring the

resulting state space, in the style of what is usually done

with model checking.

8. CONCLUSIONS
In our experience from this and several other projects

with VeriSoft, whenever proper resources were allocated to

a product-analysis project, we have always been able to �nd

previously unknown bugs and provide valuable feedback to

developers and testers. By attacking the testing problem

through another angle, software model checking comple-

ments traditional testing, and can signi�cantly contribute to

increasing the con�dence that a software product is ready to

ship. We conclude with the following general observations

on using software model checking in an industrial setting:

� Model checking is a simple testing/veri�cation strat-

egy. Used naively, the chances of getting interesting

feed-back from using it might be small. Used properly,

it can be extremely e�ective in increasing test cover-

age, quickly detecting hard-to-�nd bugs, and reducing

development intervals and costs.

� Writing challenging tests and properties (i.e., those

that might reveal important bugs) while limiting state-

space explosion requires training, experience and some

knowledge of how model checking works, as well as in-

genuity and tenacity.

� In the end, whether or not to use software model check-

ing is a question of economics: how much do bugs cost?

For application domains where the cost of just a hand-

ful of high-severity bugs is high, software model check-

ing is a valuable complement to code inspections and

scenario-by-scenario requirement-driven testing. Ap-

plying software model checking using tools such as

VeriSoft is not only technically feasible, but also eco-

nomically sensible, since the cost required to apply

model checking is likely to be signi�cantly o�set by

the high cost (and embarrassment) of severe software

failures in the �eld.

ACKNOWLEDGMENTS
We wish to thank the members of Lucent Technologies'

Wireless Network Group who made this work possible by

their help and support, with special thanks to Dave Ah-

nen, John Bamberger, Sharon Chen, Steve Meier, Antonio

Ransom, and Steve Welsh.

VeriSoft can be downloaded from the web-site

http://www.bell-labs.com/projects/verisoft.

9. REFERENCES
[1] T. Ball and S. Rajamani. The SLAM Toolkit. In

Proceedings of CAV'2001 (13th Conference on

Computer Aided Veri�cation), Paris, July 2001.

[2] G. Berry and G. Gonthier. The esterel synchronous

programming language: design, semantics,

implementation. Science of Computer Programming,

19:87{152, 1992.

[3] B. Boigelot and P. Godefroid. Model checking in

practice: An analysis of the ACCESS.bus protocol

using SPIN. In Proceedings of Formal Methods

Europe'96, volume 1051 of Lecture Notes in Computer

Science, pages 465{478, Oxford, March 1996.

Springer-Verlag.

[4] J. Chang, D. Richardson, and S. Sankar. Structural

Speci�cation-based Testing with ADL. In Proceedings



of ISSTA'96 (International Symposium on Software

Testing and Analysis), pages 62{70, San Diego,

January 1996.

[5] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E.

Long, K. L. McMillan, and L. A. Ness. Veri�cation of

the Futurebus+ cache coherence protocol. In

Proceedings of the Eleventh International Symposium

on Computer Hardware Description Languages and

Their Apllications. North-Holland, 1993.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model

Checking. MIT Press, 1999.

[7] R. Cleaveland, J. Parrow, and B. Ste�en. The

concurrency workbench: A semantics based tool for

the veri�cation of concurrent systems. ACM

Transactions on Programming Languages and

Systems, 1(15):36{72, 1993.

[8] C. Colby. Analyzing the communication topology of

concurrent programs. In Proceedings of the Symposium

on Partial Evaluation and Semantics-Based Program

Manipulation, pages 202{213, New York, NY, USA,

June 1995. ACM Press.

[9] J. C. Corbett. Constructing abstract models of

concurrent real-time software. In Proceedings of

ISSTA'96 (International Symposium on Software

Testing and Analysis), pages 250{260, San Diego,

January 1996.

[10] J. C. Corbett, M. B. Dwyer, J. Hatcli�, S. Laubach,

C. S. Pasareanu, Robby, and H. Zheng. Bandera:

Extracting Finite-State Models from Java Source

Code. In Proceedings of the 22nd International

Conference on Software Engineering, 2000.

[11] R. Cridlig. Semantic analysis of shared-memory

concurrent languages using abstract model-checking.

In Proceedings of the Symposium on Partial

Evaluation and Semantics-Based Program

Manipulation, pages 214{225, New York, NY, USA,

June 1995. ACM Press.

[12] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang.

Protocol veri�cation as a hardware design aid. In 1992

IEEE International Conference on Computer Design:

VLSI in Computers and Processors, pages 522{525,

Cambridge, MA, October 1992. IEEE Computer

Society.

[13] L. Dillon and Q. Yu. Oracles for checking temporal

properties of concurrent systems. Software

Engineering Notes, 19(5):140{153, December 1994.

Proceedings of the 2nd ACM SIGSOFT Symposium

on Foundations of Software Engineering.

[14] E. A. Emerson. Temporal and Modal Logic. In J. van

Leeuwen, editor, Handbook of Theoretical Computer

Science. Elsevier/MIT Press, Amsterdam/Cambridge,

1990.

[15] J. Fernandez, H. Garavel, L. Mounier, A. Rasse,

C. Rodriguez, and J. Sifakis. A toolbox for the

veri�cation of LOTOS programs. In Proc. of the 14th

International Conference on Software Engineering

ICSE'14, Melbourne, Australia, May 1992. ACM.

[16] J.-C. Fernandez, C. Jard, T. Jeron, and C. Viho.

Using on-the-
y veri�cation techniques for the

generation of test suites. In Proc. 8th Conference on

Computer Aided Veri�cation, volume 1102 of Lecture

Notes in Computer Science, New Brunswick, August

1996. Springer-Verlag.

[17] A. R. Flora-Holmquist and M. Staskauskas. Formal

validation of virtual �nite state machines. In Proc.

Workshop on Industrial-Strength Formal Speci�cation

Techniques (WIFT'95), pages 122{129, Boca Raton,

April 1995.

[18] P. Godefroid. Partial-Order Methods for the

Veri�cation of Concurrent Systems { An Approach to

the State-Explosion Problem, volume 1032 of Lecture

Notes in Computer Science. Springer-Verlag, January

1996.

[19] P. Godefroid. Model Checking for Programming

Languages using VeriSoft. In Proceedings of the 24th

ACM Symposium on Principles of Programming

Languages, pages 174{186, Paris, January 1997.

[20] P. Godefroid, R. S. Hanmer, and L. J. Jagadeesan.

Model Checking Without a Model: An Analysis of the

Heart-Beat Monitor of a Telephone Switch using

VeriSoft. In Proceedings of ACM SIGSOFT ISSTA'98

(International Symposium on Software Testing and

Analysis), pages 124{133, Clearwater Beach, March

1998.

[21] Z. Har'El and R. P. Kurshan. Software for analytical

development of communication protocols. AT&T

Technical Journal, 1990.

[22] G. J. Holzmann. Design and Validation of Computer

Protocols. Prentice Hall, 1991.

[23] G. J. Holzmann and J. Patti. Validating SDL

Speci�cations: An Experiment. In Proc. 9th IFIP WG

6.1 International Symposium on Protocol Speci�cation,

Testing, and Veri�cation. North-Holland, 1989.

[24] G. J. Holzmann and M. H. Smith. A Practical Method

for Verifying Event-Driven Software. In Proceedings of

the 21st International Conference on Software

Engineering, pages 597{607, 1999.

[25] L. Jagadeesan, A. Porter, C. Puchol, J. Ramming, and

L. Votta. Speci�cation-based testing of reactive

software: Tools and experiments. In Proceedings of the

19th IEEE International Conference on Software

Engineering, 1997.

[26] D. L. Long and L. A. Clarke. Data 
ow analysis of

concurrent systems that use the rendezvous model of

synchronization. In Proceedings of ACM Symposium

on Testing, Analysis, and veri�cation (TAV4), pages

21{35, Vancouver, Oct. 1991.

[27] S. P. Masticola and B. G. Ryder. Non-concurrency

analysis. In Proceedings of Fourth ACM SIGPLAN

Symposium on Principles & Practice of Parallel

programming, pages 129{138, San Diego, May 1993.

[28] K. L. McMillan. Symbolic Model Checking. Kluwer



Academic Publishers, 1993.

[29] D. Richardson. TAOS: Testing with analysis and

oracle support. In Proceedings of the 1994

International Symposium on Software Testing and

Analysis, August 1994.

[30] R. N. Taylor. A general-purpose algorithm for

analyzing concurrent programs. Communications of

the ACM, pages 362{376, May 1983.

[31] A. Venet. Abstract interpretation of the �-calculus. In

M. Dam, editor, Analysis and Veri�cation of

Multiple-Agent Languages (Proceedings of the Fifth

LOMAPS Workshop), volume 1192 of Lecture Notes in

Computer Science, pages 51{75. Springer-Verlag, 1997.

[32] W. Visser, K. Havelund, G. Brat, and S. Park. Model

Checking Programs. In Proceedings of ASE'2000 (15th

International Conference on Automated Software

Engineering), Grenoble, September 2000.

[33] M. Yannakakis and D. Lee. Testing Finite-State

Machines. In Proceedings of the 23rd Annual ACM

Symposium on the Theory of Computing, pages

476{485, 1991.


