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Abstract. Hierarchical State Machines (HSMs) are a natural model for

representing the behavior of software systems. In this paper, we investi-

gate a variety of model-checking problems for an extension of HSMs in

which state machines are allowed to call each other recursively.

1 Introduction

Hierarchical State Machines (HSMs) are �nite-state machines whose states them-

selves can be other machines. HSMs form the basis of several commercial model-

ing languages, such as StateCharts, ObjecTime, and UML. Various veri�cation

problems for HSMs without recursion have been studied in [5, 4, 3].

In this paper, we investigate an extension of HSMs in which machines are

allowed to call each other recursively. Such \unrestricted" HSMs are strictly

more expressive than the previously-studied HSM model since HSMs with re-

cursion can model classes of in�nite-state systems. For instance, unrestricted

HSMs can be used to model the control-
ow graphs of procedures in program-

ming languages such as C. Unrestricted HSMs are therefore a natural model for

reasoning about the abstract behavior of reactive software programs.

We study several veri�cation problems for unrestricted HSMs. First, we de-

�ne several classes of unrestricted HSMs (or HSMs for short), and establish cor-

respondence theorems with previously-existing classes of in�nite-state systems.

Speci�cally, we show that \single-exit" HSMs, i.e., HSMs composed exclusively of

machines each with a single exit state, have the same expressiveness as context-

free processes, while general \multiple-exit" HSMs have the same expressiveness

as pushdown processes. From these correspondence theorems and known veri-

�cation results for context-free and pushdown systems, we immediately obtain

algorithms and complexity bounds for various veri�cation problems on HSMs.

We then show how some of the above results can be improved via new veri�-

cation algorithms. We present an LTL model-checking algorithm for unrestricted

HSMs. This algorithm shows that LTL model checking for single-entry multiple-

exit HSMs (i.e., HSMs composed of machines each with a single entry state, but

possibly multiple exit states) can be solved in time linear in the size of the HSM,

instead of cubic time as previously known. This implies that the reachability and

cycle-detection problems can be solved in linear time for single-entry HSMs.

We also present a new model-checking algorithm for the logic CTL

�

and

single-exit HSMs. The algorithm runs in time linear in the size of the HSM,



instead of quadratic time, the best previously-known upper bound. Due to the

correspondence results mentioned above, this algorithm also provides an im-

proved upper bound for CTL

�

model checking of context-free processes.

2 Unrestricted Hierarchical State Machines

A (
at) Kripke structure K over a set of atomic propositions P is a tuple

(S;R;L), where S is a (possibly in�nite) set of states, R � S � S is a tran-

sition relation, and L : S 7! 2

P

is a labeling function that associates with each

state the set of atomic propositions that are true in that state.

In this paper, we consider unrestricted hierarchical state machines (HSMs)M

over a set P of atomic propositions; these consist of a set of component structures

fM

1

; : : : ;M

n

g, where each of the M

i

has

{ A nonempty �nite set N

i

of nodes.

{ A �nite set B

i

of boxes.

{ A nonempty subset I

i

of N

i

, called the entry-nodes of N

i

.

{ A nonempty subset O

i

of N

i

, called the exit-nodes of N

i

.

{ A labeling function X

i

: N

i

7! 2

P

that labels each node with a subset of P .

{ An indexing function Y

i

: B

i

7! f1; : : : ; ng that maps each box of M

i

to the

index j of some structure M

j

.

{ A set C

i

of pairs of the form (b; e), where b is a box in B

i

and e is an

entry-node of M

j

with j = Y

i

(b), called the call-nodes of B

i

.

{ A set R

i

of pairs of the form (b; x), where b is a box in B

i

and x is an

exit-node of M

j

with j = Y

i

(b), called the return-nodes of B

i

.

{ An edge relation E

i

. Each edge in E

i

is a pair (u; v) such that (1) u is either

a node in N

i

or a return-node in R

i

, and (2) v is either a node in N

i

or a

call-node in C

i

.

M

1

is called the top-level structure of M. The above de�nition is essentially that

of Alur and Yannakakis [5]; however, we permit component structures to call

each other recursively. An example of an unrestricted HSM is shown in Fig. 1.

To simplify notation in what follows, we assume that the sets I

i

and O

i

are all

pairwise disjoint, as are the sets C

i

and R

i

. (Note that C

i

and R

i

are technically

not part of N

i

.) To be able to �nd all of the boxes that call a given component

machine j, we de�ne callers(j) = f(b; i) j Y

i

(b) = jg.

An HSM M is called single-entry if every structure M

i

in M has exactly one

entry-node (i.e., 81 � i � n : jI

i

j = 1). An HSM M is called single-exit if every

structure M

i

in M has exactly one exit-node (i.e., 81 � i � n : jO

i

j = 1).

Each structure M

i

can be associated with an ordinary Kripke structure,

denoted K(M

i

), by recursively substituting each box b 2 B

i

by the structure

M

j

with j = Y

i

(b). Since we allow state machines to call each other recursively,

the expanded structure K(M

i

) can be in�nite. A state of the expanded Kripke

structure K(M) is de�ned by a node and a �nite sequence of boxes that specify

the context. Formally, the expansion K(M) of an HSMM is the Kripke structure

(S;R;L) de�ned as follows:
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Fig. 1. An example of an unrestricted HSM (left) and its expansion (right). The

top-level structure M

1

has one box, which calls structure M

2

. Structure M

2

models an

attempt to send a message; if no positive or negative acknowledgment is received, a

timeout occurs and a recursive call to M

2

is performed.

{ S �

S

n

i=1

N

i

� (

S

n

i=1

B

i

)

�

.

{ R is the set of transitions ((v; w); (v

0

; w

0

)) that satisfy any of the following:

� (v; v

0

) 2 E

i

, v; v

0

2 N

i

and w = w

0

.

� (v; (b

0

; e

0

)) 2 E

i

, v 2 N

i

, v

0

= e

0

, and w

0

= wb

0

.

� ((b; x); v

0

) 2 E

i

, v = x, v

0

2 N

i

, and w = w

0

b.

� ((b; x); (b

0

; e

0

)) 2 E

i

, v = x, v

0

= e

0

, and w

0

= w

00

b

0

with w = w

00

b.

{ L : S 7! 2

P

is de�ned by L((v; w)) = X

i

(v) with v 2 N

i

.

The (in�nite) expansion K(M

1

) of the HSM of Fig. 1 is shown on the right

of the �gure, where the �nite sequence of boxes corresponding to each state is

indicated on top of the state when it is nonempty (e.g., the state \(send,b1b2)"

is depicted as the state \send" labeled with \b1b2"). We will write K(M) to

denote the expansion of the top-level structure M

1

of an HSM M .

3 Expressiveness of Unrestricted HSMs

Unrestricted HSMs are closely related to several existing models for in�nite-

state systems, namely context-free grammars and pushdown automata. In this

section, we compare the expressiveness and concision of these models. We also

compare the expressiveness of the four classes of unrestricted HSMs de�ned in

the previous section, namely single-entry single-exit, single-entry multiple-exit,

multiple-entry single-exit, and multiple-entry multiple-exit HSMs.

Since we are interested in the temporal behavior of systems, our comparison

of expressiveness is based on the existence of bisimulation relations between the

Kripke structures corresponding to the expansions of these di�erent classes of

models. Given two Kripke structures M

1

= (S

1

; R

1

; L

1

) and M

2

= (S

2

; R

2

; L

2

),

a binary relation B � S

1

� S

2

is a bisimulation relation if (s

1

; s

2

) 2 B implies:

(1) L

1

(s

1

) = L

2

(s

2

), (2) if (s

1

; s

0

1

) 2 R

1

, then there is some s

0

2

2 S

2

such that

(s

2

; s

0

2

) 2 R

2

and (s

0

1

; s

0

2

) 2 B, and (3) if (s

2

; s

0

2

) 2 R

2

, then there is some

s

0

1

2 S

1

such that (s

1

; s

0

1

) 2 R

1

and (s

0

1

; s

0

2

) 2 B. Two states s

1

and s

2

are



bisimilar, denoted s

1

� s

2

, if they are related by some bisimulation relation.

By extension, we say that two Kripke structures M

1

and M

2

are bisimilar if

8s

1

2 S

1

: 9s

2

2 S

2

: s

1

� s

2

and 8s

2

2 S

2

: 9s

1

2 S

1

: s

1

� s

2

.

Obviously, any multiple-entry machine with k entry-nodes can be replaced by

k machines, each with a single entry-node. Therefore, the expressiveness of single-

entry and multiple-entry HSMs is the same, although multiple-entry HSMs can

be more concise than their equivalent single-entry HSM. In contrast, we show

in the remainder of this section that single-exit and multiple-exit HSMs have

di�erent expressivenesses. Indeed, single-exit HSMs have the same expressiveness

as context-free processes while multiple-exit HSMs have the same expressiveness

as pushdown processes.

An alphabetic labeled rewrite system [9] is a triple R = (V;Act; R) where

V is an alphabet, Act is a set of labels, and R � V � Act � V

�

is a �nite

set of rewrite rules. The pre�x rewriting relation of R is de�ned by 7!

R

=

f(uw; a; vw)j(u; a; v) 2 R;w 2 V

�

g. The labeled transition graph T

R

= (V

�

; Act;

7!

R

) is called the pre�x transition graph ofR. Since the leftmost derivation graph

of any context-free grammar [14] is the pre�x transition graph of an alphabetic

rewrite system [9], such pre�x transition graphs are sometimes called context-

free processes. For purposes of comparison with HSMs, we de�ne the expansion

of R as the (possibly in�nite) Kripke structure K(R) de�ned as follows: a state

of K(R) is a pair (a; w) 2 Act�V

�

such that (v; a; w) 27!

R

for some v 2 V

�

; a

transition of K(R) is a pair ((a; w); (a

0

; w

0

)) such that (w; a

0

; w

0

) is in 7!

R

; the

label of state (a; w) is a. We can now prove the following theorem:

Theorem1. For any alphabetic labeled rewrite system R, one can construct in

linear time a single-exit HSM M such that K(R) and K(M) are bisimilar.

The converse of the previous theorem also holds:

Theorem2. For any multiple-entry single-exit HSM M , one can construct in

linear time an alphabetic labeled rewrite system R such that K(M) and K(R)

are bisimilar.

We now establish a similar correspondence between multiple-exit HSMs and

pushdown processes. A pushdown automaton (e.g., [14]) is a tuple A = (Q;Act; �;

�; q

0

) whereQ is a �nite set of states,Act is an alphabet called the input alphabet,

� is a set of stack symbols, q

0

2 Q is the initial state, and � is a mapping from

Q�Act� � to �nite subsets of Q� �

�

. The initial con�guration of the system

is (q

0

; �). The expansion of A is the (possibly in�nite) Kripke structure K(A)

de�ned by the expansion of the pre�x rewriting relation 7!

�

� (Q��

�

)�Act�

(Q��

�

) itself de�ned by 7!

�

= f((q; Z
); a; (q

0

; �
))j(q

0

; �) 2 �(q; a; Z); 
 2 �

�

g.

We call such a Kripke structure a pushdown process. We have the following:

Theorem3. For any pushdown automaton A, one can construct in linear time

a multiple-exit HSM M such that K(A) and K(M) are bisimilar.

Conversely, the following theorem also holds:



Class of HSM Reachability Cycle Detection LTL CTL CTL

�

Restricted Single-exit Linear Linear Linear Linear

Restricted Multiple-exit Linear Linear Linear PSPACE

Unrestricted Single-exit Linear Linear Linear Linear Quadratic

Unrestricted Multiple-exit Cubic Cubic Cubic EXPTIME EXPTIME

Fig. 2. Complexity bounds derived from Sect. 3 and previously known results. (Com-

plexity bounds are given in terms of the size of the HSM.)

Theorem4. For any multiple-entry multiple-exit HSM M , one can construct in

linear time a pushdown automaton A such that K(M) and K(A) are bisimilar.

Since it is known [9] that there exist pushdown processes that are not bisimilar

to any context-free processes, we obtain the following result:

Theorem5. There exist multiple-exit HSMs whose expansion is not bisimilar

to the expansion of any single-exit HSM.

4 Complexity of Veri�cation Problems for HSMs

In this section, we discuss the complexity of �ve veri�cation problems for unre-

stricted HSMs: the reachability problem, the cycle-detection problem, and the

model-checking problems for the logics LTL, CTL, and CTL

�

[10]. Given an un-

restricted HSMM and a set T �

S

n

i=1

N

i

of distinguished nodes, the reachability

problem is the problem of determining whether some state (v; w) of K(M), with

v 2 T , is reachable from some initial state (v

0

; �), with v

0

2 I

1

. Given M and

T , the cycle-detection problem is to determine whether there exists some state

(v; w)of K(M), with v 2 T , such that (i) (v; w) is reachable from some initial

state (v

0

; �), with v

0

2 I

1

, and (ii) (v; w) is reachable from itself.

Since restricted HSMs are special cases of unrestricted HSMs, it is worth

reviewing some of the results presented in [5] for the restricted case. Lines 2

and 3 of Fig. 2 summarize the results of [5] concerning the complexity of the

veri�cation problems considered here, except for CTL

�

model checking, which

was not discussed in [5]. Complexity bounds are given in terms of the size of the

restricted HSM; in the case of LTL and CTL model checking, this means the

size of the formula is �xed. (It is also shown in [5] that, for any �xed restricted

HSM, CTL model checking is PSPACE-complete in the size of the formula.)

Thanks to the correspondence theorems established in the previous section,

we can obtain algorithms and complexity bounds for the veri�cation of unre-

stricted HSMs from previously existing algorithms and bounds for the veri�ca-

tion of context-free and pushdown processes.

For single-exit unrestricted HSMs, Theorem 2 implies that model checking for

single-exit HSMs can be reduced to model checking for context-free processes.

Since context-free processes can be viewed as pushdown processes de�ned by

pushdown automata with only one state [7, 20], and since LTL model checking



Class of Unrestricted HSM Reachability Cycle detection LTL CTL CTL

�

Multiple-entry Single-exit Linear Linear Linear Linear Linear

Single-entry Multiple-exit Linear Linear Linear EXPTIME EXPTIME

Multiple-entry Multiple-exit Cubic Cubic Cubic EXPTIME EXPTIME

Fig. 3. Improved complexity bounds for unrestricted HSMs. The improved bounds

obtained in Sects. 5 and 6 are highlighted in italic.

for one-state pushdown automata can be solved in time linear in the size of the

pushdown automaton [12, 13], LTL model checking for single-exit HSMs can be

solved in time linear in the size of the HSM. This also implies a linear-time

algorithm for the reachability and cycle-detection problems. A linear-time al-

gorithm for CTL model checking for single-exit HSMs can be derived from the

CTL model-checking algorithm for context-free processes given in [7]. Finally,

since the �-calculus model-checking algorithm of [8] for context-free processes

runs in quadratic time for formulae in the second level of the �-calculus alterna-

tion hierarchy, which is known to contain CTL

�

[11], CTL

�

model checking for

single-exit HSMs can be solved in time quadratic in the size of the HSM.

In the case of multiple-exit unrestricted HSMs, Theorem 4 implies that model

checking for multiple-exit HSMs can be reduced to model checking for pushdown

processes. Since LTL model checking for pushdown automata can be solved in

time cubic in the size of the pushdown automaton [13, 12], LTL model check-

ing for multiple-exit HSMs can be solved in time cubic in the size of the HSM.

Moreover, a cubic-time algorithm for the reachability and cycle-detection prob-

lems can easily be derived from this LTL model-checking algorithm. Since CTL

model checking for pushdown processes is EXPTIME-hard [20] and since CTL

is contained in the alternation-free �-calculus for which the model-checking

problem can be solved with the exponential-time algorithm presented in [6], we

can deduce from Theorems 3 and 4 that the CTL model-checking problem for

multiple-exit HSMs is EXPTIME-complete in the size of the HSM. Similarly, the

exponential-time model-checking algorithm given in [8] for pushdown processes

and the full �-calculus, which contains CTL

�

, and the EXPTIME-hardness result

of [20] imply that the CTL

�

model-checking problem for multiple-exit HSMs is

also EXPTIME-complete in the size of the HSM. The bottom two lines of Fig. 2

summarize the results obtained from the foregoing discussion.

In the remainder of this paper, we present two improvements to the results

listed in Fig. 2. First, in Sect. 5, we present an LTL model-checking algorithm for

unrestricted HSMs, and analyze the complexity of this algorithm. We then show

that LTL model checking for single-entry multiple-exit HSMs can be solved with

this algorithm in time linear in the size of the HSM, instead of cubic time. This

implies that the reachability and cycle-detection problems can also be solved in

linear time for single-entry HSMs. Second, in Sect. 6, we present a new CTL

�

algorithm for single-exit HSMs that runs in time linear in the size of the HSM,

instead of quadratic time. Improved complexity bounds that take into account

these two new results are listed in Fig. 3.



5 LTL Model Checking

Following the automata-theoretic approach to model checking [19], a model-

checking procedure for a formula � of linear-time temporal logic can be obtained

by (1) building a �nite-state B�uchi automaton A

:�

that accepts exactly all the

in�nite words satisfying the formula :�, (2) creating a product automaton for

A

:�

and the system to be veri�ed, and (3) checking if the language accepted by

the product automaton is empty. To apply this procedure in our context, we de-

�ne the product of a B�uchi automaton A

:�

with an HSM

1

M = fM

1

; : : : ;M

n

g

to be a B�uchi-constrained HSM M

0

= fM

0

1

; : : : ;M

0

n

g: M

0

is an HSM as de�ned

earlier, where the labeling function encodes a B�uchi acceptance condition. In

particular, the nodes in node set N

0

i

of component structure M

0

i

are pairs (v; s),

where v 2 N

i

and s is a state of A

:�

. Each box in B

0

i

is also a pair (b; s), where

b 2 B

i

and s is a state of A

:�

, and such that Y

0

i

((b; s)) = Y

i

(b). Moreover, we have

C

0

i

= f((b; s); (e; s))j(b; s) 2 B

0

i

and (b; e) 2 C

i

g and R

0

i

= f((b; s); (x; s))j(b; s) 2

B

0

i

and (b; x) 2 R

i

g. Edges in the edge sets E

0

i

are of the form (v; s) ! (v

0

; s

0

),

such that there is an edge v ! v

0

in E

i

and a transition (s; `; s

0

) in A

:�

, where

` 2 2

P

agrees with the set of propositions true at v if v 2 N

i

, or else ` agrees

with the set of propositions true at x if v is a return-node (b; x) 2 R

i

.

We de�ne the labeling function X

0

on nodes (v; s) of M

0

such that X

0

((v; s))

is true if s is an accepting state of A

:�

, and false otherwise. Let T denote the set

of nodes of M

0

where X

0

is true. The LTL model-checking problem for an HSM

M and formula � is thus reduced to checking whether there exists an in�nite

sequence w of states in K(M

0

) such that w passes through a node in T in�nitely

often. (Note that K(M

0

) = K(M)�A

:�

, where � denotes the traditional de�-

nition of the product of a Kripke structure with a B�uchi automaton.)

The latter problem can in turn be reduced to a graph-theoretic problem ex-

pressed in terms of the �nite graph G(M

0

) whose nodes are the nodes of M

0

and

whose edges are the edges ofM

0

plus the set CallEdges(M

0

)[ReturnEdges(M

0

),

where CallEdges (M

0

) = f((b; e); e) j e 2 I

0

i

; b 2 B

0

j

; Y

0

j

(b) = ig and ReturnEd-

ges(M

0

) = f(x; (b; x)) j x 2 O

0

i

; b 2 B

0

j

; Y

0

j

(b) = ig. This graph �nitely and

completely represents K(M

0

), while making explicit how behaviors of compo-

nent structures M

0

i

can be combined with calls and returns between component

structures: every possible execution sequence in K(M

0

) is represented by a path

in G(M

0

). However, not all paths in G(M

0

) represent execution paths of K(M

0

):

a path in G(M

0

) corresponds to a path inK(M

0

) if, when a call �nishes, the path

in G(M

0

) returns to a return-node of the invoking box. The following de�nition

characterizes the paths of G(M

0

) that correspond to executions of K(M

0

).

De�nition 6. Give each box in M

0

a unique index in the range 1 : : : jBj, where

jBj is the total number of boxes in M

0

. For each box b, label the associated

call-edges and return-edges with the symbols \(

b

" and \)

b

", respectively; label

all other edges with \e". A path in G(M

0

) is called a Bal -path (resp. UnbalLeft-

path) i� the word formed by concatenating, in order, the symbols on the path's

edges is in the language L(Bal ) (resp. L(UnbalLeft)), de�ned as follows:

1

As usual in this context, we assume for technical convenience that every node in N

i

has an E

i

successor.



function CompSummaryEdges(M : HSM, T �

S

n

i=1

N

i

) returns set of pairs (edge,Bool)

[1] PathEdges , SummaryEdges , WorkList : set of pairs (edge,Bool)

procedure Propagate(e! v: edge, B: Bool)

[2] if there is no pair of the form (e! v;B

0

) in PathEdges then

[3] Insert (e! v;B) into PathEdges

[4] Insert (e! v;B) into WorkList

[5] else if (e! v;B

0

) 2 PathEdges ^B = true ^ B

0

= false then

[6] PathEdges := (PathEdges � f(e! v;B

0

)g) [ f(e! v;B)g

[7] WorkList := (WorkList � f(e! v;B

0

)g) [ f(e! v;B)g

[8] �

end

[9] PathEdges := ;; SummaryEdges := ;; WorkList := ;

[10] for each entry-node e of some I

i

, for 1 � i � n do Propagate(e! e; e 2 T ) od

[11] while WorkList 6= ; do

[12] Select and remove a pair (e! v; B) from WorkList

[13] switch v

[14] case v = (b; e

0

) 2 C

i

: /* v is a call-node */

[15] for each (b; x) such that ((b; e

0

)! (b; x); B

0

) 2 SummaryEdges do

[16] Propagate(e! (b; x); B _B

0

)

[17] od

[18] end case

[19] case v = x 2 O

i

: /* v is an exit-node */

[20] for each pair (b; j) 2 callers(i) do /* b 2 B

j

and Y

j

(b) = i */

[21] if there is no pair of the form ((b; e)! (b; x); B

0

) in SummaryEdges then

[22] Insert ((b; e)! (b; x); B) into SummaryEdges

[23] else if ((b; e)! (b; x); B

0

) 2 SummaryEdges ^ B = true ^B

0

= false then

[24] SummaryEdges := (SummaryEdges � f((b; e)! (b; x); B

0

)g) [ f((b; e)! (b; x); B)g

[25] �

[26] for each e

0

2 I

j

such that (e

0

! (b; e); B

00

) 2 PathEdges do

[27] Propagate(e

0

! (b; x); B _B

00

)

[28] od

[29] od

[30] end case

[31] default : /* v 2 (N

i

�O

i

) [R

i

, i.e., v is not a call-node or an exit-node */

[32] for each v

0

such that v ! v

0

2 E

i

do Propagate(e! v

0

; B _ (v

0

2 T )) od

[33] end case

[34] end switch

[35] od

[36] return(SummaryEdges)

Fig. 4. An algorithm for computing summary-edges for a B�uchi-constrained HSM M

with B�uchi acceptance condition T .

Bal ! Bal Bal

j (

j

Bal )

j

1 � j � jBj

j e

j �

UnbalLeft ! UnbalLeft (

j

Bal 1 � j � jBj

j Bal

LTL model checking is carried out directly on the B�uchi-constrained product-

HSM by means of the two-phase algorithm presented in Figs. 4 and 5. In the

�rst phase, the dynamic-programming algorithm CompSummaryEdges, shown



function ContainsTCycle(M : HSM, T �

S

n

i=1

N

i

) returns a set of nodes

[1] SummaryEdges = CompSummaryEdges(M , T )

[2] G = (

S

n

i=1

N

i

[ C

i

[R

i

;

S

n

i=1

E

i

S

CallEdges(M)

S

SummaryEdges)

[3] SCCSet = FindSCCs(G, I

1

) /* I

1

is the set of roots of the depth-�rst search */

[4] for each non-trivial SCC (Nodes; Edges) 2 SCCSet do

[5] if (Nodes \ T 6= ;) or (9((b; e)! (b; x); B) 2 Edges : B = true) then

[6] return(Nodes)

[7] �

[8] od

[9] return(;)

Fig. 5. An algorithm for detecting T-cycles.

in Fig. 4 is applied to an HSM

2

M with B�uchi acceptance condition T to create a

set of summary-edges. Each summary-edge represents a Bal -path between a call-

node and a return-node, where the two nodes are associated with the same box.

More precisely, CompSummaryEdges creates the set SummaryEdges , which con-

sists of pairs of the form ((b; e) ! (b; x); B). Summary-edge ((b; e) ! (b; x); B)

indicates that (i) there exists a Bal -path from e to x, and (ii) if Boolean value

B is true, then there exists such a path that passes through at least one node

in T . In addition to tabulating summary-edges, CompSummaryEdges builds up

the set PathEdges : a path-edge (e! v;B) in PathEdges indicates the existence

of a Bal -path from an entry-node e 2 I

i

of component structure M

i

to v, where

v 2 N

i

[C

i

[R

i

. As with summary-edges, the Boolean value B records whether

the Bal -path summarized by the edge traverses at least one node in T .

It is possible to make two improvements to CompSummaryEdges: �rst, path-

edges in each component structure can be \anchored" at exit-nodes rather than

at entry-nodes, and path-edges can be \grown" backwards rather than forwards

(a technique also used in [15]); second, path-edges in component structures M

i

where jO

i

j < jI

i

j can be anchored at exit-nodes (and path-edges grown back-

wards), whereas in other component structures the path-edges can be anchored

at entry-nodes (and path-edges grown forwards). Henceforth, we mean the latter

version whenever we refer to CompSummaryEdges in what follows.

The second phase of the model-checking algorithm consists of lines [2]{[8]

of function ContainsTCycle of Fig. 5. The goal of ContainsTCycle is to deter-

mine whether any component structure M

i

contains a node n such that (i) n is

reachable from some entry-node of I

1

along an UnbalLeft-path, and (ii) there is a

non-empty cyclic UnbalLeft-path (which might merely be a cyclic Bal -path) that

starts at n and contains a member of T . ContainsTCycle checks this condition

by searching for (nontrivial) strongly connected components that are reachable

from an entry-node of I

1

(line [3]) in a directed graph G that consists of the

nodes and edges of all component structures of M , together with all of M 's

call-edges, plus the set of summary-edges computed by CompSummaryEdges

(line [2]). The presence of call-edges and summary-edges is what allows informa-

tion to be recovered from G about UnbalLeft-paths in M . The summary-edges

permit ContainsTCycle to avoid having to explore Bal -paths between call-nodes

2

Henceforth, we drop prime symbols (

0

) on components of B�uchi-constrained HSMs.



and return-nodes of the same box, and, in particular, whether such nodes are

connected by a Bal -path that contains a T node.

Theorem7. Given an HSM M and an LTL formula �, K(M) satis�es � i�

the algorithm of Fig. 5 applied to the B�uchi-constrained HSM M �A

:�

and its

corresponding set T returns ;.

For any component structure M

i

, the worst-case time complexity of Comp-

SummaryEdges is equal to I

i

, the number of entry-nodes of M

i

(or O

i

, if the

number of exit-nodes is smaller), multiplied by the number of E

i

edges plus

summary-edges in M

i

. In the worst case, each box b 2 B

i

can have a summary-

edge from every call-node (b; e) to every return-node (b; x). Therefore, the con-

tribution of M

i

to the time complexity of CompSummaryEdges is bounded by

O(min(I

i

; O

i

) (E

i

+�

b2B

i

C

b

R

b

)).

The size of the graph G computed by function ContainsTCycle is bounded by

O(�

n

i=1

(E

i

+�

b2B

i

C

b

R

b

+�

b2B

i

C

b

), and �nding the strongly connected compo-

nents of G can be carried out in time linear in the size of G (e.g., see [1]). Thus,

the total worst-case cost of ContainsTCycle is bounded by O(�

n

i=1

[min(I

i

; O

i

)

(E

i

+ �

b2B

i

C

b

R

b

)]). In the case of single-entry, single-exit, and single-entry

single-exit HSMs, this bound simpli�es as follows:

Single-entry HSM Single-exit HSM Single-entry single-exit HSM

O(E +R) O(E + C) O(E +B)

where E, R, C, and B are the total numbers of ordinary edges, return-edges,

call-edges, and boxes, respectively.

Note that the B�uchi-constrained HSMM

0

=M�A

:�

obtained by combining

a single-entry (or single-exit) HSMM with the B�uchi automaton A

:�

for an LTL

formula � will typically be multiple-entry (resp. multiple-exit). However, each

component structure M

0

i

of M

0

will have at most jS

:�

j entry-nodes (resp. exit-

nodes), where jS

:�

j is the number of states of the automaton A

:�

. Therefore,

for a �xed LTL formula �, the term min(I

0

i

; O

0

i

) is bounded by the �xed constant

jS

:�

j. Thus, for any �xed LTL formula �, the LTL model-checking problem for

an unrestricted HSM M that is single-entry or single-exit can be solved in time

linear in the size of M .

6 CTL

�

Model Checking for Single-Exit HSMs

In this section, we present a CTL

�

model-checking algorithm for single-exit HSMs

that runs in time linear in the size of the HSM. The logic CTL

�

uses the tem-

poral operators U (until), X (nexttime) and the existential path quanti�er E,

in addition to the operators : (not) and _ (or). Two types of CTL

�

formulas,

path formulas and state formulas, are de�ned by mutual induction. Every atomic

proposition is a state formula as well as a path formula. If p; q are both state for-

mulas (resp., both path formulas) then p_q and :p are also state formulas (resp.,

path formulas). If p and q are path formulas, then pUq and Xp are also path



function SPLIT(�: LTL formula ) returns Set of pairs (� 2LTL

+

; � 2LTL)

[1] if (� = P ) then return(f(P; true)g)

[2] if (� = �

1

_ �

2

) then return(SPLIT(�

1

) [ SPLIT(�

2

) )

[3] if (� = :�

1

) then return(

S

A�SPLIT(�

1

)

(

V

(�;�)2A

:�;

V

(�;�)2SPLIT(�

1

)�A

:�))

[4] if (� = Xp) then return(

S

(�;�)2SPLIT(p)

(X�; �) [ f(exit; p)g)

[5] if (� = pUq) then return(

S

;6=A�SPLIT(p)

(G

W

(�;�)2A

�;

V

(�;�)2A

� ^ pUq)

[

S

;6=A�SPLIT(p)

S

(�

0

;�

0

)2SPLIT(q)

(

W

(�;�)2A

(�U�

0

); �

0

^

V

(�;�)2A

�))g

Fig. 6. The function SPLIT.

formulas while Ep is a state formula. We use the abbreviation Fp for trueUp and

Gp for :F:p. Any CTL

�

state formula can be viewed as a boolean combination

of existential formulas. An existential formula is either an atomic proposition

or a CTL

�

state formula of the form E �(p(


1

)  


1

; : : : ; p(


n

)  


n

), where

� is an LTL formula over propositions p(


1

); : : : ; p(


n

) in which each proposi-

tion p(


i

) is substituted by the corresponding CTL

�

state formula 


i

. (For a

description of the semantics of CTL

�

, see [10].)

A key technical challenge is that the truth value of a temporal-logic formula in

any state (v; w) ofK(M) may not only depend on the node v but also on the stack

contents w. Fortunately, it is su�cient to consider only �nitely many equivalence

classes of possible stack contents, each equivalence class being represented by a

context, as already observed in [7, 8, 5]. A context is a set of (here CTL

�

) formulas

whose truth value at the exit node of a machine M

i

determine the truth value

of a formula � at the root. The notion of context makes it possible to reason

compositionally about HSMs.

Our algorithm exploits this idea and reduces the evaluation of a path formula

� on a sequence w;w

0

of states, where w is �nite while w

0

is in�nite, to the

evaluation of some formulas � and � on the sequences w and w

0

, respectively.

We introduce a special atomic proposition exit, which holds only at the �nal

state of a �nite sequence w, and denote by LTL

+

the set of LTL formulas that

can be expressed using this extended set of atomic propositions. The function

SPLIT given in Fig. 6 speci�es how the evaluation of an LTL formula � can be

decomposed as described above. (A conjunction over an empty set of formulas

is de�ned to have the value true.) For instance, w;w

0

j= Xp can be decomposed

either into w j= Xp and w

0

j= true (for the case where jwj > 1), or into w j= exit

and w

0

j= p (for the case where jwj = 1).

Given a set F of CTL

�

state formulas, let exists(F ) denote the set of exis-

tential formulas that are elements or subformulas of elements of F . A set F of

existential CTL

�

formulas is closed if, for every 
 = E�(p(


1

) 


1

; : : : ; p(


n

) 




n

) 2 exists(F ), for every � such that (�; �) 2SPLIT(�), E�(p(


1

)  


1

; : : : ;

p(


n

) 


n

) is also in F . The closure cl(�) of a CTL

�

formula � is the smallest

closed set containing exists(f�g). One can show, using properties of SPLIT, that

cl(�) is always �nite for any CTL

�

formula �. Let pd(�) be the maximal nesting

of path quanti�ers (E) in a CTL

�

formula �. Given a set F of CTL

�

formulas,

let pd(F ) =max


2F

(pd(
)). For � with pd(�) � j, let cl

�j

(�) be the elements

of cl(�) with at most j nested path quanti�ers. Clearly, cl

�j

(�) is a closed set



function MAKE CONT(F : closed set of CTL

�

existential formulas,

M : HSM over f
 2 F :pd(
)< pd(F )g,C: F -CONTEXT) returns HSM over F

/* We assume M = fM

1

; : : : ;M

n

g with M

i

= (N

i

; B

i

; I

i

; O

i

; X

i

; Y

i

; C

i

; R

i

; E

i

) */

[1] M

1

= TopLevelMachine(M)

[2] for each 
 2 F with 
 = E �(p(


1

) 


1

; : : : ; p(


n

) 


n

) do

[3] N(
) = LTLALG(E �;M) /* Precompute all the LTL results needed */

[4] for each (�; �) 2 SPLIT(�)

[5] N(�) = LTLALG(E (� ^ F exit);M)

[6] for each M

i

2M do

[7] Nodes

1

(M

i

,
) = N

i

\N(
)

[8] for each (�; �) 2 SPLIT(�) do

[9] Nodes

2

(M

i

,�) = N

i

\N(�)

[10] od

[11] od

[12] OLDCONT = ; /* Find the pairs (M

i

; c) reachable from (M

1

; C) */

[13] CONT = f(M

1

; C)g

[14] while (CONT 6= OLDCONT) do

[15] OLDCONT = CONT

[16] for each (M

i

; c) 2 OLDCONT do

[17] for each 
 2 F with 
 = E�(p(


1

) 


1

; : : : ; p(


n

) 


n

)

[18] Sat(M

i

; c; 
) =Nodes

1

(M

i

,
) [

S

(�;�)2SPLIT(
);c(E�(p(


1

) 


1

;:::;p(


n

) 


n

))=true

Nodes

2

(M

i

,�)

[19] for each b 2 Boxes(M

i

) do

[20] P

(b;i;c)

= (Y

i

(b); c

0

) such that 8
 2 F : c

0

(
) = true i� (b; x) 2 Sat(M

i

; c; 
)

[21] CONT = OLDCONT [fP

(b;i;c)

g

[22] od

[23] od

[24] od

[25] /* Now build the output HSM M

�

[26] M

�

= fM

i;c

j(M

i

; c) 2 CONT g

[27] Forall 1 � i � n, for all c 2 CONT,

[28] M

i;c

= (N

i

� fcg; B

i

� fcg; I

i

� fcg; O

i

� fcg; X

0

i;c

; Y

0

i;c

; C

0

i;c

; R

i

� fcg; E

i

� fcg)

where

[29] C

0

i;c

= f((b; c); (e; c

0

))j(b; e) 2 C

i

and (M

k

; c

0

) = P

(b;i;c)

g

[30] For all b 2 B

i

, Y

0

i;c

((b; c)) = (Y

i

(b); c

0

) with (M

k

; c

0

) = P

(b;i;c)

[31] For all v 2 N

i

, X

0

i;c

((v; c)) = f
 2 F jv 2 Sat(M

i

; c; 
)g

[32] TopLevelMachine(M

�

) = M

1;C

[33] return(M

�

)

Fig. 7. Construction of the context-dependent HSM.

and pd(cl

�j

(�))=j.

For any closed set F , an F -context is any assignment of truth values to all

elements of F . We say that a Kripke structure K with a single initial state s

0

satis�es an F -context C, written K j= C, if, for all 
 2 F , (K; s

0

) j= 
 i�

C(
) = true. An F -context is consistent if it is satis�ed by some structure. All

the F -contexts generated by our model-checking algorithm will be consistent by

construction. We often identify an F -context with the elements set to true by

it. For an HSM M , a node v 2 M , an F -context C, and a formula 
 2 F ,

we say (M; v) satis�es 
 in context C, written (M; v) j=

C


, if, for all K

0

,

K

0

j= C ) ((K(M);K

0

); v) j= 
, where K(M);K

0

is the Kripke structure

obtained from K(M) by identifying the top-level exit node of K(M) with the

initial state of K

0

.



function CHECK(�: existential CTL

�

formula, M : single-exit HSM,

C : cl(�)-CONTEXT) returns set of nodes in M

1

[1] begin

[2] M

0

= M

[3] forfj = 0; j <pd(�); j++g

[4] M

j+1

=MAKE CONT(cl

�j+1

(�);M

j

; C \ cl

�j+1

(�)))

[5] return fv 2 TopLevelMachine(M

pd(�)

)jLabel(v) includes �g

end

Fig. 8. CTL

�

model-checking algorithm.

Given a closed set F of existential formulas, an HSM M whose nodes are

labeled with formulas in f
 2 F jpd(
)< pd(F )g, and an F -context C, the func-

tion MAKE CONT presented in Fig. 7 constructs a new HSM M

�

from multiple

copies of M , each of which is indexed by an F -context c. The nodes of M

�

in

copy (M

j

,c) are labeled by formulas 
 2 F representing the truth value of 
 in

the corresponding node of M in the context c. It can be shown that any node

(v; c) in M

�

is labeled with 
 2 F i� (M; v) j=

c


.

MAKE CONT uses a variant of the LTL model-checking algorithm from

Sect. 5, called LTLALG. Given a formula of the form E�(p(


1

; ) : : : ; p(


n

)) where

� is an LTL

+

formula over atomic propositions including p(


1

; ) : : : ; p(


n

), and

an HSM M whose nodes are also labeled with propositions in p(


1

; ) : : : ; p(


n

),

LTLALG(E�;M) returns the set of nodes v of M such that (v; �) j= E�. This is

done exactly as described in Sect. 5, except for the following three modi�cations.

First, LTLALG evaluates formulas of the form E� instead of A�. Second, we still

need to de�ne how formulas of LTL

+

are evaluated onM : we say that a formula

E� where � is in LTL

+

is satis�ed in a node v of a machine M

i

if there is a

path w from (v; �) that satis�es �, such that either w is in�nite or w terminates

at (x; �), where x is the exit node of M

i

. Third, we also extend the evaluation

of formulas to include return nodes: we say that the return node (b; x) of a box

b satis�es a formula E� i� the corresponding exit node x satis�es E� when b

is the only element of the stack; in other words, we de�ne ((b; x); �) j= E� i�

(x; b) j= E�. It is easy to extend the LTL model-checking algorithm of Sect. 5 to

meet these additional requirements.

By repeatedly invoking MAKE CONT with cl

�j

(�) for increasing values of

j, 1 � j �pd(�), i.e., larger and larger subsets of cl(�), one can thus evalu-

ate CTL

�

formulas in a bottom-up manner. This is what is done in function

CHECK presented in Fig. 8. Since any CTL

�

formula � is a boolean combina-

tion of existential formulas �

i

, �nding the nodes of the top-level machine M

1

of

an HSM M satisfying � can be reduced to �nding the nodes of M

1

satisfying

each �

i

. This is done by computing CHECK(�

i

;M;C

;

) where C

;

is the set of

formulas 
 in cl(�

i

) that evaluate to true at a single node labeled as the exit

node of M

1

and with a self-loop. Since C

;

is consistent, all subcontexts derived

from it during the execution of the algorithm are also consistent. The correctness

of the algorithm is established by the following theorem.

Theorem8. Given a single-exit HSM M , a node v of M

1

, and an existential

CTL

�

formula �

i

, (v; �) satis�es �

i

i� v is included in the set CHECK(�

i

;M;C

;

).



An analysis of the overall complexity of CHECK reveals that the number

of contexts over F = cl(�) and the number of pairs of formulas returned by

SPLIT on these formulas depends only on �. This implies that the size of each

M

j

is linear in M for any �xed �. Moreover, the number of formulas on which

the LTL algorithm is invoked in MAKE CONT is bounded independently of the

size of M . Hence, the run-time complexity of the function MAKE CONT and

the size of the returned HSM M

�

are linear in the input HSM M for any �xed

formula � and closed set F . Therefore, the CTL

�

model-checking problem for a

single-exit HSM M can be solved in time linear in the size of M .

7 Concluding Remarks

Function CompSummaryEdges from Sect. 5 is closely related to algorithms for

solving so-called \context-free-language" reachability problems [21, 17], as well

as to CFL-reachability-based algorithms for such program-analysis problems

as interprocedural slicing [16] and interprocedural data
ow analysis [18, 15]. In

particular, the notions of path-edges and summary-edges, and the dynamic-

programming technique used to compute such edges in CompSummaryEdges

already appeared in this earlier work, although the cycle-detection and LTL

model-checking problems considered in Sect. 5 have not been previously ex-

plored in the literature on CFL-reachability. The \transfer functions" used in [7]

are also similar to the \summary-edges" used here. Results similar to those of

Sect. 5 (obtained independently and contemporaneously) are reported in [2].

Thanks to Theorem 1, which provides a linear-time translation from context-

free processes to single-exit HSMs, the linear-time CTL

�

model-checking al-

gorithm of Sect. 6 can also be used for CTL

�

model-checking of context-free

processes, and hence provides an improved upper bound for this problem: the

problem can now be solved in linear-time, instead of quadratic-time.

Our other results, however, cannot even be stated in the context of context-

free or pushdown processes. For example, the distinction between single-entry

and multiple-entry HSMs has no obvious counterpart in the literature on push-

down automata, and the linear bounds for single-entry multiple-exit HSMs pre-

sented here could not be derived from such previous work.
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