
Model Checking Without a Model: An
Analysis of the Heart-Beat Monitor of a
Telephone Switch using VeriSoft

Patrice Godefroid, Robert S. Hanmer, Lalita Jategaonkar Jagadeesan

March 1998

Proceedings of ACM SIGSOFT ISSTA’98 (International Symposium on Software Testing and Analysis),
Clearwater Beach, Florida, March 1998.

Copyright  1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard
copies of part or all of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications
Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Model Checking Without a Model:

An Analysis of the Heart-Beat Monitor of a

Telephone Switch using VeriSoft

Patrice Godefroid

Bell Laboratories

Lucent Technologies

1000 E. Warrenville Road

Naperville, IL 60566, USA

god@bell-labs.com

Robert S. Hanmer

Lucent Technologies

2000 N. Naperville Road

Naperville, IL 60566, USA

hanmer@lucent.com

Lalita Jategaonkar Jagadeesan

Bell Laboratories

Lucent Technologies

1000 E. Warrenville Road

Naperville, IL 60566, USA

lalita@bell-labs.com

Abstract

VeriSoft is a tool for systematically exploring the state spaces

of systems composed of several concurrent processes exe-

cuting arbitrary code written in full-
edged programming

languages such as C or C++. The state space of a concur-

rent system is a directed graph that represents the combined

behavior of all concurrent components in the system. By

exploring its state space, VeriSoft can automatically detect

coordination problems between the processes of a concurrent

system.

We report in this paper our analysis with VeriSoft of the

\Heart-Beat Monitor" (HBM), a telephone switching appli-

cation developed at Lucent Technologies. The HBM of a

telephone switch determines the status of di�erent elements

connected to the switch by measuring propagation delays of

messages transmitted via these elements. This information

plays an important role in the routing of data in the switch,

and can signi�cantly impact switch performance.

We discuss the steps of our analysis of the HBM using

VeriSoft. Because no modeling of the HBM code is necessary

with this tool, the total elapsed time before being able to

run the �rst tests was on the order of a few hours, instead

of several days or weeks that would have been needed for

the (error-prone) modeling phase required with traditional

model checkers or theorem provers.

We then present the results of our analysis. Since VeriSoft

automatically generates, executes and evaluates thousands

of tests per minute and has complete control over nondeter-

minism, our analysis revealed HBM behavior that is virtu-

ally impossible to detect or test in a traditional lab-testing

environment. Speci�cally, we discovered
aws in the existing

documentation on this application and unexpected behav-

iors in the software itself. These results are being used as

the basis for the redesign of the HBM software in the next

commercial release of the switching software.

1 Introduction

Systematic state-space exploration, as such or elaborated

into temporal-logic model-checking (e.g., [CES86, LP85,

QS81, VW86]), is attracting growing attention for checking

the correctness of concurrent reactive systems. In the case of

a software system, existing state-space exploration tools are

restricted to the exploration of the state space of an abstract

description of the system, speci�ed in a modeling language

(e.g., [HK90, Hol91, DDHY92, FGM

+

92, CPS93, McM93]).

Recently [God97], it has been shown how the scope of

systematic state-space exploration can be extended to deal

directly with \actual" code implementing concurrent reac-

tive software systems, in which processes execute arbitrary

code written in full-
edged general-purpose programming

languages such as C or C++. VeriSoft is a tool for sys-

tematically and e�ciently exploring the state spaces of such

systems. It controls and observes the execution of all the

concurrent processes of the system, and can reinitialize their

executions. VeriSoft can automatically detect coordination

problems (deadlocks, divergences, : : :) between the concur-

rent processes of a system, and check for assertion violations.

Since states of programs written in programming languages

can be very complex (because of pointers, dynamic memory

allocation, large data structures of various shapes, recur-

sion, etc.), VeriSoft does not attempt to compute any rep-

resentation for the reachable states of the system being an-

alyzed, and hence performs a systematic state-space explo-

ration without storing any intermediate states in memory.

It is shown in [God97] that the key to make this approach

tractable is to use a new search algorithm built upon exist-

ing state-space pruning techniques known as partial-order

methods [God96]. For �nite acyclic state spaces, this search

algorithm is guaranteed to terminate and can be used for

detecting deadlocks and assertion violations without incur-

ring the risk of any incompleteness in the veri�cation results.

In practice, VeriSoft can be used for systematically and ef-

�ciently testing the correctness of any concurrent system,

whether or not its state space is acyclic. Indeed, it can al-

ways guarantee, from a given initial state, complete coverage

of the state space up to some depth.

In this paper, we report the �rst analysis of an actual

software product using VeriSoft. We illustrate the appli-

cation of VeriSoft to the analysis and re-engineering of the

\Heart-Beat Monitor" (HBM), an application that is part

of the software controlling telephone switches developed by

Lucent Technologies. The HBM of a telephone switch de-

termines the status of di�erent elements connected to the

switch by measuring propagation delays of messages trans-

mitted via these elements. This information plays an im-

portant role in the routing of data in the switch, and can

signi�cantly impact switch performance.

This paper is organized as follows. After a quick intro-

duction to VeriSoft, we describe the Heart-Beat Monitor ap-

plication, as well as the context and motivation for perform-

ing this detailed analysis. We then discuss the steps neces-

sary to carry out the analysis of the HBM using VeriSoft.

Since no modeling of the HBM code is necessary with our

tool, the total elapsed time before being able to run the �rst

tests was on the order of a few hours, instead of several days

or weeks that would have been needed for the (error-prone)

modeling phase required with traditional model checkers or

theorem provers.

We then report the results of our analysis. Since VeriSoft

automatically generates, executes and evaluates thousands

of tests per minute and has complete control over nondeter-

minism, our analysis revealed unexpected behaviors of the

HBM software that is virtually impossible to detect or repro-

duce in a traditional lab-testing environment. Speci�cally,

we discovered
aws in the existing documentation on this

application and unexpected behaviors in the software itself.

These results are being used as the basis for the redesign

of the HBM software in the next commercial release of the

switching software.

In the light of these experiments, we conclude the paper

with a discussion on the bene�ts and limitations of the new

approach to concurrent program analysis that VeriSoft pro-

vides. The paper ends with a comparison of this approach

with other approaches.

2 A Quick Introduction to VeriSoft

VeriSoft [God97] is a tool for systematically exploring the

state space of a concurrent system composed of a �nite set P

of processes and a �nite set of communication objects. Each

process P

i

2 P executes a sequence of operations, that is

described in a sequential program written in a full-
edged

programming language such as C or C++. Such programs

are deterministic: every execution of the program on the

same input data performs the same sequence of operations.

We assume that processes communicate with each other by

performing operations on communication objects. Examples

of communication objects are shared variables, semaphores,

and FIFO bu�ers. At any time, at most one operation can

be performed on a given communication object (operations

on a same communication object are mutually exclusive).

Operations on communication objects are called visible op-

erations, while other operations are called invisible. The

execution of an operation is said to be blocking if it cannot

be completed. We assume that only executions of visible

operations may be blocking.

The concurrent system is said to be in a global state when

the next operation to be executed by every process in the

system is a visible operation. Every process in the system is

expected to always eventually attempt to execute a visible

operation.

1

This implies that initially, after the creation of

1

When a process does not attempt to perform a visible operation

within a given (user-speci�ed) amount of time, VeriSoft reports an

error called \divergence".

all the processes of the system, the system may reach a �rst

and unique global state s

0

, called the initial global state of

the system. We de�ne a transition as a visible operation fol-

lowed by a �nite sequence of invisible operations performed

by a single process. A transition whose visible operation is

blocking in a global state s is said to be disabled in s. Oth-

erwise, the transition is said to be enabled in s. A transition

t that is enabled in a global state s can be executed from

s. Once the execution of t from s is completed, the sys-

tem reaches a global state s

0

, called the successor of s by t.

The state space of the concurrent system is composed of the

global states that are reachable from the initial global state

s

0

, and of the transitions that are possible between these.

A concurrent system as de�ned here is a closed system:

from its initial global state, it can evolve and change its

state by executing enabled transitions. Thus, given a sin-

gle \open" reactive system, the environment in which this

system operates has to be represented, possibly using other

processes, in order to close the system. For this purpose, a

special operation \VS toss" is available to express a valuable

feature of modeling languages, not found in programming

languages: nondeterminism. This operation takes as argu-

ment a positive integer n, and returns an integer in [0; n].

The operation is visible and nondeterministic: the execu-

tion of a transition starting with VS toss(n) may yield up

to n+1 di�erent successor states, corresponding to di�erent

values returned by VS toss.

It can be shown [God97] that deadlocks and assertion vi-

olations can be detected by exploring only the global states

of a concurrent system as de�ned in the previous section.

Deadlocks are states where the execution of the next op-

eration of every process in the system is blocking. Asser-

tions can be speci�ed by the user with the special operation

\VS assert". This operation can be inserted in the code of

any process, and is considered visible. It takes as its argu-

ment a boolean expression that can test and compare the

value of variables and data structures local to the process.

When \VS assert(expression)" is executed, the expression is

evaluated. If the expression evaluates to false, the assertion

is said to be violated.

VeriSoft is a tool for systematically exploring the state

space of a concurrent system as de�ned above. In a nut-

shell, every process of the concurrent system to be analyzed

is mapped to a UNIX process. The execution of the system

processes is controlled by an external process, called the

scheduler. This process observes the visible operations per-

formed by processes inside the system, and can suspend their

execution. By resuming the execution of (the next visible

operation of) one selected system process in a global state,

the scheduler can explore one transition between two global

states in the state space of the concurrent system. By reini-

tializing the system, the scheduler can explore alternative

paths in the state space. The scheduler also contains an im-

plementation of a new search algorithm that makes it possi-

ble to systematically and e�ciently explore the state spaces

of such systems without storing any intermediate states in

memory. This algorithm is built upon existing state-space

pruning techniques known as partial-order methods [God96].

For �nite acyclic state spaces, this search algorithm is guar-

anteed to terminate and can be used for detecting deadlocks

and assertion violations without incurring the risk of any

incompleteness in the veri�cation results. (See [God97] for

details.)

When an error of the type listed above is detected dur-

ing state-space exploration, a scenario leading to the er-

ror state is exhibited to the user. An interactive graphical

simulator/debugger is also available for replaying scenarios

and following their executions at the instruction or proce-

dure/function level. Values of variables of each process can

be examined interactively. Using the VeriSoft simulator, the

user can also explore any path in the state space of the sys-

tem with the same set of debugging tools.

3 The Heart-Beat Monitor

3.1 Overview

In telephone switches, calls are typically routed through a

network of hardware devices, involving a distributed set of

processors. In order to ensure the reliability of calls, switches

can determine the status of their processors by measuring

propagation delays of messages transmitted between them.

Longer than expected delays may indicate potential prob-

lems; the switch may then temporarily cease to connect new

telephone calls over all hardware units connected to the of-

fending processor. This can signi�cantly impact switch per-

formance if the switch normally relies on these units to carry

a substantial proportion of telephone calls.

We have analyzed the \Heart-Beat Monitor" (HBM) soft-

ware of a Lucent switching system. This software is respon-

sible for measuring the propagation delays of messages be-

tween two processors A and B. The HBM, running on pro-

cessor A, periodically sends a \heart-beat" message to pro-

cessor B. Upon receipt of the heart-beat message, processor

B responds by sending an acknowledgment back to processor

A. The HBM monitors the delay between the transmission

and acknowledgment of messages. If such delays become un-

acceptable, HBM temporarily ceases the routing of all new

telephone calls over processor B { this is termed as resource

suspension in this paper.

The decision to trigger resource suspension involves some

tradeo�s. Calls routed over processor B may not behave

reliably in the face of unacceptable propagation delays; on

the other hand, resource suspension may cause many new

calls to be blocked. Clearly, end-users may become irate in

either situation; furthermore, switch operators are required

by law to report every extended occurrence of call blocking

to the Federal Communications Commission. Hence, the

HBM software is carefully engineered to achieve a reasonable

balance between switch reliability and switch capacity.

The HBM software of this Lucent switch came under

scrutiny a few years ago, since it was discovered in the �eld

that resource suspension was occurring too frequently and

resulting in a signi�cant decrease in network capacity. In

particular, the software was deemed too sensitive to the de-

lays of individual messages. The software was then modi�ed

to track delays between successive messages, and to trigger

resource suspension only when delays had been unacceptable

for some signi�cant period of time. This modi�ed software

has been running for the past several years in over a hundred

switches in the �eld.

Recently, the software came under scrutiny again, this

time because of questions concerning unexplained resource

suspensions observed in the �eld. Since the original develop-

ment team was unavailable, a new team performed reverse-

engineering on the actual code. Their �ndings were sum-

marized in a document consisting of English descriptions,

illustrative scenarios, and formal state-machine tables, all

produced by hand after inspecting the code. The intent of

this document was to serve as a speci�cation of the software,

both for internal Lucent use in addressing customer queries

and as a basis for future development.

However, the complexity of the software renders it dif-

�cult to model and analyze. A research/development col-

laboration was begun to investigate whether automatic ver-

i�cation techniques based on model-checking would aid in

analyzing this application.

The following sections provide more details about the

HBM software and describe our analysis of the software us-

ing VeriSoft.

3.2 Details of the Software

The HBM software runs on processor A. The only con-

straints that can be assumed about processor B is that heart-

beat messages sent by processor A will not be re-sent in a

di�erent order by processor B. However, there can be arbi-

trary delays in the re-sending of messages, and messages may

be lost. Thus, every heart-beat message sent by processor

A must contain some information that uniquely identi�es it,

and the HBM software must keep track of the time that it

was sent. When a message is received from processor B, the

HBM software calculates the delay between the send-time

and the receive-time of the message. In principle, the num-

ber of outstanding messages (sent but not yet received) can

be unbounded. However, memory and performance consid-

erations of the switch require that only a small number of

outstanding messages can be tracked by the HBM. Similar

concerns apply to the count that HBM keeps of messages

that have either arrived late or have been deemed as lost.

The HBM software thus keeps a small �xed-size array

of messages sent to processor B. When a message is sent,

it is marked with its array index and with a time-stamp

indicating the time it was sent. The HBM also keeps track

of the index of the last message sent.

When a message is received from processor B, a func-

tion is (virtually) instantaneously

2

called in processor A to

mark the receive-time of the message in the array entry cor-

responding to the index of the message, provided the send-

time of the message matches the send-time recorded in the

array entry. Otherwise, the received message is deemed to

be stale and is discarded.

In order to avoid high sensitivity to delays of individual

messages, the HBM software is structured in three stages.

At any given time, the HBM is in exactly one of these three

stages. The �rst stage indicates that resource suspension has

not been triggered in the recent past, the second stage serves

to dampen the sensitivity of the HBM to individual delays

for a period of time, and the third stage is intentionally

sensitive to all delays. The only legal state changes are from

the �rst stage to the second, then to the third, and then

back to the �rst. After spending a �xed period of time in

the third stage, the software re-enters the �rst stage. We

emphasize that resource suspension can be triggered only in

the third stage.

In order to more precisely describe the application, we

use the following de�nitions and notation. We cannot reveal

the actual values of the constants k; d

ontime

; d

stage2

; d

period

2

Note that this function is not called when the HBM is being

executed. Instead, the function is called after the current execution

of the HBM is completed, and it takes the running time of the HBM

into account in calculating the receive-time of the message.

below because of proprietary considerations. To give an in-

tuition for the HBM behavior, we give approximate ranges

for some of these constants.

� k is the size of the message array. We note that k is a

small integer constant, less than 10.

� The main procedure of the HBM software is executed

(approximately) every d

period

time units. We call each

scheduling of the HBM an interval. d

period

is also the

(approximately) �xed period between successive heart-

beat messages sent by the HBM.

� The propagation delay of a message that is sent but

never received by the HBM is1. Otherwise, the prop-

agation delay is t

2

�t

1

, where t

1

is the time the message

was sent by the HBM, and t

2

is the time it was received

by the HBM.

� d

ontime

is a non-zero integer constant strictly less than

d

period

.

� A message is considered to be on time i� its propaga-

tion delay is less than or equal to d

ontime

.

� A message is considered to be slightly late i� its prop-

agation delay is strictly between d

ontime

and d

period

.

� A message is considered to be late/lost i� its propa-

gation delay is strictly greater than d

ontime

. (Hence,

slightly late messages are also considered to be late/lost.)

� A message is considered to be stale i� its propagation

delay is less than 1, but strictly greater than k �

d

period

.

� d

stage2

is the minimum amount of time that the HBM

must remain in stage 2 after entering it. We note that

dd

stage2

=d

period

e < 10.

The main abstraction used by the developers in reverse-

engineering the code concerns the real-time behavior of the

HBM. In particular, since the HBM is scheduled at (approx-

imately) �xed intervals of d

period

time units, the developers

abstract the passage of time as a discrete function of these

intervals.

3

For example, the HBM must remain in the sec-

ond stage for a minimum of d

stage2

time units. The corre-

sponding abstraction used by the developers states that the

HBM must remain in the second stage for a minimum of

dd

stage2

=d

period

e intervals.

When the main procedure of the HBM software is en-

tered, it �rst checks whether the HBM is in the third stage;

if it has already spent the required amount of time in this

stage, the HBM re-enters the �rst stage. Next, the mes-

sage array is searched in a �xed-order (i.e. lowest index to

highest index) for the �rst entry in which the receive-time is

recorded. This indicates that a (non-stale) message with this

index was newly received (i.e. after the previously sched-

uled execution of the HBMsoftware); this message is then

processed as described in detail below. This cycle continues

until all newly received messages have been processed.

The outstanding messages (sent but not received) are

then evaluated, the determination of whether to trigger re-

source suspension is made, a new heart-beat message is sent

to processor B, and the procedure exits. These steps are

described in detail below.

3

This abstraction re
ects the essentially deterministic scheduling

algorithm used in this particular switch, and is used in developing,

maintaining and reasoning about many other software systems in this

switch.

3.2.1 Processing of Received Messages

A message is processed as described in Figure 1. The HBM

keeps a �xed-size counter of the number of late/lost mes-

sages; the counter being incremented to its maximum size is

an indication that resource suspension should be triggered.

If the received message is on time, the late/lost message

counter is decremented by 1 if it is currently non-zero. Oth-

erwise, the behavior is essentially dependent on three fac-

tors: the value of the late/lost message counter, the current

stage of the HBM, and the amount of time it has been in that

stage. Figure 1 gives a simpli�ed pseudo-code description of

the algorithm implemented in the actual software. The \if-

then(-else)" clauses are executed in succession in the case

where the message does not arrive on-time.

if message arrives on-time

then

if count > 0

then count:=count-1

else

if count � 1

then count:=count+1;

if count=2

then

if currently in stage 1

then immediately enter stage 2

else

if currently in stage 2 and have spent

more than d

stage2

time in stage 2

then immediately enter stage 3;

if count � 2 and not currently in stage 2

then count:=count+1;

Figure 1: Algorithm for processing messages

We make a few observations about the algorithm. In

stage 3, the counter is incremented by 2 for a late/lost mes-

sage, up to a maximum value of 3. However, the counter is

decremented only by 1 for a message that arrives on time.

This re
ects the use of the \leaky bucket counter" pattern

(see [ACG

+

96]) in the design of the HBM. This is intended

to make the HBM less sensitive to transient late messages,

while guaranteeing that if a certain number of messages ar-

rive late { even interspersed with on-time messages { re-

source suspension will be triggered. A leaky bucket counter

is also used in stage 1, but its maximum value cannot exceed

2 in this stage. The behavior in the second stage is more

complicated. Namely, the leaky bucket counter pattern is

used only under certain conditions; this provides another

dampening e�ect on the sensitivity to individual delays.

3.2.2 Evaluation of Outstanding Messages

After all of the newly received messages have been processed,

the HBM gets ready to send its next heart-beat message.

Let i be the index of the previously sent message. Then

the index j of the next message to be sent is (i+ 1) mod k,

where k is the size of the message array. (We note that the

array is zero-indexed: namely, the lowest index of the array

is 0, while the highest index of the array is k � 1.)

The HBM now looks in array entry j. If the correspond-

ing message has not yet been received { the send-time has

been recorded but the receive-time has not { then the mes-

sage is declared as lost, and the late/lost message counter

is updated as described in Figure 1 according to the case in

which the message is not on time.

4

3.2.3 Determination of Resource Suspension

The HBM then checks whether the late/lost message counter

is set to 3, its maximum possible value. (This can be the

case only if the HBM is currently in Stage 3.) If so, resource

suspension is triggered.

3.2.4 Sending of Next Heart-Beat Message

Finally, a new heart-beat message is sent to processor B. The

index of the message is the index j above, and the send-time

is the current time. The send-time is also recorded in the

corresponding array entry. The main procedure then exits.

4 Getting Started

As previously explained, in order to analyze the HBM appli-

cation using VeriSoft, the HBM code has to be executable,

and the system has to be closed, i.e, an executable represen-

tation of the environment in which the HBM operates has

to be provided.

The actual HBM software is written in a proprietary

assembly language and runs only on a proprietary special-

purpose processor for telephone switches. As part of a pre-

vious re-engineering e�ort of applications developed in this

language, a compiler from this assembly language to the

C programming language had been developed. The compi-

ler-generated C translation of the original HBM assembly

code was used for the experiments reported in this paper.

Precisely, the output of the compilation is a single C pro-

cedure. To obtain a self-contained executable program, a

simple \wrapper" program that periodically calls this pro-

cedure was used.

As mentioned above, the HBM application is just one of

the many tasks executed on only one of the processors that

can be found in a telephone switch. A complete representa-

tion of such a complex environment would be far too detailed

for an analysis focused only on the HBM code, and was not

available anyhow. Therefore, a simpli�ed executable repre-

sentation of this environment was used in order to simulate

its visible behavior.

The speci�cation of the environment of the HBM is as fol-

lows. Messages sent to processor B may be lost, but may not

be reordered. Moreover, the send/receive-time associated to

messages sent/received by the HBM have to be consistent.

For instance, two time-stamps associated with two consecu-

tive messages must be increasing. Also, the receive-time has

to always be greater than the send-time.

The structure of the closed system formed by the HBM

and its environment used in our analysis is the following.

Processor B is simulated by a separate process implemented

in the C programming language, while the transmission me-

dium between processor A and B is modeled by two bounded

FIFO message queues \AtoB" and \BtoA", one queue for

4

This justi�es discarding stale messages that have index j but an

earlier send-time. Namely, the loss of such messages has already been

counted in this step.

each direction. The process corresponding to the HBM (pro-

cess A) periodically sends a heart-beat message to process

B via the queue \AtoB", and then waits to receive messages

on the queue \BtoA".

The code for processor B starts by waiting for a heart-

beat message from the HBM. Once it receives such a mes-

sage, it nondeterministically decides (with a call to VS toss)

either to lose this message or to store it in an internal queue

of size k, where k is the size of the array used in the HBM to

store messages. Let n be the number of messages currently

stored in this internal queue. If n = k, then the oldest mes-

sage is sent back to HBM. (See below for an explanation of

why this is done.) Then, a number m between 0 and n is

picked nondeterministically, and the m oldest messages in

the queue are sent back to the HBM. Finally, a special mes-

sage \tick" is sent to the wrapper of the HBM to indicate

that the HBM procedure can be called.

Of course, other representations for the environment are

also possible. This speci�c representation was chosen be-

cause it made it easy to observe the exchange of messages

between the two processors, since sending and receiving mes-

sages via message queues are visible operations according to

the VeriSoft terminology.

Note that we attempted to reduce nondeterministic choi-

ces as far as possible in the representation of the environ-

ment of the HBM. For instance, when n = k, we force the

oldest message to be retransmitted. This optimization is

correct because re-transmitting this message at a later time

would cause it to be stale since its slot in the k-size array of

the HBM would then be taken by a new fresh message with

the same index but a more recent send-time.

5

Since stale

and lost messages have the same impact on the HBM logic,

it su�ces to consider only message loss.

To give the reader an idea of the complexity of the sys-

tem being analyzed, the closed concurrent system composed

of the HBM code, its wrapper and the code for Processor B

is implemented by several hundred non-commentary source

lines (NCSL) of C code. Although the size of this application

is very small compared to the total size of all the software

needed to control a telephone switch (typically millions of

lines of code), it is nevertheless far too complex to be thor-

oughly and reliably analyzed by manual code inspection (as

will become clear in the next section).

Various versions of the environment were also used to

test properties of the HBM under speci�c constraints. For

instance, counters can be used to limit the number of lost

and/or delayed messages. By progressively increasing the

maximum value of such counters, VeriSoft can be used to

show properties such that \at least b late messages are nec-

essary to force the HBM to trigger resource suspension".

Properties that were checked are presented in the next sec-

tion.

5 Results of Analysis

As mentioned earlier, a team of developers undertook a re-

verse engineering e�ort to better understand the HBM soft-

ware, and a document was produced summarizing their �nd-

ings. The document consists of English descriptions, illus-

trative scenarios, and state machine tables formally speci�ed

5

This property of the HBM was actually tested on a previous less-

optimized representation of the environment.

PROPERTY ANALYSIS

1. If no heart-beat messages ever return to processor A, then resource suspension is triggered true

for the �rst time after a

1

intervals.

2. If B resends every message slightly late, then resource suspension is triggered for the �rst time true

after a

2

(< a

1

) intervals.

3. What is the minimum number of intervals needed to trigger resource suspension? a

2

4. What is the minimum number of late/lost messages needed to trigger resource suspension? b

5. If messages strictly alternate between being slightly late and on time, then resource suspension false!

will never be triggered.

6. Stage 2 is always exited exactly dd

stage2

=d

period

e intervals after it is entered. false!

7. Triggering of resource suspension by the HBM is independent of the system initialization time. false!

Figure 2: Properties Considered in Our Analysis

by hand. This document was the starting point of our anal-

ysis of the HBM software. In the course of our analysis,

we veri�ed and extended some properties given in the docu-

ment, disproved other properties given in the document, and

identi�ed some quite unexpected and irregular behaviors of

the software.

The properties considered in our analysis are summa-

rized in Figure 2. The assumptions on processor B and

the transmission medium speci�ed earlier are implicit in the

properties given in Figure 2 and throughout the following

discussion. Figure 2 uses the de�nitions from the previous

section. We note that a

1

; a

2

; b are small integer constants

such that a

2

< a

1

< 20 and b < 10; we cannot reveal the

actual values because of proprietary considerations.

To analyze these properties using VeriSoft, we modi�ed

the HBM code so that an assertion is violated i� resource

suspension is triggered. Namely, we added a \VS assert(0)"

statement to the (unique) point in the HBM code where re-

source suspension can be triggered. We then modi�ed the

environment from the \Getting Started" section in accor-

dance with the property under analysis, and used VeriSoft

to automatically detect the conditions under which the as-

sertion can be violated.

Properties 1 and 2 were described in some detail in the

document, and hence were the starting point of our analysis.

To verify Property 1, we implemented an environment that

did not re-send any messages back to the HBM. We then

used VeriSoft to automatically analyze the closed system.

Since these environment implementations did not contain

any nondeterminism, there was a unique minimal scenario

demonstrating each property. It was then easy to show that

resource suspension is indeed triggered for the �rst time after

a

1

intervals. The veri�cation of Property 2 was analogous.

A natural question that arises in this context is whether

there are any possible behaviors of a (legal) processor B

and transmission medium under which resource suspension

is triggered in fewer than a

2

intervals. In particular, what is

the minimum number of intervals needed to trigger resource

suspension? This corresponds to Property 3.

In order to address this question, we used the full en-

vironment, described in the \Getting Started" section. We

modi�ed the closed system { consisting of the combination

of the HBM code and this environment { to terminate af-

ter a

2

� 1 intervals. We automatically analyzed the state

space using VeriSoft and discovered that resource suspen-

sion was not triggered prior to termination. Together with

Property 2, this implies that a minimum of a

2

intervals

are needed in order to trigger resource suspension, resolving

Property 3. Note that the state of the system at any point

in a given path can a priori depend on the entire path up

to that point. Furthermore, this closed system can exhibit

at least a few hundred thousand distinct scenarios of length

a

2

. Hence, it would not have been possible to verify this

property without the use of a systematic state-space explo-

ration tool. On a dual processor UltraSparc workstation

with 128 MB of RAM, the VeriSoft analysis required about

8 hours, and explored more than 3 millions global states of

the system.

6

The next question that arose was about the minimality

of messages, rather than intervals. In particular, what is

the minimum number of late/lost messages that is needed

to trigger resource suspension? This corresponds to Prop-

erty 4. In order to address this question, we modi�ed our

full environment to lose or delay at most a given number of

messages. In our �rst iteration, we speci�ed that at most

one message could be late/lost, while all other messages had

to be on time. We automatically analyzed the state space

and discovered that resource suspension was not triggered

up to 10 intervals.

7

We then iterated this process, succes-

sively incrementing by one the maximumnumber of late/lost

messages. We found that a minimum of b late/lost messages

are needed in order to trigger resource suspension within 10

intervals.

We then proceeded to analyze other properties implicit

in the document. In particular, the state tables imply that if

messages strictly alternate between being slightly late and

on time, then resource suspension will never be triggered.

This corresponds to Property 5. We implemented an envi-

ronment that exhibited exactly this behavior, and analyzed

it using VeriSoft. To our surprise (both in the research group

and development group), VeriSoft immediately generated a

scenario in which resource suspension was triggered! We in-

spected the scenario through the simulation capabilities of

6

Since VeriSoft does not store states in memory, run-time rather

than memory is always the main limiting factor.

7

Note that since the state space is in�nite, it is impossible to ex-

plore it exhaustively.

VeriSoft and discovered that the \leaky bucket counter" de-

sign of Stages 1 and 3 was not re
ected in the state tables.

As described in Figure 1, in these stages the software double-

increments the count upon the arrival of every (slightly) late

message, but only single-decrements the count upon the ar-

rival of every on-time message. The state tables incorrectly

speci�ed that the incrementing was by one rather than two,

and hence that Stage 2 and Stage 3 were never entered in this

environment. In contrast, we discovered that Stage 2 can be

entered in the code during the third interval, is exited after

dd

stage2

=d

period

e intervals, and that resource suspension is

triggered in Stage 3 because of the double increment. This

scenario showed that Property 5 was in fact false.

Proceeding to Property 6, we again used the full envi-

ronment described in the \Getting Started" section, and

augmented the closed system with two boolean variables,

entered and exited, indicating information about Stage 2.

In particular, both variables are initialized to false; entered

is set to true upon entry into Stage 2, and exited is set to

true upon exit from Stage 2. We then modi�ed the code

to indicate an assertion violation when entered is true but

exited is false for a duration of dd

stage2

=d

period

e+1 intervals.

To our even greater surprise, VeriSoft generated after a few

minutes of search a scenario in which this assertion was vio-

lated! This violated Property 6, which was explicitly stated

in the document and which was a fundamental assumption

of the development group: namely, that Stage 2 is always

exited exactly dd

stage2

=d

period

e intervals after entry. In this

VeriSoft-generated scenario, the initial two messages were

slightly late; thus, the counter was incremented to two, and

Stage 2 was entered. The next two messages were on time;

hence, the counter was decremented to zero. All the follow-

ing messages strictly alternated between being slightly late

and being on time. The subsequent behavior of the HBM is

best explained via examination of Figure 1. Since Stage 2

does not use the leaky bucket counter pattern, the counter

is only incremented by 1 by a late/lost message, and still

decremented by 1 by an on-time message. Thus, the counter

toggled between zero and one; since it never reached a value

of 2, the check was never done for whether d

stage2

amount

of time had expired since entry into Stage 2. Consequently,

Stage 2 was not exited. This scenario continues to hold even

100 intervals after entry into Stage 2. Furthermore, it is in

contrast to Property 5, in which alternating messages do

lead to resource suspension.

At this point, a decision was made by the development

group to revise the document based on our �ndings, and

to notify a�ected parties about the errors discovered in the

document.

We continued our experiments to see whether any other

unexpected behaviors could be revealed. Upon closer inspec-

tion of the code through the simulation facilities of VeriSoft,

we were rather surprised to �nd that the double-increment

and decrement operations are not commutative; if the value

of the counter is zero or one at the start of an interval, the

order in which the messages are processed from the message

array can a�ect the behavior of the HBM during that inter-

val. Speci�cally, the processing order can a�ect the value

of the counter at the end of the interval, and { even more

signi�cantly { whether Stage 2 is entered from Stage 1 dur-

ing the interval. These di�erences are a consequence of the

algorithm sketched in Figure 1.

As mentioned earlier, the messages are always processed

in �xed order: from lowest to highest index. It occurred to

us that this �xed processing order could interact with the

stage 1, count=0

stage 1, count=1

stage 1,count=2

stage 1, count=1

stage 1,count=2

due to processing order!

index 2

index 1

index 0

Processor A Processor B

index 0

index 1

index 2stage 1, count=1

index 1, on time

index 0, slightly late

index 1, on time

index 0, on time

index 2, late

Figure 3: Scenario related to Property 7

non-commutativity of messages in an \irregular" fashion.

Recall that 0 is the lowest index and k � 1 is the highest

index. Suppose that the HBM is in Stage 1, the counter

value is currently 1, a message with index k � 1 is more

than slightly late, and the next message (i.e. with index

0) is on time. In particular, both of these messages are

processed in the same interval. Because of the �xed order

of processing, the on-time message will be processed �rst.

We constructed a scenario in which Stage 2 is not entered

after these messages are processed. This scenario is heavily

dependent on the �xed processing order of messages, and

is depicted in Figure 3; for illustrative purposes, we assume

k = 3. The algorithm in Figure 1 is crucial to understand

this scenario. In the fourth interval of this scenario, the

counter value is initially 1. When the on-time message with

index 0 is processed, the counter becomes 0. After the late

message with index 2 is processed, the counter becomes 2,

but Stage 2 is not entered. (Note that the opposite order

of message processing would cause the HBM to enter Stage

2 after the processing of the late message, and to remain in

Stage 2 after the processing of the on-time message.)

Now suppose that we add a single on-time message to the

beginning of this scenario. Thus, the HBM stays \clean" for

one interval, and then the scenario in Figure 3 is executed

(except that the indices of the messages are shifted by 1). In

the �fth interval of this new scenario, a message with index

0 is more than slightly late, and the next message (i.e. with

index 1) is on time. However, this time the late message is

processed �rst, and the HBM enters Stage 2.

These scenarios can be extended so that the next

dd

stage2

=d

period

e�1 messages arrive on time, and the follow-

ing two messages arrive late. In the �rst extended scenario,

the last message causes the HBM to enter Stage 2, and re-

source suspension thus cannot be triggered for a minimum

of d

stage2

time units. In the second extended scenario, how-

ever, the last message causes the HBM to enter Stage 3 and

trigger resource suspension. Hence, since the only di�er-

ence between the two scenarios is the existence of an initial

on-time message, the behavior of the HBM is dependent on

the exact number of intervals the system has been running,

and hence on the system initialization time! In other words,

two switches using this HBM code but initialized at di�erent

times may react di�erently to the same sequence of events.

This pair of scenarios disproves Property 7.

6 Conclusions and Comparison With Other Work

We have presented an analysis of the Heart-Beat Monitor of

a telephone switch using VeriSoft, a tool for systematically

exploring the state spaces of systems composed of several

concurrent processes executing arbitrary (e.g., C or C++)

code. Our analysis of the HBM discovered
aws both in the

existing documentation and in the software itself. Based

on these �ndings, we have recently modi�ed the code in

several ways to make it more robust and predictable. We

then used VeriSoft to systematically test that the desired

properties were indeed satis�ed by the modi�ed code. Tra-

ditionally, the development team has been quite reluctant

to perform any changes in the HBM software since it can

potentially impact the routing of millions of telephone calls

per day. However, in this case, the con�dence gained by our

systematic analysis has led the development team to decide

to incorporate our modi�cations into the next commercial

release of the switching software.

With the help of VeriSoft, our analysis revealed HBM

behavior that is virtually impossible to detect or test in a

traditional lab-testing environment, because of the lack of

controllability and observability inherent in such environ-

ments. Moreover, running a single test in these environ-

ments { which involve actual switching hardware and com-

plex initialization procedures { is much more expensive and

clumsy than running thousands of tests, automatically gen-

erated, executed and evaluated by VeriSoft, on a standard

UNIX workstation. Also, since VeriSoft has complete con-

trol over nondeterminism, it can systematically search the

state space of a system, and is able to completely reproduce

any scenario leading to an error found during the search.

The reason why systematic state-space exploration tech-

niques are increasingly being used is precisely because they

can detect and reproduce errors that would be very hard to

detect and reproduce otherwise. By extending the scope

of these techniques from modeling languages to general-

purpose programming languages, VeriSoft eliminates one

major obstacle to a wider use of these techniques, namely

the need to build a model of the application to be analyzed.

The elimination of this time-consuming and error-prone task

(plus the non-negligible e�ort needed to become familiar

with a modeling language) makes systematic state-space ex-

ploration muchmore attractive and economically feasible for

applications developed in an industrial environment, where

systems are always developed under time pressure.

Besides reducing the up-front cost of using systematic

state-space exploration, another advantage of VeriSoft is

that it exercises the actual code of the concurrent reac-

tive software under analysis. Since most of the time during

an analysis is typically spent to examine (user-de�ned or

automatically-generated) scenarios with the interactive sim-

ulator, the user's knowledge of the existing code can strongly

facilitate the examination of these scenarios. If the code

is unknown to the user, VeriSoft can be used to discover

the precise dynamic behavior of the application: VeriSoft is

WYSIWYG (What You See/Simulate Is What You Get).

This feature of VeriSoft supports new applications for

systematic state-space exploration techniques, such as re-

verse engineering. Indeed, the state space of the actual sys-

tem contains much information that can be used to better

understand how the code is being exercised and how the dif-

ferent processes behave and interact with each other [BG97].

After all, most development e�orts are typically spent in

studying and modifying existing code. Also, VeriSoft can

be useful for regression testing since properties that hold on

a previous version of a product can be tested against new

versions of the software when modi�cations are performed.

On the negative side, since VeriSoft does not store any

states in memory, it cannot detect cycles in the state space

being explored, and hence is restricted to checking safety

properties [AS87]. For the same reason, the termination of

the search is not guaranteed when the state space contains

cycles.

8

This is often not very troublesome in practice since

the main goal is to be able to systematically and e�ciently

search a meaningful portion of the state space within a rea-

sonable amount of time, in order to detect unexpected be-

haviors of the system. For the application considered here,

VeriSoft proved to be a powerful and e�cient tool for this

purpose.

Note that the size of the state space depends on the non-

determinism in the system, and hence often depends criti-

cally on the representation of the (typically nondeterminis-

tic) environment of the application being analyzed. There-

fore, such an executable representation of the environment

has to be developed with care.

Systematic state-space exploration is complementary to

other approaches to concurrent reactive program testing and

analysis. For instance, static analysis techniques (e.g., [CC77,

MJ81, ASU86]) automatically extract information about the

dynamic behavior of a sequential program by examining its

text. Variants of these techniques have also been proposed

for the analysis of programs written in concurrent program-

ming languages such as Ada (e.g., [Tay83, LC91, MR93,

Cor96]). For speci�c classes of concurrent programs, these

abstraction techniques can produce a \conservative" model

of the system that preserves basic information about the

communication patterns that can take place in the system.

Analyzing such a model using standard model-checking tech-

niques can then prove the absence of certain types of errors

in the system. In contrast, our approach is based on the

dynamic observation of the \actual" processes of the con-

current system. This makes possible a much closer exami-

nation of the behaviors of the system, and the detection of a

wider range of errors. Moreover, we do not rely on any spe-

ci�c assumption about the static structure of the programs

used to represent the behavior of processes, which can ac-

tually be written in any language. Interesting future work

is to combine the strengths of both the static and dynamic

approaches.

8

Obviously, even a theoretically-terminating �nite-state search

might fail to terminate due to the excessive resources that it requires.

VeriSoft also di�ers from speci�cation-based testing fra-

meworks for reactive programs (e.g., [DY94, Ric94, CRS96,

JPP

+

97]). These techniques compare the input/output be-

havior of an open reactive program with respect to a high-

level speci�cation of its visible behavior. In contrast, Veri-

Soft was designed to check properties of closed systems com-

posed of multiple processes. It neither enables nor requires

the user to provide a precise speci�cation of the input/output

behavior of the system to be analyzed. In the case of an open

reactive system, it makes it possible to represent the envi-

ronment of the open system by other processes, and then

to check \global" properties of the joint behavior of these

processes, in the style of what is usually done with model

checking.

Another related and complementary area of research con-

cerns the design of simulators and debuggers for distributed

and parallel programs (e.g., [CMN91]). These tools are used

to monitor the execution of concurrent processes running in

their actual environment. In contrast, VeriSoft has complete

control over nondeterminism in order to be able to system-

atically search the state space of the system for coordination

problems. Therefore, it does not preserve quantitative prop-

erties (related to timing, performance, etc.) of the whole

concurrent system.

Ackowledgments

We thank Lind Weidlich for the use of his compiler in trans-

lating the original HBM code into C.

References

[ACG

+

96] M. Adams, J. Coplien, R. Gamoke, R. Hanmer,

F. Keeve, and K. Nicodemus. Fault-Tolerant

Telecommunication System Patterns. In Vlis-

sides, Coplien, and Kerth, editors, Pattern Lan-

guages of Program Design { 2, pages 549{562.

Addison-Wesley, 1996.

[AS87] B. Alpern and F. B. Schneider. Recogniz-

ing safety and liveness. Distributed Computing,

2:117{126, 1987.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compil-

ers: Principles, Techniques and Tools. Addison-

Wesley, 1986.

[BG97] B. Boigelot and P. Godefroid. Automatic Syn-

thesis of Speci�cations from the Dynamic Ob-

servation of Reactive Programs. In Proceedings

of the Third International Workshop on Tools

and Algorithms for the Construction and Analy-

sis of Systems (TACAS'97), volume 1217 of Lec-

ture Notes in Computer Science, pages 321{333,

Twente, April 1997. Springer-Verlag.

[CC77] P. Cousot and R. Cousot. Abstract interpreta-

tion: A uni�ed lattice model for static analysis

of programs by construction or approximation of

�xpoints. In Proceedings of the Fourth Annual

ACM Symposium on Principles of Programming

Languages, January 1977.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla.

Automatic veri�cation of �nite-state concur-

rent systems using temporal logic speci�cations.

ACM Transactions on Programming Languages

and Systems, 8(2):244{263, January 1986.

[CMN91] J.-D. Choi, B. P. Miller, and R. H. B. Netzer.

Techniques for debugging parallel programs with

owback analysis. ACM Transactions on Pro-

gramming Languages and Systems, pages 491{

530, October 1991.

[Cor96] J. C. Corbett. Constructing abstract models of

concurrent real-time software. In Proceedings

of ISSTA'96 (International Symposium on Soft-

ware Testing and Analysis), pages 250{260, San

Diego, January 1996.

[CPS93] R. Cleaveland, J. Parrow, and B. Ste�en. The

concurrency workbench: A semantics based tool

for the veri�cation of concurrent systems. ACM

Transactions on Programming Languages and

Systems, 1(15):36{72, 1993.

[CRS96] J. Chang, D. Richardson, and S. Sankar. Struc-

tural Speci�cation-based Testing with ADL. In

Proceedings of ISSTA'96 (International Sympo-

sium on Software Testing and Analysis), pages

62{70, San Diego, January 1996.

[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H.

Yang. Protocol veri�cation as a hardware de-

sign aid. In 1992 IEEE International Confer-

ence on Computer Design: VLSI in Computers

and Processors, pages 522{525, Cambridge, MA,

October 1992. IEEE Computer Society.

[DY94] L.K. Dillon and Q. Yu. Oracles for checking

temporal properties of concurrent systems. Soft-

ware Engineering Notes, 19(5):140{153, Decem-

ber 1994. Proceedings of the 2nd ACM SIG-

SOFT Symposium on Foundations of Software

Engineering.

[FGM

+

92] J.C. Fernandez, H. Garavel, L. Mounier,

A. Rasse, C. Rodriguez, and J. Sifakis. A tool-

box for the veri�cation of LOTOS programs. In

Proc. of the 14th International Conference on

Software Engineering ICSE'14, Melbourne, Aus-

tralia, May 1992. ACM.

[God96] Patrice Godefroid. Partial-Order Methods for

the Veri�cation of Concurrent Systems { An

Approach to the State-Explosion Problem, vol-

ume 1032 of Lecture Notes in Computer Science.

Springer-Verlag, January 1996.

[God97] P. Godefroid. Model Checking for Programming

Languages using VeriSoft. In Proceedings of the

24th ACM Symposium on Principles of Program-

ming Languages, pages 174{186, Paris, January

1997.

[HK90] Z. Har'El and R. P. Kurshan. Software for ana-

lytical development of communication protocols.

AT&T Technical Journal, 1990.

[Hol91] G. J. Holzmann. Design and Validation of Com-

puter Protocols. Prentice Hall, 1991.

[JPP

+

97] L. Jagadeesan, A. Porter, C. Puchol, J.C. Ram-

ming, and L. Votta. Speci�cation-based testing

of reactive software: Tools and experiments. In

Proceedings of the 19th IEEE International Con-

ference on Software Engineering, 1997.

[LC91] D. L. Long and L. A. Clarke. Data
ow anal-

ysis of concurrent systems that use the ren-

dezvous model of synchronization. In Proceed-

ings of ACM Symposium on Testing, Analysis,

and veri�cation (TAV4), pages 21{35, Vancou-

ver, October 1991.

[LP85] O. Lichtenstein and A. Pnueli. Checking that �-

nite state concurrent programs satisfy their lin-

ear speci�cation. In Proceedings of the Twelfth

ACM Symposium on Principles of Programming

Languages, pages 97{107, New Orleans, January

1985.

[McM93] K. L. McMillan. Symbolic Model Checking.

Kluwer Academic Publishers, 1993.

[MJ81] S.S. Muchnick and N.D. Jones. Program Flow

Analysis: Theory and Applications. Prentice-

Hall, 1981.

[MR93] S. P. Masticola and B. G. Ryder. Non-

concurrency analysis. In Proceedings of Fourth

ACM SIGPLAN Symposium on Principles &

Practice of Parallel programming, pages 129{

138, San Diego, May 1993.

[QS81] J.P. Quielle and J. Sifakis. Speci�cation and ver-

i�cation of concurrent systems in CESAR. In

Proc. 5th Int'l Symp. on Programming, volume

137 of Lecture Notes in Computer Science, pages

337{351. Springer-Verlag, 1981.

[Ric94] D.J. Richardson. TAOS: Testing with analy-

sis and oracle support. In Proceedings of the

1994 International Symposium on Software Test-

ing and Analysis, August 1994.

[Tay83] R. N. Taylor. A general-purpose algorithm for

analyzing concurrent programs. Communica-

tions of the ACM, pages 362{376, May 1983.

[VW86] M.Y. Vardi and P. Wolper. An automata-

theoretic approach to automatic program veri-

�cation. In Proceedings of the First Symposium

on Logic in Computer Science, pages 322{331,

Cambridge, June 1986.

