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Abstract

State-space caching is a veri�cation technique for �nite-state concurrent systems. It per-

forms an exhaustive exploration of the state space of the system being checked while storing

only all states of just one execution sequence plus as many other previously visited states

as available memory allows. So far, this technique has been of little practical signi�cance:

it allows one to reduce memory usage by only two to three times, before an unacceptable

blow-up of the run-time overhead sets in. The explosion of the run-time requirements is due

to redundant multiple explorations of unstored parts of the state space. Indeed, almost all

states in the state space of concurrent systems are typically reached several times during

the search.

In this paper, we present a method to tackle the main cause of this prohibitive state

matching: the exploration of all possible interleavings of concurrent executions of the system,

which all lead to the same state. Then, we show that, in many cases, with this method,

most reachable states are visited only once during state-space exploration. This enables one

not to store most of the states that have already been visited without incurring too much

redundant explorations of parts of the state space, and makes therefore state-space caching

a much more attractive veri�cation method. As an example, we were able to completely

explore a state space of 250,000 states while storing simultaneously no more than 500 states

and with only a three-fold increase of the run-time requirements.

1 Introduction

The e�ectiveness of state-space exploration techniques for debugging and proving correct con-

current reactive systems is increasingly becoming established as tools are being developed. The

number of \success stories" about applying these techniques to industrial-size systems keeps

growing (e.g., see [Rud92]). The reason why these techniques are so successful is mainly due to

�
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their simplicity: they are easy to understand, easy to implement and, last but not least, easy

to use: they are fully automatic. Moreover, the range of properties that they can verify has

been substantially broadened in the last decade thanks to the development of model-checking

methods for various temporal logics. The only real limit of state-space exploration veri�cation

techniques is the often excessive size of the state space.

More precisely, memory is the main limiting factor of most conventional reachability analysis

algorithms. Given a �nite-state system, these veri�cation algorithms perform an exhaustive

exploration of the state space of the system being checked in order to prove or disprove properties

of the system. This exploration amounts to simulating all possible behaviors the system can have

from its initial state and storing all reachable states. To avoid signi�cant run-time penalties for

disk-access, reachable states can only be stored in a randomly accessed memory, i.e., in the main

memory available in the computer where the algorithm is executed. Therefore the applicability

of these veri�cation algorithms is limited by the amount of main memory available. Typically, it

only takes a few minutes of run-time to �ll up the whole main memory of a classical computer.

During the search, once states have been visited they are stored. Storing states avoids

redundant explorations of parts of the state space. If a stored state is encountered again later

in the search, it is not necessary to revisit all its successors. It is worth noticing that states

that are reached only once during the search do not need to be stored. Storing them or not

would not change anything about the time requirements of the method. Of course, it would

be preferable not to store them in order to decrease the memory requirements, but with a

conventional algorithm it is virtually impossible to predict if a given state will be visited once

or more than once.

Typically, almost all states in the state space of concurrent systems are reached several

times during the search. There are two causes for this:

1. From the initial state, the explorations of all interleavings of a single �nite concurrent

execution of the system always lead to the same state. This state will thus be visited

several times because of all these interleavings.

2. From the initial state, explorations of di�erent �nite concurrent executions may lead to

the same state.

In this paper, we introduce a technique to avoid the e�ects of the �rst cause given above. Then

we study the impact of this technique on real-protocol state spaces. In many cases, when using

this method, most of the states are reached only once during the search.

Sadly, it is not possible to determine which states are visited only once before the search

is completed. However, the risk of double work when not storing an already visited state

becomes very small since the probability that this state will be visited again later during the

search becomes very small. This enables one not to store most of the states that have already

been visited without incurring too much redundant explorations of parts of the state space.

The memory requirements can thus strongly decrease without seriously increasing the time

requirements. This makes possible the complete exploration of very large state spaces (several

tens of million states) in a reasonable time (a few hours). In most cases, time, not memory, is

the main limiting factor of this veri�cation technique.
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Initialize: Stack is empty; H is empty;

Search() f

enter s

0

in H;

push (s

0

) onto Stack;

DFS();

g

DFS() f

s = top(Stack);

for all t enabled in s do f

s

0

= succ(s) after t; /* execution of t */

if s

0

is NOT already in H then f

enter s

0

in H;

push (s

0

) onto Stack;

DFS();

g

/* backtracking of t */

g

pop s from Stack

g

Figure 1: Algorithm 1 | classical depth-�rst search

In the next Section, we recall the principles of state-space caching and present some results

obtained with this method for the veri�cation of four real protocols. Then we show how this

veri�cation method can be substantially improved by the use of \sleep sets". Sleep sets were

introduced in [God90, GW93]. In Section 3, we recall the basic idea behind sleep sets. Then,

we present a new simple version of the sleep set scheme. We study properties of sleep sets and

prove two theorems. Section 4 presents and compares the results obtained with the state-space

caching method with and without the use of sleep sets. In Section 5, some suggestions to further

improve the e�ectiveness of the method are investigated.

2 State-space Caching

State-space exploration can be performed by a classical depth-�rst search algorithm, as shown

in Figure 1, starting from the initial state s

0

of the system. The main data structures used

are a Stack to hold the states of the current explored path, and a hash table H to store all

the states that have already been visited during the search. Algorithm 1 executes all enabled

transitions at each state the system can reach from its initial state. The exploration can be

performed \on-the-y", i.e., without storing the transitions that are taken during the search.

This substantially reduces the memory requirements. Unfortunately, the number of reachable

states can be very large and it is then impossible to store all these states in H .

However, it is well-known that a completely exhaustive state-space exploration can be per-
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formed without the storage of any other part of the full state space than, for instance, a single

sequence of states leading from the initial state to the current explored state, i.e., the Stack

used in Algorithm 1. Such a search, termed \Type-3" or stack-search algorithm in [Hol90],

reduces the memory requirements while still guaranteeing a complete exploration of any �nite

state space. This strategy was used in, for instance, the �rst Pan system [Hol81], and in the

Pandora system [Hol84]. The problem is that, if an execution path joins a previously analyzed

sequence in a state that is no longer in the stack, this search strategy will do redundant work.

Hence the run-time requirements of this type of search go up dramatically. The result is that

even state spaces that could otherwise comfortably be stored exhaustively become unsearchable

with even the fastest implementations of a stack-search discipline.

A trade-o� between these two strategies consists of storing all the states of the current

explored path plus as many other states as possible given the remaining amount of available

memory. This strategy is called state-space caching [Hol85]. It creates a restricted cache of

selected system states that have already been visited. Initially, all system states encountered

are stored into the cache. When the cache �lls up, old states are deleted to accommodate new

ones. This method never tries to store more states than possible in the cache. Thus, if the size

of the cache is greater than the maximal size of the stack during the exploration, the whole

state space can be explored.

We have implemented such a caching discipline in an automated protocol validation system

called SPIN [Hol91], which includes an implementation of a classical search as described in

Figure 1. The details of PROMELA, the validation language that SPIN accepts, can be found

in [Hol91]. PROMELA de�nes systems of asynchronously executing concurrent processes that

can interact via shared global variables or message channels. Interaction via message channel

can be either synchronous (i.e., by rendez-vous) or asynchronous (bu�ered), depending on what

type of channel is declared.

Experiments with our implementation were made on four sample real protocols:

1. PFTP is a �le transfer protocol presented in Chapter 14 of [Hol91], modeled in 206 lines

of PROMELA.

2. URP is AT&T's Universal Receiver Protocol [FM89], modeled in 405 lines of PROMELA.

3. MULOG3 is a protocol implementing a mutual exclusion algorithm presented in [TN87],

for 3 participants, modeled in 97 lines of PROMELA.

4. DTP is a data transfer protocol, modeled in 406 lines of PROMELA.

Information about the state spaces of these protocols are obtained by running Algorithm 1

and are given in Table 1. States and transitions are respectively the number of states and

transitions visited by the corresponding algorithm. \Matched" is the number of state matchings

that occurred during the search. \Depth" is the maximum size of the stack during the search.

All measurements reported in this paper were run on a SPARC2 workstation (64 Megabytes of

RAM). Time is user time plus system time as reported by the UNIX-system time command.

Parameters in these protocols are set in such a way that full state spaces can be stored in 64

Megabytes of RAM, for experimental purposes.
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Protocol states matched transitions depth time (sec)

PFTP 409,257 771,265 1,180,522 5,044 219.4

URP 15,378 27,709 43,087 202 6.9

MULOG3 100,195 254,183 354,378 119 35.2

DTP 251,409 397,058 648,467 545 97.8

Table 1: State-space exploration with Algorithm 1

The results of our experiments with Algorithm 1 and di�erent cache sizes are presented in

Figure 4 in Section 4. These results clearly show that, for these examples, the number of stored

states can be reduced by approximately two to three times without seriously a�ecting the run

time. If the cache is further reduced, the run time increases dramatically.

These results con�rm the ones presented in [Hol85, Hol87]. As �rst pointed out in [Hol87],

whether a large reduction of the memory requirements without a signi�cant blow-up of the

time complexity can be achieved depends largely on the structure of the state space, which is

protocol dependent and highly unpredictable. The conclusion from these early studies was that

the state-space caching discipline is useful for exploring state spaces that are only a few times

larger than the size of the cache, since the blow-up of execution time starts too soon, and is too

steep. The results of these experiments were more recently con�rmed in a series of independent

experiments [JJ89, JJ91].

The critical point for a caching algorithm is the risk of double work incurred by joining a

previously visited state that has been deleted from memory. This risk depends on the state

space: if the states are reached several times during the search, the risk is greater than if they

are reached only once. For the state spaces of the examples above, one can see in Table 1 that

the number of transitions is about 3 times the number of states. This means that each state is,

on average, reached 3 times during the search. The risk is too high. This is why this technique

is not very e�cient.

In the next section, we show how it is possible to strongly reduce the number of transitions

that have to be explored during the search, which reduces the risk and makes state-space caching

manageable.

3 Sleep Sets

The classical depth-�rst search presented in Figure 1 explores all enabled transitions from each

state encountered during the search. However, in case of concurrent systems, it is possible to

explore all the reachable states of the state space without exploring systematically all enabled

transitions in each state. This can be done by using sleep sets.

Sleep sets were introduced in [God90, GW93] as part of a veri�cation method that can

avoid most of the state explosion due to the modeling of concurrency by interleaving. The

basic idea of this veri�cation method was to describe the behavior of the system by means of
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partial orders rather than by sequences. More precisely, Mazurkiewicz's traces [Maz86] were

used as a semantic model.

Traces are de�ned as equivalence classes of sequences. Given a set T and a symmetrical

binary relation D � T � T called \dependency" relation, two sequences over T belong to the

same trace with respect to D (are in the same equivalence class) if they can be obtained from

each other by successively exchanging adjacent symbols which are independent according to

D. For instance, if t

1

and t

2

are two symbols of T which are independent according to D,

the sequences t

1

t

2

and t

2

t

1

belong to the same trace. A trace is usually represented by one of

its elements enclosed within brackets and, when necessary, subscripted by the alphabet T and

the dependency relation. Thus the trace containing both t

1

t

2

and t

2

t

1

could be represented by

[t

1

t

2

]

(T;D)

. A trace corresponds to a partial ordering of symbol occurrences and contains all

linearizations of this partial order. If two independent symbols occur next to each other in a

sequence of a trace, the order of their occurrence is irrelevant since they occur concurrently in

the partial order corresponding to that trace.

In the context considered here, T will be the set of transitions that appear in the code of the

PROMELA program being veri�ed. When should we consider transitions to be independent?

Our intuitive idea is that transitions are independent if their order does not matter. More

precisely, two transitions

1

are independent if the following two conditions are satis�ed in all

reachable states (otherwise they are said to be dependent):

1. if t

1

is enabled in s and

2

s

t

1

! s

0

, then t

2

is enabled in s i� t

2

is enabled in s

0

(independent

transitions can neither disable nor enable each other); and

2. if t

1

and t

2

are enabled in s, then there is a unique state s

0

such that both s

t

1

t

2

) s

0

and

s

t

2

t

1

) s

0

(commutativity of enabled independent transitions).

One can wonder if this de�nition is of more than semantic use. Indeed, it is not practical

to check the two properties listed above for all pairs of transitions in all reachable states to

determine which transitions are independent and which are not. Fortunately, it is possible to

give easily checkable syntactic conditions that are su�cient for transitions to be independent.

In a PROMELA program, dependency can arise between program transitions that refer to the

same global objects, i.e., same global variables or same message channels. For instance, two

write operations on a same shared global variable in two concurrent processes are dependent,

while two concurrent read operations on the same object are independent since they can be

shu�ed in any order without changing the possible outcome of the read. Carefully tracking

dependencies in a PROMELA program is by no means a trivial task. We refer the reader

to [GP93] for a detailed presentation of that topic.

Given a dependency relation, sequences of transitions can be grouped into equivalence

classes, i.e., traces. Moreover, if a state s of the system is reachable from the initial state

1

We assume that transitions are deterministic, i.e., that the execution of a transition leads to a unique

successor state. This is not a restriction since \nondeterministic transitions" can always be modeled by a set of

deterministic ones.

2

We write s

t

! s

0

to mean that the transition t leads from the state s to the state s

0

and s

w

) s

0

to mean that

the sequence of transitions w leads from s to s

0

.
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t

0

2

t

2

t

0

1

t

1

t

0

2

t

0

2

t

0

2

t

0

1

t

0

1

t

0

1

t

2

t

2

t

2

t

1

t

1

t

1

s

0

s

00

s

ft

2

g

ft

2

g

ft

1

g

ft

1

g

9

8

7

6

5

4

3

2

1

Figure 2: A concurrent system (left) and the exploration performed by Algorithm 2 (right)

s

0

after executing a transition sequence w, all transition sequences belonging to [w] also lead to

state s from s

0

[GP93]. In [God90, GW93], sleep sets were one of the means used by an algo-

rithm devoted to the exploration of at least one (sequence) interleaving for each possible trace

(partial ordering of transitions) the concurrent system was able to perform. More precisely,

the speci�c aim of sleep sets was to avoid the wasteful exploration of all possible shu�ings of

independent transitions.

Let us consider an example to illustrate the basic idea behind sleep sets. Consider a classical

depth-�rst search and assume there are two independent transitions t

1

and t

0

1

from the current

state s (see the top of the right part of Figure 2). Assume that transition t

1

is explored before

transition t

0

1

and that t

1

leads to a successor state s

0

. When all immediate successor states of

s

0

have been explored, the transition t

1

is backtracked and the depth-�rst search backs up to

state s. Then t

0

1

is explored from s, leads to a successor node s

00

and the search goes on from

s

00

. Since t

1

and t

0

1

are independent, t

1

is still enabled in s

00

. But it is not necessary to explore

transition t

1

from state s

00

since the result of another shu�ing of these independent transitions,

namely the sequence t

1

t

0

1

, has already been explored from s. In order to prevent the exploration

of t

1

in s

00

, we use sleep sets: we put t

1

in the sleep set associated with s

00

.

A sleep set is de�ned as a set of transitions. A sleep set is associated with each state s

reached during the search. The sleep set associated with s is a set of transitions that are

enabled in s but will not be explored from s. The sleep set associated with the initial state s

0

is the empty set.

Note that, in the previous example, if t

1

and t

0

1

would have been dependent, then it would

have been mandatory to explore both shu�ings of t

1

and t

0

1

. (For example, the two shu�ings

of two write statements on a same global variable performed by two concurrent processes are

dependent and leaves the system in two di�erent states.)

Figure 3 shows how to introduce the sleep set scheme in the classical depth-�rst search

algorithm of Figure 1. The sleep set associated with a state s is denoted by s:Sleep. Initially,

one has s

0

:Sleep = ; (line 3). Each time a new state s is encountered during the search, all

enabled transitions that are not in s:Sleep, i.e., the sleep set that has been computed to be

associated with s and has been stored with it in the Stack, are selected to be explored from
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1 Initialize: Stack is empty; H is empty;

2 Search() f

3 s

0

:Sleep = ;;

4 enter s

0

in H;

5 push (s

0

) onto Stack;

6 DFS();

7 g

8 DFS() f

9 s = top(Stack);

10 T = enabled(s)ns:Sleep;

11 s:Sleep = ft 2 s:Sleep j s

0

= succ(s) after t

V

s

0

is NOT in Stackg;

12 for all t 2 T do f

13 s

0

= succ(s) after t; /* execution of t */

14 s

0

:Sleep = ft

0

2 s:Sleep j t

0

and t are independentg;

15 if s

0

is NOT already in H then f

16 enter s

0

in H;

17 push (s

0

) onto Stack;

18 DFS();

19 g

20 /* backtracking of t */

21 if s

0

is not in Stack then f

22 s:Sleep = s:Sleep [ ftg

23 g

24 g

25 pop s from Stack

26 g

Figure 3: Algorithm 2 | depth-�rst search with sleep sets

state s (line 10). Lines 11, 14 and 21{23 describe how to compute the sleep sets associated

with the successor states of the current state s from the value of its sleep set s:Sleep. First, all

transitions of s:Sleep that point to a state in Stack are removed from s:Sleep (line 11). (Testing

if a transition points to a state in Stack can be done by simulating it and then checking if the

reached state is in Stack.) Next, each time a transition t is explored from state s, the set of all

transitions of s:Sleep that are independent with t is the sleep set s

0

:Sleep of the successor state

s

0

of s after t (line 14). Finally, each time a transition t from state s to a state s

0

is backtracked,

t is added to s:Sleep if s

0

is not in Stack (lines 21{23), i.e., if t has not led to an already visited

state which is still in the stack.

A simple example of exploration performed by Algorithm 2 is given in Figure 2. The system

on the left is composed of two completely independent concurrent processes. On the right, the

state-graph explored by Algorithm 2 for this system is presented. The value of the sleep set

associated with each state when the state is pushed onto the stack is given between braces

beside the state. Dotted transitions are not explored by Algorithm 2.

3

3

According to line 11 of Algorithm 2, dotted transitions, i.e., transitions in sleep sets, have to be tested once in
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The following theorem ensures that all reachable states of the concurrent system are still

visited by Algorithm 2.

Theorem 3.1 All reachable states are visited by Algorithm 2.

Proof: Let s be a state reachable from the initial state s

0

. Imagine that we �x the order in which transitions

selected in a given state are explored and that we �rst run Algorithm 1 (depth-�rst search without sleep sets).

Then, we run Algorithm 2 (depth-�rst search with sleep sets) while still exploring transitions in the same order.

The important point is that the order used in both runs is the same, the exact order used is irrelevant. Since s is

reachable, s is visited by Algorithm 1 (we do not prove here that a classical depth-�rst search visits all reachable

states). We now prove that the �rst path leading to s explored by Algorithm 1, i.e., the path through which

Algorithm 1 reaches s for the �rst time, is still explored in the second run when using Algorithm 2.

Let p = s

0

t

0

! s

1

t

1

! s

2

: : : s

n�1

t

n�1

! s be this path. Since the order used in both runs is the same, p is the

very �rst path leading to s that will be examined during both runs. The only reason why it might not be fully

explored (i.e., until s is reached) by the algorithm using sleep sets is that some transition t

i

of p is not taken

because it is in the sleep set associated with s

i

. There are two possible causes for this. The �rst cause is that

p might contain a state that has already been visited with a sleep set which contained t

i

. This is not possible

because if such a state existed, the path p would not be the very �rst explored path leading to s. The second

possible cause is that t

i

has been added to the sleep set associated with some previous state of the path p and

then passed along p until s

i

. Let us prove that this is also impossible.

Assume that t

i

is in the sleep set associated with state s

i

when s

i

is pushed onto the stack. Hence, t

i

has

been added to the sleep set associated with some previous state s

j

, j < i, of the path p and passed in the sleep

set associated with the successor states of s

j

along the path p until s

i

. Formally, t

i

62 s

j

:Sleep when s

j

is pushed

onto the stack and t

i

2 s

k

:Sleep for all states s

k

, j < k � i. This implies that t

i

has been explored before t

j

from s

j

since a transition is introduced in the sleep set once it is backtracked (line 22 in Figure 3). This also

implies that, from s

j

, t

i

has not led to a state s

l

, l � j, of the path p (line 21). Moreover, all transitions that

occur between t

j

and t

i

in p, i.e., all t

k

such that j � k < i, are independent with respect to t

i

. Indeed, if this

was not the case, t

i

would not be in s

i

:Sleep since transitions that are dependent with the transition taken are

removed from the sleep set (line 14).

Consequently, t

i

t

j

: : : t

i�1

2 [t

j

: : : t

i�1

t

i

], i.e., t

i

t

j

: : : t

i�1

and t

j

: : : t

i�1

t

i

are two interleavings of a single

concurrent execution (i.e., a single trace) and hence lead to the same state: s

j

t

i

t

j

:::t

i�1

) s

i+1

. Moreover, this

path from s

j

does not intersect any of the states s

l

, l � j, of p. Indeed, if one of the intermediate states of this

path was a state s

l

, l � j, of p, one would have s

j

t

i

w

) s

l

where w is a pre�x of the sequence t

j

: : : t

i�1

, and at

state s

k

of p such that s

j

w

) s

k

, t

i

would lead to s

l

; since transitions that lead to a state in the current stack are

removed from the current sleep set (line 10), t

i

would have been removed from s

k

:Sleep at s

k

, which contradicts

the fact that t

i

is in s

i

:Sleep and is therefore impossible. Since there is a path s

j

t

i

t

j

:::t

i�1

) s

i+1

from s

j

that does

not intersect any of the states s

l

, l � j, and since t

i

is explored before t

j

in s

j

, the path p is not the very �rst

path through which Algorithm 1 reaches s. A contradiction.

In practice, the previous theorem enables us to use Algorithm 2 to verify all properties

that can be reduced to a state accessibility problem, like, for instance, deadlock detection,

unreachable code detection, assertion violations, safety properties. Moreover, other problems

like the veri�cation of liveness properties and model checking for linear-time temporal logic

formulas are reducible to a set of reachability problems (see for instance [CVWY90, Hol91,

GH93]), for which the method developed in this paper is applicable. By construction, the

order to determine if they lead to a state of the current stack or not. However, \testing" a transition is di�erent

from \exploring" it, since, whatever the result of the test is, the successor state of a tested transition is never

\explored", i.e., pushed onto the stack, after that test.
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Protocol Algorithm states matched transitions depth time (sec)

PFTP 1 409,257 771,265 1,180,522 5,044 219.4

2 409,257 183,638 592,895 4,786 505.4

URP 1 15,378 27,709 43,087 202 6.9

2 15,378 1,884 17,262 202 13.8

MULOG3 1 100,195 254,183 354,378 119 35.2

2 100,195 3,736 103,931 119 80.8

DTP 1 251,409 397,058 648,467 545 97.8

2 251,409 11,152 262,561 545 206.4

Table 2: Comparison of the performances of Algorithm 1 and 2

state-graph G

0

explored by Algorithm 2 is a \sub-graph" of the state-graph G explored by

Algorithm 1. Both state-graphsG and G

0

contain the same number of states, the only di�erence

is that G

0

contains less transitions than G. Of course, if no simultaneous enabled independent

transitions are encountered during the search, G

0

is then exactly equivalent to G.

Since only states, not transitions, are stored during an on-the-y veri�cation, and since the

number of states is the same in G and G

0

, Algorithm 1 and Algorithm 2 require exactly the

same amount of randomly accessed memory. Indeed, sleep sets are stored in the Stack, which

can be stored in a sequentially accessed memory.

Table 2 compares the performances of and the state-graphs explored by Algorithm 1 and

Algorithm 2 for the protocols presented in Section 2. The advantage of Algorithm 2 is that

it explores much fewer transitions than Algorithm 1. The number of state matchings strongly

decreases when using Algorithm 2. This phenomenon can be explained with the following

theorem.

Theorem 3.2 A sequence w of transitions is said to be acyclic if the execution of w from the

initial state s

0

never passes twice through a same state. A trace [w] is said to be acyclic if

8w

0

2 [w] : w

0

is acyclic. Algorithm 2 never completely explores more than one interleaving per

acyclic trace.

Proof:

By de�nition, all w

0

2 [w], i.e., all interleavings w

0

of a single trace [w], lead to the same state and can be

obtained from w by successively permuting pairs of adjacent independent transitions. Let w and w

0

denote two

interleavings of the single trace [w]. We now prove that Algorithm 2 does not completely explore both of them.

Let Pref(w) denote the common pre�x of w and w

0

that ends when w and w

0

di�er. Let t be the next

transition of w after Pref(w) and let t

0

be the next transition of w

0

after Pref(w). In state s such that

s

0

Pref(w)

) s, both transitions t and t

0

are enabled. Moreover, t and t

0

are independent since w and w

0

di�er

only by the order of independent transitions. If either t or t

0

are in s:Sleep when s is pushed onto the stack, the

theorem follows. Assume that t and t

0

are not in s:Sleep and that the search explores t �rst. Let us show that

if w is fully explored, w

0

cannot be fully explored.

When t is backtracked and the search backs up in s, t is introduced in s:Sleep since it has not led to a state

in the stack (otherwise, this would contradict the fact that [w] is acyclic). Then t

0

is explored and leads to a

state s

00

. Since t and t

0

are independent, t is in s

00

:Sleep.

10



During the remainder of the exploration of w

0

starting from s

00

, t remains in Sleep and is never executed.

Indeed, t could be removed from Sleep in only two cases. The �rst case is that a transition t

00

dependent with

t is executed. This is impossible because if t

00

occurs before t in w

0

(since t has to occur eventually in w

0

), w

0

would di�er from w by the order of two dependent transitions t and t

00

, and thus w and w

0

would not be two

interleavings of a same trace. The second possible situation is that t leads to a state in the stack. This would

contradict the fact that [w] is acyclic, and is therefore impossible. Since t remains in the sleep set associated

with the states reached during the remainder of the exploration of w

0

starting from s

00

, t is not executed, and

since it has to occur in w

0

, w

0

is not completely explored.

Note that, if an already visited state is reached during the exploration of w

0

from s

00

, the exploration of

w

0

stops. It might then be the case that the remainder of w

0

has already been explored, but it was during the

exploration of an interleaving of another trace that has the same su�x than w

0

.

Algorithm 2 never visits a state twice because of the exploration of two interleavings of a

same acyclic trace leading to that state. Therefore, if a state is reachable by several interleavings

of only one single acyclic trace, Algorithm 2 never completely explores more than one of these

interleavings and visits that state only once. Note that all reachable states s are reachable by

an acyclic trace: the shortest path w from s

0

to s characterizes an acyclic trace [w] leading to

s. In the example of Figure 2, all states are visited only once by Algorithm 2. Of course, if

one could know it in advance before starting the search, it would not be necessary to store any

states! Unfortunately, it is impossible to determine which are the states that are encountered

only once before the search is completed.

Let us now study the impact of sleep sets on state-space caching.

4 State-space Caching and Sleep Sets

Figure 4 compares the performances of Algorithm 1 (classical depth-�rst search) and Algo-

rithm 2 (depth-�rst search with sleep sets) for various cache sizes.

As already pointed out in Section 2, the number of transitions that are explored during the

search performed by Algorithm 1 blows up when the cache size is approximately the half/third

of the total number of states. This causes a run-time explosion, which makes state-space caching

ine�cient under a certain threshold.

With Algorithm 2, for PFTP, this threshold can be reduced to the fourth of the total number

of states. The improvement is not very spectacular because the number of matched states, even

when using sleep sets, is still too important (see Table 2). The risk of double work when

reaching an already visited state that has been deleted from memory is not reduced enough.

For the other three protocols, URP, MULOG3 and DTP, the situation is di�erent: there is no

run-time explosion with Algorithm 2. Indeed, the number of matched states is reduced so much

(see Table 2) that the risk of double work becomes very small. When the cache size is reduced

up to the maximal depth of the search (this maximal depth is the lower bound for the cache

size since all states of the stack are stored to ensure the termination of the search), the number

of explored transitions is still between only two and four times the total number of transitions

in the state space. These protocols, which have between 15,000 and 250,000 reachable states,
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Figure 4: Performances of state-space caching with Algorithm 1 and 2
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can be analyzed with no more than 500 stored states. The memory requirements are reduced to

3% up to 0.2%. The only drawback is an increase of the run time by two to four times compared

to the search where all states are stored (which may be impossible for larger state spaces).

The e�ciency of the method can be dynamically estimated during the search: if the max-

imum stack size remains acceptable with respect to the cache size and if the proportion of

matched states remains small enough, the run-time explosion will likely be avoided. Else one

cannot predict if the cache size is large enough to avoid the run-time explosion.

5 Further Investigations

An important factor when using the state-space caching method is the selection criterion for

determining which states are deleted when the cache is full. The experiments reported in

Figure 4 were performed using a random replacement strategy.

Several replacement strategies were studied in [Hol85]. These strategies were based on the

number of times that a state has previously been visited. These strategies were: replace the

most frequently visited state; replace the least frequently visited state; replace a state from the

largest class of states in the current state-space (where a class contains states that have been

visited equally often); replace randomly a state; replace the state corresponding to the lowest

point in the search tree (smallest subtree). The conclusion of that study was that the best

strategy seems to be a random selection. In [Hol87], the probability of recurrence of states (i.e.,

the probability that once a state has been visited n times it will be visited an n + 1st time as

well) was investigated and turns out not to be strongly correlated with the number of previous

visits.

We have experimented some di�erent replacement strategies. Our motivation was to study

the inuence of the type of transitions that can lead to a state on the probability that the state

is visited again later during the search. For instance, a \labeled" state, e.g., the target of a

goto jump, is intuitively more susceptible to be matched than an \unlabeled" state.

First, let us classify transitions into di�erent types:

1. control branches (goto jump, start of do loops, : : : );

2. receives on message channels;

3. sends on message channels;

4. assignments to variables;

5. other transitions.

Each state encountered during the search is tagged with the type of the transition that has

led to it. We have studied the impact of the following replacement strategy on the run-time

requirements of the state-space caching method, for each of the four �rst types of transitions:

Each time a state has to be deleted, scan an arbitrarily given number of stored

states (scanning too many states incurs an unacceptable overhead; this is why an

13
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Figure 5: Random vs \type-oriented" replacement strategy

arbitrary limit is given). If possible, select a state that is not tagged with the type

considered. Otherwise, select randomly one of them.

The results are the following: for type 1, the procedure described above gives always better

results than a simple random selection; for types 2, 3 and 4, the results are unpredictable.

In other words, it is preferable not to remove states pointed by type 1 transitions, as far as

possible.

Since protocols do not necessarily have transitions of each type, a good heuristic cannot be

based only on the selection of states that follow transitions of a single type. Grouping all the

four �rst types together and trying to delete only states that follow transitions of type 5 is not

a good solution as well because it degenerates to a random selection since transitions of type

5 are usually not numerous enough. A possible trade-o� is to use the following replacement

strategy:

Each time a state has to be deleted, scan an arbitrarily given number of stored

states and select one state that is tagged with the highest type (i.e., closest to 5).

The order of the types given above was chosen according to the results of the experiments we

made with the di�erent types taken separately. If a state is visited by several transitions, its

tag is set to the smallest type of transitions that led to it.

Figure 5 shows the results obtained with this strategy (denoted \type-oriented" strategy)

compared to a random replacement discipline for the PFTP protocol. One can see that this

strategy does not involve a signi�cant run-time overhead. Moreover, it yields a 50% reduction

for the run-time blow-up threshold.

For the other three protocols, there is no signi�cant di�erence with respect to a random

selection strategy. As a matter of fact, in these examples, the random selection strategy is

su�cient to reduce the cache size so close to the maximal stack size that no signi�cant further

reduction is possible.
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6 Conclusions

We have presented a new technique which can substantially improve the state-space caching

discipline by getting rid of the main cause of its previous ine�ciency, namely prohibitive state

matching due to the exploration of all possible interleavings of concurrent executions all leading

to the same state. We have shown with experiments on real protocol models that, thanks to

sleep sets, the memory requirements needed to validate large protocol models can be strongly

decreased (sometimes more than 100 times) without seriously increasing the time requirements

(a factor of 3 or 4). This makes possible the complete exploration of very large state spaces, that

could not be explored so far. However, exploring state spaces of several tens of million states

takes time, since all these states are visited at least once during the search. Time becomes the

main limiting factor.

Note that no attempts were made in this paper to reduce the number of states that need

to be visited in order to validate properties of a system. However, sleep sets were originally

introduced as part of a method intended to master the \state explosion" phenomenon [GW93,

God90, HGP92]. Using the full method preserves the bene�cial properties of sleep sets that

were investigated in Section 3 while enabling a substantial reduction of the number of states

that have to be visited for veri�cation purposes.

An implementation of the techniques presented in this paper, including a state space caching

algorithm and an implementation of the sleep set scheme, is available in an add-on package for

the validation tool SPIN [Hol91]. Noncommercial users can obtain the SPIN system via anony-

mous ftp from research.att.com from the /netlib/spin directory. The add-on package is available

free of charge for educational and research purposes by anonymous ftp frommonte�ore.ulg.ac.be

from the /pub/po-package directory.
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