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Abstract. In multi-valued model checking, a temporal logic formula is

interpreted relative to a structure not as a truth value but as a lattice

element. In this paper we present new algorithms for multi-valued model

checking. We �rst show how to reduce multi-valued model checking with

any distributive DeMorgan lattice to standard, two-valued model check-

ing. We then present a direct, automata-theoretic algorithm for multi-

valued model checking with logics as expressive as the modal mu-calculus.

As part of showing correctness of the algorithm, we present a new fun-

damental result about extended alternating automata, a generalization

of standard alternating automata.

1 Introduction

In multi-valued model checking, one interprets a temporal logic formula on a

multi-valued Kripke structure, which is like a Kripke structure except that an

atomic proposition is interpreted at a state as a lattice element, not a truth

value. The meaning of a temporal logic formula at a state in such a structure is

then also given as a lattice element.

Multi-valued model checking is proving valuable as the basis for a variety

of new veri�cation methods. For example, the abstraction method of [4] in-

volves model checking with the lattice L

3

of Figure 1, where 1 represent truth,

0 represents falsity, and 1/2 represents \unknown whether true or false". Model

checking with the lattice L

2;2

can be used to analyze whether conict will arise

when multiple requirements are combined [8, 18]. Temporal logic query checking

[6, 3, 9] can be regarded as model checking over lattices in which each element is

a set of propositional formulas.

One approach to multi-valued model checking is the reduction method, in

which a multi-valued model checking problem is reduced to a set of standard,

two-valued model checking problems [2, 19, 18]. For example, in the case of lattice

L

3

, a model checking problem for a Kripke structure over L

3

can be reduced to

two model checking problems for Kripke structures over L

2

. Another approach

is the direct method, in which multi-valued model checking is performed directly

using special-purpose algorithms. An advantage of the reduction method is that

it can use existing tools, and bene�ts as these tools are improved. The advantage

of the direct approach is that it works in a more \on-demand" manner than the

reduction approach (more comparisons are made in Section 6).

This paper describes improved reduction and direct methods for multi-valued

model checking. A problem with existing reduction methods [2, 19] is their limi-

tation to selected sub-classes of DeMorgan lattices. A recent method [17] is more
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Fig. 1. Some distributive lattices

general but also more complicated, involving a step that uses an additional logic.

Our method is simple and general. We show that, for a �nite distributive lattice,

the number of standard model checks required is equal to the number of join-

irreducible elements of the lattice in the worst case. From a multi-valued Kripke

structure over a �nite distributive lattice, we show how a standard Kripke struc-

ture can be derived for each join-irreducible element of the lattice, and how the

results of model checking on each of these Kripke structures can be combined

to give a result for the multi-valued model check. The method yields complexity

bounds for the multi-valued model-checking problem for various temporal logics.

Existing work on direct methods is limited in the class of lattices that are

handled, or the logic that is supported. In [4] an algorithm is de�ned for CTL over

L

3

. In [10] an automata-theoretic algorithm is de�ned for LTL over �nite linear

orders. In [7] a BDD-based algorithm is de�ned for CTL over DeMorgan lattices.

Our method is automata-theoretic and handles all DeMorgan lattices and the

full modal mu-calculus. To adapt the automata-theoretic method to multi-valued

model checking, we use extended alternating automata (EAA) [3], which extend

alternating automata (AA). In model checking applications of AA (e.g., [21]),

an input tree of the automaton has nodes that are labelled with sets of atomic

propositions, and a run of the automaton has no value associated with it. With

EAA, the nodes of the input tree are labelled with functions mapping atomic

propositions to elements of a lattice, and a run has an associated value. We show

how to use EAA for multi-valued model checking, but also prove a fundamental

result about EAA that is interesting independently of this application: that the

set of values of all the accepting runs of an EAA has a maximal element.

The following section briey covers some background material. In Section

3, we de�ne our reduction method. In Section 4 we de�ne extended alternating

automata, and in Section 5 we show how to directly model check with them.

We conclude in Section 6 by comparing the reduction and direct approaches to

multi-valued model checking.

2 Background

Lattices and Negation. We take for granted the notion of lattice and complete

lattice. We write x _ y or

W

P for join and x ^ y or

V

P for meet (where P

is a set). Every complete lattice has a greatest element, called top, and a least



element, called bottom (and written ?). Every �nite lattice is complete. A lattice

is distributive if x ^ (y _ z) = (x ^ y) _ (x ^ z) for all lattice elements x; y; z.

A join-irreducible element x of a distributive lattice L is an element that is

not bottom and for which x = y _ z implies x = y or x = z. If L is �nite,

the join-irreducible elements are easily spotted in the Hasse diagram for L as

elements having exactly one lower cover (i.e. one line connected to the element

from below). The darkened elements in Figure 1 are the join-irreducible ones.

We write J (L) for the set of all join-irreducible elements of L.

If one orders truth and falsity as shown in lattice L

2

of Figure 1, then conjunc-

tion can be interpreted as meet and disjunction as join. In this way conjunction

and disjunction can be interpreted over an arbitrary lattice. To interpret nega-

tion on lattices, a restricted class of lattices must be used if one hopes to obtain

expected properties of negation. Boolean lattices support a strong sense of com-

plement. Every element x in such a lattice has a unique complement :x such

that x _ :x equals the top element of the lattice and x ^ :x equals the bottom

element of the lattice. Lattice L

2

of Fig. 1 is boolean. However, there are \few"

boolean lattices.

In a DeMorgan (or quasi-boolean) lattice [1], every element x has a unique

complement :x such that ::x = x, DeMorgan's laws hold, and x � y implies

:y � :x. DeMorgan lattices can be characterized as lattices with horizontal

symmetry [7]. Lattice L

3

of Fig. 1 is DeMorgan, but not boolean. Using DeMor-

gan complement we get that :0 = 1, :1=2 = 1=2, and :1 = 0

A Heyting algebra is a lattice with a bottom element in which every element

x has a unique relative pseudo-complement :x de�ned as the greatest element y

such that x^ y equals the lattice's bottom element. In the case of �nite lattices,

Heyting algebras and distributive lattices are the same thing [13]. The right-

most lattice in Fig. 1 is a Heyting algebra but is not DeMorgan. In this lattice,

using relative pseudo-complement as complement, we get :a = e and :b = a.

In lattice L

3

we get :0 = 1, :1=2 = 0, and :1 = 0. Some DeMorgan lattices are

not Heyting algebras.

Reasoning about partial information with three-valued logic based on L

3

is an important application of multi-valued model checking, and since in this

application we want to interpret negation in the DeMorgan sense, we adopt

DeMorgan lattices for multi-valued model checking.

The Modal Mu-Calculus. The modal mu-calculus [20] is an expressive

modal logic that includes as fragments linear-time temporal logic (LTL) and

computation-tree logic (CTL) [12]. Without loss of generality, we use a positive

form of the modal mu-calculus in which negation applies only to atomic propo-

sitions. Formulas have the following abstract syntax, where p ranges over a set

P of atomic propositions and X ranges over a set V ar of �xed-point variables:

� ::= p j :p j �

1

^ �

2

j �

1

_ �

2

j 2� j 3� j X j �X:� j �X:�

In �xed-point formulas �X:� and �X:� the operators � and � bind free occur-

rences of X in �. We call this logic �L.

A Kripke structure M = (S; s

0

; �;R) consists of a set S of states, an initial

state s

0

in S, a mapping � from states to subsets of P , and a transition relation



R � S�S, assumed to be total. We sayM is �nite if it has �nitely many states.

We write s! s

0

if (s; s

0

) 2 R and write succ

R

(s) for the set fs

0

2 S j s! s

0

g.

For a �nite subset D of IN , we say M has degrees in D if jsucc

R

(s)j 2 D for all

states s of S.

A Kripke structureM = (S; s

0

; �;R) over a lattice L di�ers from a standard

Kripke structure in that now � maps a state to a mapping from propositions to

elements of L. We write P ! L for the set of all mappings from P to L.

A valuation V over a lattice L maps a variable to a mapping from states to

elements of L. We write () for the valuation such that ()(X)(s) = ? for all X

and s (it is required here that L has a bottom element), and write V [X := f ]

for the valuation that is like V except that it maps X to f .

We de�ne the meaning kM;�k

V

of a �L formula relative to a Kripke structure

M = (S; s

0

; �;R) over lattice L as a mapping from S to L. In the following def-

inition the function f : (S ! L)! (S ! L) is de�ned by f(g) = kM;�k

V[X:=g]

,

and �f and �f stand for the greatest and least �xed-points of f . We know f has

greatest and least �xed-points by the Knaster-Tarski �xpoint theorem [23] be-

cause the functions in S ! L, under pointwise ordering, form a complete lattice,

and function f preserves this ordering.

De�nition 1. The interpretation kM;�k

V

of a �L formula relative to Kripke

structure M = (S; s

0

; �;R) and valuation V over complete DeMorgan lattice L

is de�ned as follows:

kM;pk

V

= �s:�(s)(p)

kM;:pk

V

= �s::�(s)(p)

kM; �X:�k

V

= �f

kM;�X:�k

V

= �f

kM;Xk

V

= V(X)

kM;�

1

^ �

2

k

V

= �s:kM;�

1

k

V

(s) ^ kM;�

2

k

V

(s)

kM;�

1

_ �

2

k

V

= �s:kM;�

1

k

V

(s) _ kM;�

2

k

V

(s)

kM;2�k

V

= �s:

V

fkM;�k

V

(s

0

) j s! s

0

g

kM;3�k

V

= �s:

W

fkM;�k

V

(s

0

) j s! s

0

g

If � is a closed formula then we write [(M; s); �] for the value kM;�k

()

(s) of

formula � at state s of Kripke structure M . Given �, (M; s), and L, computing

[(M; s); �] is called the multi-valued model-checking problem. If M is a Kripke

structure over lattice L

2

, then we write (M; s) j= � if [(M; s); �] = true.

Proposition 1. The �L semantics of Def. 1 collapses to the standard two-

valued semantics of �L when lattice L is L

2

of Fig. 1.

3 Reduction to 2-Valued Model Checking

In this section we show how multi-valued model checking of a �L formula � rela-

tive to a Kripke structureM over a �nite distributive lattice L can be performed

by model checking � relative to a set of standard Kripke structures.

A key part of our approach is the treatment of negation. We transform � to

a formula �

0

containing no negation symbols. Each negated proposition :p in

� is replaced by ~p, where ~p is a fresh proposition not already appearing in �.

Correspondingly,M is transformed toM

0

by extending the proposition valuation

� of M to �

0

, where �

0

(s)(~p) = :�(s)(p). Then [(M; s); �] = [(M

0

; s); �

0

] for



all states s of M . In the rest of this section we consider only formulas of �L

not containing the negation symbol. Note that our step of eliminating negation

symbols requires a negation operation on the underlying lattice.

3.1 Reduction Method

We now describe how to derive a standard Kripke structure M

x

from a Kripke

structureM over lattice L. IfM is de�ned to be (S; s

0

; �;R), and x is an element

of L, then M

x

is de�ned to be (S; s

0

; �

x

;R), where

�

x

(s)(p) = �(s)(p) � x

M

x

di�ers from M only in its treatment of atomic propositions. In M

x

, proposi-

tions with value x or greater are regarded as true, and all others as false. Thus,

if x � x

0

, we expect a formula that holds in M

x

to also hold in M

x

0

.

Proposition 2. Let M be a Kripke structure over a �nite distributive lattice L,

with s in M and x; x

0

in L. Then ((M

x

; s) j= � and x � x

0

)) (M

x

0

; s) j= �

The value of a formula relative a Kripke structure over a lattice L can be

determined by checking the standard Kripke structures derived from the join-

irreducible elements of L.

Lemma 1. Let M be a Kripke structure over a �nite distributive lattice L, with

s in M and x in J (L). Then (M

x

; s) j= �, x � [(M; s); �].

From this lemma our main theorem follows using Birkho�'s representation

theorem for �nite distributive lattices, which states that every element a of such

a lattice can be represented as the join of all the join-irreducible elements less

than or equal to a in the lattice.

Theorem 1. Let M be a Kripke structure over a �nite distributive lattice L,

with s in M . Then [(M; s); �] =

W

fx 2 J (L) j (M

x

; s) j= �g.

For example, consider the model checking of a formula � relative to a struc-

ture M over lattice L

3

of Fig. 1. The join-irreducible elements of L

3

are 1=2 and

1. Intuitively, the model M

1

represents a pessimistic view in which 1=2 is taken

as false, while M

1=2

represents an optimistic view in which 1=2 is taken as true.

The algorithm �rst checks whether � holds in M

1

. If so, the result is

W

f1=2; 1g,

or 1. If not, it checks whether � holds of model M

1=2

. If so, the result is

W

f1=2g,

or 1=2. Otherwise the result is

W

;, or 0.

Since two-valued model checking is a special case of multi-valued model check-

ing, our reduction immediately gives the following complexity bounds for the

multi-valued model-checking problem.

Theorem 2. Let L be a �nite distributive DeMorgan lattice with n join-irre-

ducible elements, and let TL denote �L or any of its fragments. Then the multi-

valued model-checking problem for TL with respect to L can be solved in time

linear in n. Moreover, the complexity of multi-valued model checking for TL has

the same time and space complexity, both in the size of the Kripke structure and

of the formula, as traditional two-valued model checking for TL.



The linear complexity in the number of join-irreducible elements can be improved

for some classes of lattices. For example, when the join-irreducible elements of

a lattice L are linearly ordered, a binary search (i.e., checking �rst the join-

irreducible element in the middle of the lattice, then the join-irreducible element

in the middle of the upper or lower half, etc.) can be performed instead of a

linear search, providing a decision procedure for the multi-valued model-checking

problem for L with a worst-case time complexity of O(log(n)) instead of O(n).

3.2 Multi-Valued Transitions

In Kripke structures with multi-valued transitions, transitions are represented

by a function R that maps pairs of states to lattice values. The �L semantics

(see Section 2) changes only for the modal operators, as follows:

kM;2�k

V

= �s:

V

f:R(s; s

0

) _ kM;�k

V

(s

0

) j all s

0

g

kM;3�k

V

= �s:

W

fR(s; s

0

) ^ kM;�k

V

(s

0

) j all s

0

g

A Kripke structure with multi-valued transitions can be transformed to a

structure without multi-valued transitions using the idea described in De�ni-

tions 16 and 17 of [16]. However, this transformation may in the worst case

involve a blow-up of size jLj. Therefore we extend our reduction method to

handle multi-valued transitions directly, with no blow-up in jLj. The extended

method works in two steps. First, as before, from the original Kripke structure

M over a lattice L, we obtain a set fM

x

j x 2 J (L)g of structures. However,

each structure M

x

now has two transition relations: R

+

and R

�

. In the second

step, each M

x

is translated to a standard Kripke structure M

0

x

having only a

single transition relation.

We now briey cover the details. Suppose M = (S; s

0

; �;R) is a Kripke

structure over a �nite distributive lattice L, where R : S � S ! L is the multi-

valued transition function. Given a join-irreducible element x of L, we de�ne

M

x

as before, except that now M

x

has the form (S; s

0

; �

x

;R

+

x

;R

�

x

), where we

de�ne R

+

x

(s; s

0

) = R(s; s

0

) � x and de�ne R

�

x

(s; s

0

) = :(:(R(s; s

0

)) � x). In

interpreting a formula over such a structure, we modify the �L semantics as

follows:

kM

x

;2�k

V

= �s:

V

f:R

�

(s; s

0

) _ kM;�k

V

(s

0

) j all s

0

g

kM

x

;3�k

V

= �s:

W

fR

+

(s; s

0

) ^ kM;�k

V

(s

0

) j all s

0

g

Our reduction lemma (Lemma 1) also holds for this extended reduction.

Lemma 2. Let M be a Kripke structure with multi-valued transitions over a

�nite distributive lattice L, with s in S, and x in J (L). Then, letting M

x

be the

result of the extended reduction, (M

x

; s) j= �, x � [(M; s); �].

In the second step, we translate the structure M

x

= (S; s

0

; �;R

+

;R

�

) to

a standard Kripke structure M

0

x

= (S

0

; s

0

0

; �

0

;R

0

). The set of propositions over



which �

0

is de�ned is P [ fp

+

g, and

S

0

= f(s; sign) j s 2 S; sign 2 f+;�gg

s

0

0

= (s

0

;+)

�

0

(s; sign)(p) = if p � p

+

then (sign = +) else �(s; p)

R

0

((s; sign); (s

0

; sign

0

)) = (s; s

0

) 2 R

sign

0

(s; s

0

)

For every state s inM

x

there are states (s;+) and (s;�) inM

0

x

. Moreover, every

pair (s;+), (s;�) of states in M

0

x

is strongly bisimilar. Since strong bisimulation

preserves �L formulas [22], we have that (s;+) satis�es � i� (s;�) does.

We also de�ne a translation T that maps formulas of �L to formulas of

�L. The translation maps all operators � homomorphically (i.e., T (�

1

� �

2

) =

T (�

1

) � T (�

2

)), except the modal operators. In these cases we have T (2�) =

2(p

+

_ T (�)) and T (3�) = 3(p

+

^ T (�)). The correctness condition for the

second step is that a formula holds of M

x

i� the translated formula holds of M

0

x

.

Proposition 3. Let M

x

be a Kripke structure with two transition relations, M

0

x

be the standard Kripke structure obtained by translation from M

x

, s be a state

of M

x

, and � be a formula of �L. Then (M

x

; s) j= �, (M

0

x

; (s;+)) j= T (�).

3.3 Related Work

In [2] a reduction is given for three-valued model checking. In [19], reductions are

given for total orders, binary products of total orders, and the lattice 2� 2 + 2,

which can be obtained from the right-most lattice of Fig. 1 by adding a new top

element f above element a.

A method [17] with the same generality as ours was discovered independently

(see [5]). In the method of [17] each �L formula is translated �rst to a set of

formulas in a logic designed speci�cally for the reduction, then each formula

in this set is translated to a �L formula. Our approach uses fewer steps, no

additional logic, and has simpler proofs (due to the use of Birkho�'s theorem).

In [14], Fitting shows how a many-valued Kripke structure can be trans-

formed to a \multiple-expert" structure, that includes a set of experts and a

binary dominates relation over experts. Although the core idea of our method

comes from a construction in the proof of Prop. 5.1 of [14], our work di�ers in

several ways. We reduce to standard Kripke structures rather than multi-expert

models, we use �L rather than propositional modal logic, we use join-irreducible

elements rather than proper prime �lters, and most importantly, we treat nega-

tion parametrically rather than as relative pseudo-complement. The advantage

of our approach to negation is generality; the disadvantage is that it increases

the size of the model's propositional valuation.

[18] concerns AC-lattices, which are pairs of graph-isomorphic lattices in

which the order relation of one is the inverse of the other. Negation in an AC-

lattice is captured as two maps, each mapping an element of one lattice to the

isomorphic image in the other. AC-lattices can be used for the analysis of conict

between multiple requirements. A notion of expert similar to Fitting's is used.



It is shown, for �nite models, that for each of the two \modes" captured by the

two lattices in an AC-lattice, the set of views for which a modal mu-calculus

formula holds is equal to the set obtained by an interpretation of the formula

as a view set. The result di�ers from ours in that it is based on AC-lattices,

in its treatment of negation, and in that it relates view sets rather than lattice

elements directly.

4 Extended Alternating Automata

The idea behind alternating automata is to describe successor states through

boolean expressions built up from states and truth values using conjunction

and disjunction. EAA generalize this idea by allowing expressions built up from

states and lattice elements using meet and join. A run of an EAA on an input

tree is itself a tree, as in alternating automata. However, each node of the run

is now labelled with a lattice element.

With alternating automata, one is interested in whether an accepting run

exists on an input tree. With EAA, each accepting run has a value (the value

at its root), and one is interested in the set of values of all accepting runs. A

fundamental question for EAA, and one that is key for the use of EAA in model

checking, is whether this set of values has a maximum element. We show below

that this is indeed the case.

De�nitions. Formally, a tree � is a subset of IN

�

such that if x � c 2 � then

x 2 � and x �c

0

2 � for all 1 � c

0

< c. The elements of � are called its nodes, with

� called the root. Given a node x of � , values of the form x � i in � are called the

children or successors of x. The number of successors of x is called the degree of

x. A node with no successors is called a leaf. Given a set D � IN , a D-tree is a

tree in which the degree of every node is in D. A �-labeled tree is a pair (�; T )

in which � is a tree and T : IN

�

! � is a labeling function.

Let L = (B;^;_) be a lattice, and let B

+

(X) stand for the set of terms

built from elements in a set X using ^ and _. A tree EAA over L is a tuple

A = (�;D; S; s

0

; �; F ), where � is a nonempty �nite alphabet, S is a nonempty

�nite set of states, s

0

2 S is the initial state, F is an acceptance condition,

D � IN is a �nite set of arities, and � : S � � � D ! B

+

((IN � S) [ B) is

a transition function, where �(s; a; k) 2 B

+

((f1; : : : ; kg � S) [ B) is de�ned for

each s in S, a in �, and k in D. Various types of acceptance conditions F can

be used with EAA, just as in alternating automata, and are discussed below.

A v-run of a tree EAA A on a �-labeled leaess D-tree (�; T ) is an IN

�

�

S � B-labeled tree (�

�

; T

�

). A node in �

�

labeled by (x; s; v) describes a copy

of automaton A that reads the node x of � in the state s of A and has value

v 2 B associated with it. Formally, a v-run (�

�

; T

�

) is an IN

�

� S � B-labeled

tree, de�ned as follows.

{ T

�

(�) = (�; s

0

; v)

{ Let y 2 �

�

, T

�

(y) = (x; s; v

0

), arity(x) = k, and �(s; T (x); k) = �. Then there

is a (possibly empty) set Q = f(c

1

; s

1

; v

1

); : : : ; (c

n

; s

n

; v

n

)g � f1; : : : ; kg �

S �B such that



� for all 1 � i; j � n, c

i

= c

j

and s

i

= s

j

implies v

i

= v

j

,

� Eval(Q; �) = v

0

, and

� for all 1 � i � n, we have y � i 2 �

�

and T

�

(y � i) = (x � c

i

; s

i

; v

i

)

Eval(Q; �) denotes the value of the expression � obtained by replacing each term

(c

i

; s

i

) in � by v

i

if (c

i

; s

i

; v

i

) 2 Q or by ? otherwise.

A v-run � is accepting if (1) the value associated with each node of the run

is not ? and (2) all in�nite branches of the run satisfy the acceptance condi-

tion F . As with traditional alternating automata, various types of acceptance

conditions can be used. For instance, a path w satis�es a parity acceptance con-

dition F = fF

1

; F

2

; : : : ; F

n

g with F

1

� F

2

� : : : � F

n

if the minimal index i for

which some state s in F

i

appears in�nitely often along w is even. Note that an

accepting run can have �nite branches: if, for some y 2 �

�

, T

�

(y) = (x; s; v) and

�(s; T (x); arity(x)) = v with v in B and v 6= ?, then y does not need to have

any successor.

A tree EAA A accepts a �-labeled leaess D-tree (�; T ) with value v if

there exists an accepting v-run of A on that tree. We de�ne the language L

v

(A)

as follows (for v 6= ?): L

v

(A) = f(�; T ) j A accepts (�; T ) with value vg. For

convenience, we de�ne L

?

(A) as f(�; T ) j A has no accepting run on (�; T )g.

When D is a singleton, A runs over trees with a �xed branching degree. In

particular, a word EAA is simply a tree EAA in which D = f1g.

Existence of Maximum Value. We now establish a new, fundamental

property of EAA: for any EAA and any input tree, there always exists a maxi-

mum value v of L for which the EAA has an accepting v-run on the input tree.

Note that this property is non-trivial since it is not generally true that, if an

EAA has an accepting v

1

-run and an accepting v

2

-run on an input tree, then

the EAA has an accepting (v

1

_ v

2

)-run on this input tree.

Theorem 3 (Maximum-value theorem). Let A be a (�nite) tree EAA over

a lattice L, and let (�; T ) be a �-labeled leaess D-tree. Then the subset fv j

(�; T ) 2 L

v

(A)g of L has a maximum value, which we denote by Max(A; (�; T )).

We will write simply Max(A) when A is a word EAA on a 1-letter alphabet.

5 Model Checking with EAA

Our model-checking procedure for multi-valued logics using EAA generalizes the

automata-theoretic approach to 2-valued model checking with AAs [21]. Our

procedure computes the value [(M; s); �] de�ned by a �L formula � evaluated

in state s of a Kripke structure M over a DeMorgan lattice L. (Multi-valued

transitions in M can be transformed �rst as discussed in Section 3.2.) In the

�rst step of the procedure we translate � to an EAA A

�

. Then we build a

product automaton from A

�

and M in such a way that the maximum value that

labels an accepting run of the product automaton is [(M; s); �]. We now present

these steps in detail.

We begin with a translation of �L formulas to EAA. The translation is similar

to the translation from �L to parity alternating automata given in [21] except



for the case of atomic propositions, which are mapped to lattice elements in

our context. The property we want of the translation is that the value of the

maximum accepting run of the EAA for formula � and an input tree (�; T ) agrees

with the value [(�; T ); �] de�ned by the semantics of �L (with (�; T ) viewed as

a Kripke structure over L).

Theorem 4. Let � be a closed �L formula and L be a DeMorgan lattice. Then a

parity EAA A

D;�

for � can be constructed in linear time such that [((�; T ); �); �)] =

Max(A

D;�

; (�; T )) for every leaess D-tree (�; T ) on L.

In the next step of the procedure, we compute the product of a Kripke structure

and an EAA representing a �L formula. The product construction de�ned here

is again nearly identical to that given for alternating automata in [21].

De�nition 2. Let � be a closed �L formula, L be a DeMorgan lattice, M =

(S; s

0

; �; R) be a �nite Kripke structure over L, with degrees in D, and A

D;�

=

(P ! L;D;Q

�

; q

0

; �

�

; F ) be a parity EAA representing �. Then the product

automaton A

M;�

= (fag; S �Q

�

; (s

0

; q

0

); �; F ) of M and A

D;�

is a parity word

EAA over a 1-letter alphabet with at most O(jSj � jQ

�

j) states, where � and F

are de�ned as follows:

{ For all q 2 Q

�

, s 2 S, if succ

R

(s) = (s

1

; : : : ; s

n

) and �

�

(q; �(s); n) = �, then

�((s; q); a) = �

0

where �

0

is obtained from � by replacing each atom (c; q

0

) in

� by (s

c

; q

0

).

{ If F

�

= fF

1

; F

2

; : : : ; F

m

g is a parity acceptance condition, then so is F =

f(S � F

1

); (S � F

2

); : : : ; (S � F

m

)g.

The product automaton A

M;�

is used to prove the following.

Theorem 5. Let � be a closed �L formula, M be a �nite Kripke structure over

a DeMorgan lattice L, and s be a state of M . Then there exists a parity word

EAA A

M;�

over a 1-letter alphabet such that [(M; s); �)] =Max(A

M;�

).

In the �nal step of the procedure, we compute the value Max(A

M;�

) of the

product EAA.

Theorem 6. Given a parity word EAA A

M;�

over L with a 1-letter alphabet,

computing Max(A

M;�

) has the same complexity as checking whether the lan-

guage accepted by a parity word AA with a 1-letter alphabet is nonempty, i.e.,

can be done in nondeterministic polynomial time.

Algorithms for computing Max(A) of a word EAA A over a 1-letter alphabet

are similar to algorithms for checking emptiness of AAs over a 1-letter alpha-

bet except that the algorithms dealing with EAA propagates values in L in-

stead of values in ftrue; falseg. The number of iterations for each state can be

bounded by O(jh(L)j) where h(L) is the height of L (e.g., [15]). The traditional

�L model-checking problem is in NP\co-NP, and this upper bound carries over

to the multi-valued case. However, computing Max(A

M;�

) can be done more

e�ciently for some subclasses of �L. For instance, the EAA for a CTL formula

� is weak [21], and computing the value Max(A

M;�

) of the product of a weak

EAA with a Kripke structure M can be done in time linear in jM j and j�j [3].
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Fig. 2. Example Kripke structure M and accepting run

Example 1. Consider the �L formula �X:p_2X , which is equivalent to the CTL

formula AFp. By translating this formula into an EAA satisfying Theorem 4, we

obtain a tree EAA with a single state q

0

, an acceptance condition F = ; and the

following transition function: �(q

0

; �; k) = �(p) _

V

k

c=1

(c; q

0

). We next take the

product of this automaton with the Kripke structureM over L

3

shown on the left

of Figure 2. The �gure shows the value of the atomic proposition p at each state.

Using the product construction of De�nition 2, we obtain a (weak) word EAA

over a 1-letter alphabet with no accepting states and the following transition

function: �((s

0

; q

0

); a; 1) = 0_ ((s

1

; q

0

)^ (s

2

; q

0

)), �((s

1

; q

0

); a; 1) = 1=2_ (s

1

; q

0

),

and �((s

2

; q

0

); a; 1) = 1_ (s

2

; q

0

). This EAA has the accepting 1/2-run shown on

the right in Figure 2. The value 1/2 is the greatest value v for which there is an

accepting v-run, so by Theorem 5, we have [(M; s

0

); �X:p _ 2X ] = 1=2:

6 Discussion

As mentioned in the introduction, an advantage of the reduction approach to

multi-valued model checking is that it can be implemented using existing model

checkers. On the other hand, the direct approach can work in a more \on-the-y"

fashion, computing whatever information is necessary to solve the problem at

hand on a demand-driven basis. Indeed, in the reduction approach, only the lat-

tice and Kripke structure are used in building the two-valued Kripke structures,

each of which can then be model checked possibly on-the-y, thus using the for-

mula to guide the veri�cation needs. In contrast, the direct approach can make

use of all three inputs together to further limit computational resources. For

instance, consider a lattice of n incomparable elements plus a top and bottom

element, and suppose the formula we wish to model check is simply the atomic

proposition p. In the reduction approach we must then perform n model checks.

In the direct approach we will perform a single model check that examines only

the initial state of the multi-valued Kripke structure and reads only the value of

p, which requires reading only log(n) bits.

Note that, in a �nite-state Kripke structure with �nitely-many atomic propo-

sitions, at most �nitely-many lattice elements will appear. From these, by closing

under meet and join, one obtains a �nite sublattice of the original lattice. This

�nite sublattice can be used in place of the original one for multi-valued model

checking, with either approach, and thus the size of the original lattice does

not matter (and could even be in�nite). Finally note that, unlike the reduction

approach, the direct approach does not require the lattice to be distributive.
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