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ABSTRACT
Runtime property checking (as implemented in tools like Pu-
rify or Valgrind) checks whether a program execution sat-
isfies a property. Active property checking extends runtime
checking by checking whether the property is satisfied by
all program executions that follow the same program path.
This check is performed on a symbolic execution of the given
program path using a constraint solver. If the check fails,
the constraint solver generates an alternative program in-
put triggering a new program execution that follows the
same program path but exhibits a property violation. Com-
bined with systematic dynamic test generation, which at-
tempts to exercise all feasible paths in a program, active
property checking defines a new form of dynamic software
model checking (program verification). In this paper, we
formalize and study active property checking. We show how
static and dynamic type checking can be extended with ac-
tive type checking. Then, we discuss how to implement ac-
tive property checking efficiently. Finally, we discuss results
of experiments with media playing applications on Windows,
where active property checking was able to detect several
new security-related bugs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms
Verification, Algorithms, Reliability, Security

1. INTRODUCTION
Today’s embedded systems are exposed to “untrusted” in-

puts as never before, raising serious security concerns. Mo-
bile phones have web browsers and connect to the Internet,
where they encounter adversarial web pages which attempt
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to exploit web browser flaws to take control of visitors’ de-
vices. Personal media players, car stereos, and home stereo
systems play media files downloaded by the user from ar-
bitrary sites on the Internet, or, in some cases, directly
connect to remote servers to enjoy streaming media. Even
more restricted embedded systems, such as legacy SCADA
systems developed in the context of closed, closely moni-
tored networks, may be placed on open wireless connections
or even connected to the Internet. In all these cases, soft-
ware bugs which formerly were only stability issues, such as
buffer overflow errors in parsing, become methods by which
an adversary can take control of the embedded system. For
example, one method used to remove the iPhone’s protec-
tions against third-party software was the exploitation of an
integer overflow vulnerability in TIFF image parsing [1]. In
this paper, we discuss new test generation techniques to find
such security-critical bugs.

Code inspection is one of the primary ways serious secu-
rity bugs can be found and fixed before deployment, but
manual code inspection is extremely expensive. During the
last decade, code inspection for standard programming er-
rors has largely been automated with static code analysis.
Commercial static program analysis tools (e.g., [4, 14]) are
now routinely used in many software development organiza-
tions. These tools are popular because they find many real
software bugs, thanks to three main ingredients: they are
automatic, they are scalable, and they check many proper-
ties. Intuitively, any tool that is able to check automatically
(with good enough precision) millions of lines of code against
hundreds of coding rules and properties is bound to find on
average, say, one bug every thousand lines of code.

Our research goal is to automate, as much as possible,
an even more expensive part of the software development
process, namely software testing, which usually accounts for
about 50% of the R&D budget of software development or-
ganizations. In particular, we want to automate test gen-
eration by leveraging recent advances in program analysis,
automated constraint solving, and the increasing computa-
tion power available on modern computers. Compared to
static analysis, test generation has a key benefit: the test
case itself demonstrates the presence of a bug; there are no
“false positives.” To replicate the success of static program
analysis in the testing space, we need the same key ingredi-
ents: automation, scalability and the ability to check many
properties.

Automating test generation from program analysis is an
old idea [18, 21], and work in this area can roughly be par-
titioned into two groups: static versus dynamic test genen-



eration. Static test generation [18, 2, 25, 7] consists of an-
alyzing a program statically to attempt to compute input
values to drive its executions along specific program paths.
In contrast, dynamic test generation [19, 9, 5, 11] consists
in executing the program, typically starting with some ran-
dom inputs, while simultaneously performing a symbolic ex-
ecution to collect symbolic constraints on inputs obtained
from predicates in branch statements along the execution,
and then using a constraint solver to infer variants of the
previous inputs in order to steer program executions along
alternative program paths. Since dynamic test generation
extends static test generation with additional runtime in-
formation, it can be more powerful [9]. Scalability in this
context has been recently addressed in [8, 11]. The moti-
vation of the present work is to address the third challenge,
which has been largely unexplored so far: how to dynami-
cally check many properties simultaneously, thoroughly and
efficiently, in order to maximize the chances of finding bugs
during an automated testing session?

Traditional runtime checking tools like Purify [16], Val-
grind [23] and AppVerifier [6] check a single program exe-
cution against a set of properties (such as the absence of
buffer overflows, uninitialized variables or memory leaks).
We show in this paper how such traditional passive run-
time property checkers can be extended to actively search
for property violations. Consider the simple program:

int divide(int n,int d) { // n and d are inputs

return (n/d); // division-by-zero error if d==0

}

The program divide takes two integers n and d as inputs
and computes their division. If the denominator d is zero,
an error occurs. To catch this error, a traditional runtime
checker for division-by-zero would simply check whether the
concrete value of d satisfies (d==0) just before the division
is performed in that specific execution, but would not pro-
vide any insight or guarantee concerning other executions.
Testing this program with random values for n and d is un-
likely to detect the error, as d has only one chance out of
232 to be zero if d is a 32-bit integer. Static and dynamic
test generation techniques that attempt to cover specific or
all feasible paths in a program will also likely miss the error
since this program has a single program path which is cov-
ered no matter what inputs are used. However, the latter
techniques could be helpful provided that a test if (d==0)

error() was inserted before the division (n/d): they could
then attempt to generate an input value for d that satisfies
the constraint (d==0), now present in the program path,
and detect the error. This is essentially what active prop-
erty checking does: it injects at runtime additional symbolic
constraints that, when solvable by a constraint solver, will
generate new test inputs leading to property violations.

In other words, active property checking extends runtime
checking by checking whether the property is satisfied by
all program executions that follow the same program path.
This check is performed on a dynamic symbolic execution
of the given program path using a constraint solver. If the
check fails, the constraint solver generates an alternative
program input triggering a new program execution that fol-
lows the same program path but exhibits a property vio-
lation. We call this “active” checking because a constraint
solver is used to “actively” look for inputs that cause a run-
time check to fail. Combined with systematic dynamic test

generation, which attempts to exercise all feasible paths in
a program, active property checking defines a new form of
program verification for terminating programs.

Closely Related Work. Checking properties at run-
time on a dynamic symbolic execution of the program was
suggested in [20], but may return false alarms whenever sym-
bolic execution is imprecise, which is often the case in prac-
tice. Active property checking extends the idea of [20] by
combining it with constraint solving and test generation in
order to further check using a new test input whether the
property is actually violated as predicted by the prior im-
perfect symbolic execution. This way, no false alarms are
ever reported.

Although ideas similar to active property checking have
been independently mentioned briefly in two recent papers [5,
17], prior work on dynamic test generation provides no study
of active property checking, no formalization, no connections
with static and dynamic type checking, no optimizations,
and no evaluation with a representative set of checkers. [5]
reports several bugs, but does not specify which were found
using active property checking (which is only alluded to in
one paragraph on page 3). While [17] discusses adding as-
sertions to check properties in the program, it focuses on
“predicting” property violating executions, not on test case
generation, and their experiments report only “predicted”
errors, as done in [20], which we specifically aim to extend.

Contributions. Our work aims to provide the first com-
prehensive study of this simple, general, yet largely unex-
plored idea of active property checking. Specifically, our
work makes several contributions:

• We formalize active property checking semantically in
Section 3 and show how it can provide a form of pro-
gram verification when combined with (sound and com-
plete) systematic dynamic test generation (recalled in
Section 2). The technical report associated with this
work in addition shows how active type checking con-
nects with traditional static and dynamic type check-
ing [10].

• Section 4 discusses how to implement active checking
efficiently by minimizing the number of calls to the
constraint solver, minimizing formula sizes and using
two constraint caching schemes.

• Section 5 describes our implementation of 13 active
checkers for security testing of media playing Windows
applications in conjunction with systematic dynamic
test generation of x86 binaries. We stress that while
our implementation targets x86, the main ideas apply
to any instruction set and architecture. Results of ex-
periments searching for bugs in these media playing
applications are discussed in Section 6. Active prop-
erty checking was able to detect several new bugs in
those applications.

Note that dynamic test generation is complementary to
static analysis because it can analyze code that current static
analysis does not handle well (e.g., due to function pointers
or inline assembly). The new bugs found in codec applica-
tions studied in our paper had been missed by static analy-
sis. Active property checking also requires no programmer
intervention or annotations.



2. SYSTEMATIC DYNAMIC TEST GENER-
ATION

Dynamic test generation (see [9] for further details) con-
sists of running the program P under test both concretely,
executing the actual program, and symbolically, calculat-
ing constraints on values stored in program variables x and
expressed in terms of input parameters α. Side-by-side con-
crete and symbolic executions are performed using a con-
crete store ∆ and a symbolic store Σ, which are mappings
from program variables to concrete and symbolic values re-
spectively. A symbolic value is any expression sv in some
theory T where all free variables are exclusively input pa-
rameters α. For any variable x, ∆(x) denotes the concrete
value of x in ∆, while Σ(x) denotes the symbolic value of
x in Σ. The judgment ∆ ` e → v means an expression e
reduces to a concrete value v, and similarly Σ ` e → sv
means that e reduces to a symbolic value sv. For notational
convenience, we assume that Σ(x) is always defined and is
simply ∆(x) by default if no expression in terms of inputs is
associated with x. The notation ∆(x 7→ c) denotes updating
the mapping ∆ so that x maps to c.

The program P manipulates the memory (concrete and
symbolic stores) through statements, or commands, that are
abstractions of the machine instructions actually executed.
A command can be an assignment of the form x := e (where
x is a program variable and e is an expression), a condi-
tional statement of the form if e then C else C′ where
e denotes a boolean expression, and C and C′ are continu-
ations denoting the unique next statement to be evaluated
(programs considered here are thus sequential and determin-
istic), or stop corresponding to a program error or normal
termination.

Given an input vector ~α assigning a value to every input
parameter α, the evaluation of a program defines a unique

finite program execution s0
C1→ s1 . . .

Cn→ sn that executes the
finite sequence C1 . . . Cn of commands and goes through the
finite sequence s1 . . . sn of program states. Each program
state is a tuple 〈C, ∆, Σ, pc〉 where C is the next command
to be evaluated, and pc is a special meta-variable that rep-
resents the current path constraint. For a finite sequence
w of statements (i.e., a control path w), a path constraint
pcw is a formula of theory T that characterizes the input
assignments for which the program executes along w. To
simplify the presentation, we assume that all the program
variables have some default initial concrete value in the ini-
tial concrete store ∆0, and that the initial symbolic store
Σ0 identifies the program variables v whose values are pro-
gram inputs (for all those, we have Σ0(v) = α where α is
some input parameter). We also assume that all program
executions eventually terminate. Initially, pc is defined to
true.

Systematic dynamic test generation [9] consists of system-
atically exploring all feasible program paths of the program
under test by using path constraints and a constraint solver.
By construction, a path constraint represents conditions on
inputs that need be satisfied for the current program path to
be executed. Given a program state 〈C, ∆, Σ, pc〉 and a con-
straint solver for theory T , if C is a conditional statement
of the form if e then C else C′, any satisfying assign-
ment to the formula pc ∧ sv (respectively pc ∧ ¬sv) defines
program inputs that will lead the program to execute the
then (resp. else) branch of the conditional statement. By

1 int buggy(int x) { // x is an input

2 int buf[20];

3 buf[30]=0; // buffer overflow independent of x

4 if (x > 20)

5 return 0;

6 else

7 return buf[x]; // buffer overflow if x==20

8 }

Figure 1: Example of program with buffer overflows.

systematically repeating this process, such a directed search
can enumerate all possible path constraints and eventually
execute all feasible program paths.

The search is exhaustive provided that the generation of
the path constraint (including the underlying symbolic ex-
ecution) and the constraint solver for the given theory T
are both sound and complete, that is, for all program paths
w, the constraint solver returns a satisfying assignment for
the path constraint pcw if and only if the path is feasible
(i.e., there exists some input assignment leading to its exe-
cution). In this case, in addition to finding errors such as the
reachability of bad program statements (like assert(0)), a
directed search can also prove their absence, and therefore
obtain a form of program verification.

Theorem 1. (adapted from [9]) Given a program P as
defined above, a directed search using a path constraint gen-
eration and a constraint solver that are both sound and com-
plete exercises all feasible program paths exactly once.

In this case, if a program statement has not been executed
when the search is over, this statement is not executable in
any context.

In practice, path constraint generation and constraint solv-
ing are usually not sound and complete. When a program
expression cannot be expressed in the given theory T de-
cided by the constraint solver, it can be simplified using con-
crete values of sub-expressions, or replaced by the concrete
value of the entire expression. For example, if the solver
handles only linear arithmetic, symbolic sub-expressions in-
volving multiplications can be replaced by their concrete
values.

3. ACTIVE CHECKERS
Even when sound and complete, a directed search based

on path exploration alone can miss errors that are not path
invariants, i.e., that are not violated by all concrete execu-
tions executing the same program path, or errors that are
not caught by the program’s run-time environment. This is
illustrated by the simple program shown in Figure 1.

This program takes as (untrusted) input an integer value
stored in variable x. A buffer overflow in line 3 will be de-
tected at run-time only if a runtime checker monitors buffer
accesses. Such a runtime checker would thus check whether
any array access of the form a[x] satisfies the condition
0 ≤ ∆(x) < b where ∆(x) is the concrete value of array in-
dex x and b denotes the bound of the array a (b is 20 for
the array buf in the example of Figure 1). Let us call such
a traditional runtime checker for concrete values a passive
checker.

Moreover, a buffer overflow is also possible in line 7 pro-
vided x==20, yet a directed search focused on path explo-



ration alone may miss this error. The reason is that the
only condition that will appear in a path constraint for this
program is x > 20 and its negation. Since most input val-
ues for x that satisfy ¬(x > 20) do not cause the buffer
overflow, the error will likely be undetected with a directed
search as defined in the previous section.

In order to catch the buffer overflow on line 7, the pro-
gram should be extended with a symbolic test 0 ≤ Σ(x) < b
(where Σ(x) denotes the symbolic value of array index x)
just before the buffer access buf[x] on line 7. This will
force the condition 0 ≤ x < 20 to appear in the path con-
straint of the program in order to refine the partitioning of
its input values. An active checker for array bounds can be
viewed as systematically adding such symbolic tests before
all array accesses.

Formally, we define passive checkers and active checkers
as follows.

Definition 1. A passive checker for a property π is a
function that takes as input a finite program execution w,
and returns failπ iff the property π is violated by w.

Because we assume all program executions terminate, prop-
erties considered here are safety properties. Runtime prop-
erty checkers like Purify [16], Valgrind [23] and AppVeri-
fier [6] are examples of tools implementing passive checkers.

Definition 2. Let pcw denote the path constraint of a
finite program execution w. An active checker for a property
π is a function that takes as input a finite program execution
w, and returns a formula φC such that the formula pcw∧¬φC

is satisfiable iff there exists a finite program execution w′

violating property π and such that pcw′ = pcw.

Active checkers can be implemented in various ways, for
instance using property monitors/automata, program rewrite
rules or type checking. They can use private memory to
record past events (leading to the current program state),
but they are not allowed any side effect on the program.
Section 5 discusses detailed examples of how active checkers
can be implemented. Here are examples of specifications of
active checkers.

Example 1. Division By Zero. Given a program state
where the next statement involves a division by a denomi-
nator d which depends on an input (i.e., such that Σ(d) 6=
∆(d)), an active checker for division by zero outputs the
constraint φDiv = (Σ(d) 6= 0).

Example 2. Array Bounds. Given a program state where
the next statement involves an array access a[x] where x de-
pends on an input (i.e., is such that Σ(x) 6= ∆(x)), an active
checker for array bounds outputs the constraint φBuf = (0 ≤
Σ(x) < b) where b denotes the bound of the array a.

Example 3. NULL Pointer Dereference. Consider a
program expressed in a language where pointer dereferences
are allowed. Given a program state where the next state-
ment involves a pointer dereference *p where p depends on
an input (i.e., such that Σ(p) 6= ∆(p)), an active checker for
NULL pointer dereference generates the constraint φNULL =
(Σ(p) 6= NULL).

Multiple active checkers can be used simultaneously by
simply considering separately the constraints they inject in

a given path constraint. Such a way, they are guaranteed not
to interfere with each other (since they have no side effects).
We will discuss how to combine active checkers to maximize
performance in Section 4.

By applying an active checker for a property π to all fea-
sible paths of a program P , we can obtain a form of verifi-
cation for this property, that is stronger than Theorem 1.

Theorem 2. Given a program P as defined above, if a di-
rected search (1) uses a path constraint generation and con-
straint solvers that are both sound and complete, and (2)
uses both a passive and an active checker for a property π in
all program paths visited during the search, then the search
reports failπ iff there exists a program input that leads to a
finite execution violating φ.

Proof Sketch: Assume there is an input assignment that
leads to a finite execution w of P violating π. Let pcw be
the path constraint for the execution path w. Since path
constraint generation and constraint solving are both sound
and complete, we know by Theorem 1 that w will eventually
be exercised with some concrete input assignment ~α′. If
the passive checker for π returns failπ for the execution
of P obtained from input ~α′ (for instance, if ~α′ = ~α), the
proof is finished. Otherwise, the active checker for π will
generate a formula φC and call the constraint solver with
the query pcw ∧ ¬φC . The existence of ~α′ implies that this
query is satisfiable, and the constraint solver will return a
satisfying assignment from which a new input assignment
~α′′ is generated (~α′′ could be ~α itself). By construction,
running the passive checker for π on the execution obtained
from that new input ~α′′ will return failπ.

Note that both passive checking and active checking are
required in order to obtain this result, as illustrated earlier
with the example of Figure 1. In practice, however, sym-
bolic execution, path constraint generation, constraint solv-
ing, passive and active property checking are typically not
sound and complete, and therefore active property checking
reduces to testing.

4. OPTIMIZATIONS

4.1 Minimizing Calls to the Constraint Solver
As discussed in Section 3, (negations of) constraints in-

jected by various active checkers in a same path constraint
can be solved independently one-by-one since they have no
side effects. We call this a naive combination of checker
constraints.

However, the number of calls to the constraint solver can
be reduced by bundling together constraints injected at the
same or equivalent program states into a single conjunction.
If pc denotes the path constraint for a given program state,
and φC1, . . . , φCn are a set of constraints injected in that
state by each of the active checkers, we can define the com-
bination of these active checkers by injecting the formula
φC = φC1 ∧ · · · ∧ φCn in the path constraint, which will
result in the single query pc ∧ (¬φC1 ∨ · · · ∨ ¬φCn) to the
constraint solver. We can also bundle in the same conjunc-
tion constraints φCi injected by active checkers at different
program states anywhere in between two conditional state-
ments, i.e., anywhere between two constraints in the path
constraint (since those program states are indistinguishable
by that path constraint). This combination reduces the
number of calls to the constraint solver but, if the query



Procedure CombineActiveCheckers(I, pc, φC1, . . . , φCn):
1. Let x = Solve(pc ∧ (¬φC1 ∨ · · · ∨ ¬φCn))
2. If x = UNSAT return I
3. For all i in [1, n], eliminate φCi if x satisfies ¬φCi

4. Let φC1, . . . , φCm denote the remaining φCi (m < n)
5. If m = 0, return I ∪ {x}
6. Call CombineActiveCheckers(I ∪ {x}, pc, φC1, . . . , φCm)

Figure 2: Function to compute a strongly-sound
combination of active checkers.

pc∧ (¬φC1 ∨ · · · ∨¬φCn) is satisfied, a satisfying assignment
produced by the constraint solver may not satisfy all the
disjuncts, i.e., may violate only some of the properties being
checked. Hence, we call this a weakly-sound combination.

A strongly-sound, or sound for short, combination can be
obtained by making additional calls to the constraint solver
using the simple function shown in Figure 2. By calling

CombineActiveCheckers(∅, pc, φC1, . . . , φCn)

the function returns a set I of input values that covers all
the disjuncts that are satisfiable in the formula pc∧ (¬φC1∨
· · · ∨ ¬φCn). The function first queries the solver with the
disjunction of all the checker constraints (line 1). If the
solver returns UNSAT, we know that all these constraints are
unsatisfiable (line 2). Otherwise, we check the solution x
returned by the constraint solver against each checker con-
straint to determine which are satisfied by solution x (line 3).
(This is a model-checking check, not a satisfiability check; in
practice, this can be implemented by calling the constraint
solver with the formula

∧
i(bi ⇔ ¬φCi) ∧ pc ∧ (

∨
i bi) where

bi is a fresh boolean variable which evaluates to true iff
¬φCi is satisfied by a satisfying assignment x returned by
the constraint solver; determining which checker constraints
are satisfied by x can then be done by looking up the values
of the corresponding bits bi in solution x.) Then, we re-
move these checker constraints from the disjunction (line 4),
and query the solver again until all checker constraints that
can be satisfied have been satisfied by some input value in
I. If t out of the n checkers can be satisfied in conjunction
with the path constraint pc, this function requires at most
min(t + 1, n) calls to the constraint solver, because each call
removes at least one checker from consideration. Obtaining
strong soundness with fewer than t calls to the constraint
solver is not possible in the worse case. Note that the naive
combination defined above is strongly-sound, but always re-
quires n calls to the constraint solver.

It is worth emphasizing that none of these combination
strategies attempt to minimize the number of input values
(solutions) needed to cover all the satisfiable disjuncts. This
could be done by querying first the constraint solver with the
conjunction of all checker constraints to check whether any
solution satisfies all these constraints simultaneously, i.e., to
check whether their intersection is non-empty. Otherwise,
one could then iteratively query the solver with smaller and
smaller conjunctions to force the solver to return a minimum
set of satisfying assignments that cover all the checker con-
straints. Unfortunately, this procedure may require in the
worse case O(2n) calls to the constraint solver. (The prob-
lem can be shown to be NP-complete by a reduction from
the NP-hard SET-COVER problem.)

Weakly and strongly sound combinations capture possi-
ble overlaps, inconsistencies or redundancies between active
checkers at equivalent program states, but is independent
of how each checker is specified: it can be applied to any
active checker that injects a formula at a given program
state. Also, the above definition is independent of the spe-
cific reasoning capability of the constraint solver. In par-
ticular, the constraint solver may or may not be able to
reason precisely about combined theories (abstract domains
and decision procedures) obtained by combining individual
constraints injected by different active checkers. Any level
of precision is acceptable with our framework and is an or-
thogonal issue (e.g., see [12]). Whether the constraint solver
supports incremental solving is also orthogonal.

4.2 Minimizing Formulas
Minimizing the number of calls to the constraint solver

should not be done at the expense of using longer formulas.
Fortunately, the above strategies for combining constraints
injected by active checkers also reduce formula sizes.

For instance, consider a path constraint pc and a set of n
constraints φC1 . . . φCn to be injected at the end of pc. The
naive combination makes n calls to the constraint solver,
each with a formula of length |pc| + |φCi|, for all 1 ≤ i ≤
n. In contrast, the weak combination makes only a single
call to the constraint solver with a formula of size |pc| +
Σ1≤i≤n|φCi|, i.e., a formula (typically much) smaller than
the sum of the formula sizes with the naive combination.
The strong combination makes, in the worse case, n calls to
the constraint solver with formulas of size |pc|+Σ1≤i≤j |φCi|
for all 1 ≤ j ≤ n, i.e., possibly bigger formulas than the naive
combination. But often, the strong combination makes fewer
calls than the naive combination, and matches the weak
combination in the best case (when none of the disjuncts
¬φCi are satisfiable).

In practice, path constraints pc tend to be long, much
longer than injected constraints φCi. A simple optimization
(implemented in [9, 5, 24, 11]) consists of eliminating the
constraints in pc which do not share symbolic variables (in-
cluding by transitivity) with the negated constraint c to be
satisfied. This unrelated constraint elimination can be done
syntactically by constructing an undirected graph G with
one node per constraint in pc ∪ {c} and one node per sym-
bolic (input) variable such that there is an edge between
a constraint and a variable iff the variable appears in the
constraint. Then, starting from the node corresponding to
constraint c, one performs a (linear-time) traversal of the
graph to determine with constraints c′ in pc are reachable
from c in G. At the end of the traversal, only the constraints
c′ that have been visited are kept in the conjunction sent to
the constraint solver, while the others are eliminated.

With unrelated constraint elimination and the naive checker
combination, the size of the reduced path constraint pci

may vary when computed starting from each of the n con-
straints φCi injected by the active checkers. In this case,
n calls to the constraint solver are made with the formulas
pci ∧ ¬φCi, for all 1 ≤ i ≤ n. In contrast, the weak com-
bination makes a single call to the constraint solver with
the formula pc′ ∧ (∨i¬φCi) where pc′ denotes the reduced
path constraint computed when starting with the constraint
∨i¬φCi. It is easy to see that |pc′| ≤ Σi|pci|, and therefore
that the formula used with the weak combination is again
smaller than the sum of the formula sizes used with the naive



1 #define k 100 // constant

2 void Q(int *x, int a[k]){ // inputs

3 int tmp1,tmp2,i;

4 if (x == NULL) return;

5 for (i=0; i<=k;i++) {

6 if (a[i]>0) tmp1 = tmp2+*x;

7 else tmp2 = tmp1+*x;

8 }

9 return;

10}

Figure 3: A program with O(2k) possible execution
paths. A naive application of a NULL dereference
active checker results in O(k · 2k) additional calls to
the constraint solver, while local constraint caching
eliminates the need for any additional calls to the
constraint solver.

combination. Loosely speaking, the strong combination in-
cludes again both the naive and weak combinations as two
possible extremes.

4.3 Caching Strategies
No matter what strategy is used for combining checkers at

a single program point, constraint caching can significantly
reduce the overhead of using active checkers.

To illustrate the benefits of constraint caching, consider
a NULL dereference active checker (see Section 3) and the
program Q in Figure 3. Program Q has 2k + 1 executions,
where 2k of those dereference the input pointer x k times
each. A naive approach to dynamic test generation with a
NULL dereference active checker would inject k constraints
of the form x 6= NULL at each dereference of *x during every
such execution of Q, which would result in a total of k · 2k

additional calls to the constraint solver (i.e., k calls for each
of those executions).

To limit this expensive number of calls to the constraint
solver, a first optimization consists of locally caching con-
straints in the current path constraint in such a way that
syntactically identical constraints are never injected more
than once in any path constraint. (Remember path con-
straints are simply conjunctions.) This optimization is ap-
plicable to any path constraint, with or without active check-
ers. The correctness of this optimization is based on the
following observation: if a constraint c is added to a path
constraint pc, then for any longer pc′ extending pc, we have
pc′ ⇒ pc (where ⇒ denotes logical implication) and pc′ ∧¬c
will always be unsatisfiable because c is in pc′. In other
words, adding the same constraint multiple times in a path
constraint is pointless since only the negation of its first oc-
currence has a chance to be satisfiable.

Constraints generated by active checkers can be dealt with
by injecting those in the path constraint like regular con-
straints. Indeed, for any constraint c injected by an active
checker either at the end of a path constraint pc or at the
end of a longer path constraint pc′ (i.e., such that pc′ ⇒ pc),
we have the following:

• if pc∧¬c is unsatisfiable, then pc′∧¬c is unsatisfiable;

• conversely, if pc′ ∧ ¬c is satisfiable, then pc ∧ ¬c is
satisfiable (and has the same solution).

Therefore, we can check ¬c as early as possible, i.e., in con-
junction with the shorter pc, by inserting the first occurrence
of c in the path constraint. If an active checker injects the
same constraint later in the path constraint, local caching
will simply remove this second redundant occurrence.

By injecting constraints generated by active checkers into
regular path constraints and by using local caching, a given
constraint c, like x 6= NULL in our previous example, will
appear at most once in each path constraint, and a single call
to the constraint solver will be made to check its satisfiability
for each path, instead of k calls as with the naive approach
without local caching. Moreover, because the constraint x

6= NULL already appears in the path constraint due to the if
statement on line 4 before any pointer dereference *x on lines
6 or 7, it will never be added again to the path constraint
with local caching, and no additional calls will be made to
the constraint solver due to the NULL pointer dereference
active checker for this example.

Another optimization consists of caching constraints glob-
ally [5]: whenever the constraint solver is called with a query,
this query and its result are kept in a (hash) table shared
between execution paths during a directed search. In Sec-
tion 6, the effect of both local and global caching is measured
empirically.

5. IMPLEMENTATION
We implemented active checkers as part of a dynamic test

generation tool called SAGE (Scalable, Automated, Guided
Execution) [11]. SAGE uses the iDNA tool [3] to trace execu-
tions of Windows programs, then virtually re-executes these
traces with the TruScan trace replay framework [22]. Dur-
ing re-execution, SAGE checks for file read operations and
marks the resulting bytes as symbolic. As re-execution pro-
gresses, SAGE generates symbolic constraints for the path
constraint. After re-execution completes, SAGE uses the
constraint solver Disolver [15] to generate new input val-
ues that will drive the program down new paths. SAGE then
completes this cycle by testing and tracing the program on
the newly generated inputs. The new execution traces ob-
tained from those new inputs are sorted by the number of
new code blocks they discover, and the highest ranked trace
is expanded next to generate new test inputs and repeat the
cycle [11]. While we describe in the technical report ver-
sion of this paper how to combine static analysis with active
property checking, the current SAGE implementation does
not perform any static analysis [10].1

The experiments reported in the next section were per-
formed with 13 active checkers, shown in Figure 4 with an
identifying number. The number 0 refers to a constraint
generated by observing a branch on tainted data, as in basic
DART or EXE, that becomes part of the path constraint.
Number 1 refers to a division-by-zero checker, 2 denotes a
NULL pointer dereference checker, and 4 and 5 denote array
underflow and overflow checkers (see Section 3). Number 3
refers to an active checker that looks for function arguments

1Static analysis of the codec applications discussed next is
problematic due to function pointers and in-line assembly
code.



Number Checker Number Checker
0 Path Exploration 7 Integer Underflow
1 DivByZero 8 Integer Overflow
2 NULL Deref 9 MOVSX Underflow
3 SAL NotNull 10 MOVSX Overflow
4 Array Underflow 11 Stack Smash
5 Array Overflow 12 AllocArg Underflow
6 REP Range 13 AllocArg Overflow

Figure 4: Active checkers implemented.

that have been annotated with the notnull attribute in the
SAL property language [13], and attempts to force those to
be NULL. Checker type 6 looks for the x86 REP MOVS in-
struction, which copies a range of bytes to a different range
of bytes, and attempts to force a condition where the ranges
overlap, causing unpredictable behavior. Checkers 7 and 8
are for integer underflows and overflows. Checkers type 9
and 10 target the MOVSX instruction, which sign-extends its
argument and may lead to loading a very large value if the
argument is negative. The “stack smash” checker, type 11,
attempts to solve for an input that directly overwrites the
stack return pointer, given a pointer dereference that de-
pends on a symbolic input. Finally, checkers type 12 and 13
look for heap allocation functions with symbolic arguments;
if found, they attempt to cause overflow or underflow of
these arguments.

An active checker in SAGE first registers a TruScan call-
back for specific events that occur during re-execution. For
example, an active checker can register a callback that fires
each time a symbolic input is used as an address for a mem-
ory operation. The callback then inspects the concrete and
symbolic state of the re-execution and decides whether or
not to emit an active checker constraint. If the callback
does emit such a constraint, SAGE stores it in the current
path constraint.

SAGE implements a generational search [11]: given a path
constraint, all the constraints in that path are systematically
negated one-by-one, placed in a conjunction with the prefix
of the path constraint leading it, and attempted to be solved
with the constraint solver. Constraints injected by active
checkers are inserted in the path constraint and treated as
regular constraints during a generational search.

Because we work with x86 machine-code traces, some in-
formation we would like to use as part of our active checkers
is not immediately available. For example, when SAGE ob-
serves a load instruction with a symbolic offset during re-
execution, it is not clear what the bound should be for the
offset. We work around these limitations by leveraging the
TruScan re-execution infrastructure. During re-execution,
TruScan observes calls to known allocator functions. By
parsing the arguments to these calls and their return values,
as well as detecting the current stack frame, TruScan builds
a map from each concrete memory address to the bounds
of the containing memory object. We use the bounds asso-
ciated with the memory object pointed to by the concrete
value of the address as the upper and lower bound for an ac-
tive bounds check of the memory access. Therefore, source
code or debug symbols are not required, although they may
be used if available.

Media 1 none weak strong naive
Total Time (s) 16 37 42 37
Solver Time (s) 5 5 10 5
# Tests Gen 59 70 87 105
# Disjunctions N/A 11 11 N/A
Dis. Min/Mean/Max N/A 2/4.2/16 2/4.2/16 N/A
# Path Constr. 67 67 67 67
# Checker Constr. N/A 46 46 46
# Solver Calls 67 78 96 113
Max CtrList Size 77 141 141 141
Mean CtrList Size 2.7 2.7 2.7 3
Local Cache Hit 79% 81% 88% 88%
Media 2 none weak strong naive
Total Time (s) 761 973 1140 1226
Solver Time (s) 421 463 601 504
# Tests Gen 1117 1833 2734 5122
# Disjunctions N/A 1125 1125 N/A
Dis. Min/Mean/Max N/A 1/5.4/216 1/5.4/216 N/A
# Path Constr. 3001 2990 2990 2990
# Checker Constr. N/A 6080 6080 6080
# Solver Calls 3001 4115 5368 9070
Max CtrList Size 11141 91739 91739 91739
Mean CtrList Size 368 373 373 372
Local Cache Hit 39% 19.5% 19.5% 19.5%

Figure 6: Microbenchmark statistics.

6. EVALUATION
We report results of experiments with active checkers and

two applications which play media files and are widely used
on Windows. Figure 5 shows the result of a single symbolic
execution and test generation task for each of these two test
programs. The second column indicates which checkers in-
jected constraints during that program execution. The last
column gives the number of symbolic input bytes read dur-
ing that single execution, which is 100 to 1,000 times larger
than previously reported with dynamic test generation [9,
5, 24].

For each application, we ran microbenchmarks to quantify
the marginal cost of active checking during a single symbolic
execution task and measure the effectiveness of our optimiza-
tions. We then performed long-running searches with active
checkers to investigate their effectiveness at finding bugs.
These searches were performed on a 32-bit Windows Vista
machine with two dual-core AMD Opteron 270 processors
running at 2 GHz, with 4 GB of RAM and a 230 GB hard
drive; all four cores were used in each search. We now de-
scribe observations from these experiments. We stress that
these observations are from a limited sample size and should
be taken with caution.

6.1 Microbenchmarks
Figure 6 presents statistics for our two test programs ob-

tained with a single symbolic execution and test generation
task with no active checkers, or the weak, strong and naive
combinations of active checkers discussed in Section 4. For
each run, we report the total run time (in seconds), the time
spent in the constraint solver (in seconds), the number of
test generated, the number of disjunctions bundling together
checker constraints (if applicable) before calling the con-
straint solver, the minimum, mean, and maximum number



Test Checkers Injected Time (secs) pc size # checker constraints # Tests # Instr. Symbolic Input Size
Media 1 0,2,4,5,7,8 37 67 46 105 3795771 65536
Media 2 0,1,2,4,5,7,8,9,10,11 1226 2990 6080 5122 279478553 27335

Figure 5: Statistics from a single symbolic execution and test generation task with a naive combination of
all 13 checkers. We report the checker types that injected constraints, the total time for symbolic execution
test generation, the number of constraints in the total path constraint, the total number of injected checker
constraints, the number of tests generated, the number of instructions executed after the first file read, and
the number of symbolic input bytes.

of constraints in disjunctions (if applicable2). We also report
the total number of constraints in the path constraint, the
total number of constraints injected by checkers, the num-
ber of calls made to the constraint solver, statistics about
the size needed to represent all path and checker constraints
(discussed further below) and the local cache hit. Each call
to the constraint solver was set with a timeout value of 5
seconds, which we picked because almost all queries we ob-
served terminated within this time.
Checkers produce more test cases than path explo-
ration at a reasonable cost. As expected, using checkers
increases total run time but also generates more tests. For
example, all checkers with naive combination for Media 2
creates 5122 test cases in 1226 seconds, compared to 1117
test cases in 761 seconds for the case of no active checkers;
this gives us 4.5 times as many test cases for 61% more time
spent in this case. As expected (see Section 4), the naive
combination generates more tests than the strong combina-
tion, which itself generates more tests than the weak combi-
nation. Perhaps surprisingly, most of the extra time is spent
in symbolic execution, not in solving constraints. This may
explain why the differences in runtime between the naive,
strong and weak cases are relatively not that significant.
Out of curiosity, we also ran experiments (not shown here)
with a “basic” set of checkers that consisted only of Array
Bounds and DivByZero active checkers; this produced fewer
test cases, but had little to no runtime penalty for test gen-
eration for both test programs.
Weak combination has the lowest overhead. We ob-
served that the solver time for weak combination of disjunc-
tions was the lowest for Media 2 runs with active check-
ers and tied for lowest with the naive combination for Me-
dia 1. The strong disjunction generates more test cases,
but surprisingly takes longer than the naive combination in
both cases. For Media 1, this is due to the strong combi-
nation hitting one more 5-second timeout constraints than
the naive combination. For Media 2, we believe this is due
to the overhead involved in constructing repeated disjunc-
tion queries. Because disjunctions in both cases have fairly
few disjuncts on average (4 or 5), this overhead dominates
for the strong combination, while the weak one is still able
to make progress by handling the entire disjunction in one
query.

For the SAGE system, the solver used requires less than
a second for most queries. Therefore the time improve-
ment for weak combination over naive combination in this
microbenchmark is small, saving roughly 3 minutes, even
though the number of calls to the solver is in fact reduced

2In the strong case, the mean number does not include dis-
junctions iteratively produced by the algorithm of Figure 2,
which explains why the mean is the same as in the weak
case.

by almost 50%. Other implementations may obtain better
time performance, especially if they more precisely model
memory or include more difficult constraints. Both figures
include the effect of other optimizations, such as caching,
which we show are important for active checking.
Unrelated constraint elimination is important for
checkers. Our implementation of the unrelated constraint
optimization described in Section 5.2 introduces additional
common subexpression variables. Each of these variable de-
fines a subexpression that appears in more than one con-
straint. In the worst case, the maximum possible size of
a list of constraints passed to our constraint solver is the
sum of the number of these variables, plus the size of the
path constraint, plus the number of checker constraints in-
jected. We collected the maximum possible constraint list
size (Max CtrList Size) and the mean size of constraint lists
produced after our unrelated constraint optimization (Mean
CtrList Size). The maximum possible size does not depend
on our choice of weak, strong, or naive combination, but
the mean list size is slightly affected. We observe in the
Media 2 microbenchmarks that the maximum possible size
jumps dramatically with the addition of checkers, but that
the mean size stays almost the same. Furthermore, even in
the case without checkers, the mean list size is 100 times
smaller than the maximum. The Media 1 case was less dra-
matic, but still showed post-optimization constraint lists an
order of magnitude smaller than the maximum. This shows
that unrelated constraint optimization is key to efficiently
implement active checkers.

6.2 Macrobenchmarks
For macrobenchmarks, we ran a generational search for 10

hours starting from the same initial media file, and generated
test cases with no checkers, and with the weak and strong
combination of all 13 checkers. We then tested each test
case by running the program with AppVerifier [6], configured
to check for heap errors. For each crashing test case, we
recorded the checker kinds responsible for the constraints
that generated the test. Since a search can generate many
different test cases that exhibit the same bug, we “bucket”
crashing files by the stack hash of the crash, which includes
the address of the faulting instruction. We also report a
bucket kind, which is either a NULL pointer dereference, a
read access violation (ReadAV), or a write access violation
(WriteAV). It is possible for the same bug to be reachable by
program paths with different stack hashes for the same root
cause. Our experiments always report the distinct stack
hashes. We also computed the hit rate for global caching
during each search.
Checkers can find bugs missed by path exploration.
Figure 7 shows the crash buckets found for Media 2 by 10-
hours searches with“No”active checkers, with a“W”eak and



Crash Bucket Kind 0 2 4 5 7 8
1867196225 NULL No/W/S W/S W/S
1867196225 ReadAV No/W W W
1277839407 ReadAV S
1061959981 ReadAV S S S
1392730167 ReadAV S
1212954973 ReadAV S S S
1246509355 ReadAV S W/S W/S
1527393075 ReadAV S
1011628381 ReadAV S W/S
2031962117 ReadAV No/W/S
286861377 ReadAV No/S
842674295 WriteAV S S S S

Figure 7: Crash buckets found for Media 1 by 10-
hour searches with “No” active checkers, with a
“W”eak and “S”trong combinations of active check-
ers. A total of 41658 tests were generated and tested
in 30 hours, with 783 crashing files in 12 buckets.

Crash Bucket Kind 0
790577684 ReadAV No/W/S
825233195 ReadAV No/W/S
795945252 ReadAV No/W/S
1060863579 ReadAV No/W

Figure 8: Crash buckets found for Media 2 by 10-
hours searches with “No” active checkers, with a
“W”eak and “S”trong combinations of active check-
ers. A total of 11849 tests were generated and tested
in 30 hours, with 25 crashing files in 4 buckets.

“S”trong combinations of active checkers. For instance, an
“S” in a column means that at least one crash in the bucket
was found by the search with strong combination. The type
of checkers whose constraint found the crash bucket is also
indicated in the figure. For Media 1, the Null Deref (type 2)
active checker found 2 crash buckets, the Array Underflow
and Overflow (types 4 and 5) active checkers found 3 crash
buckets, while the Integer Underflow and Overflow (types 7
and 8) active checkers found 7 crash buckets. Without any
active checkers, the tool is able to find only 4 crash buckets
in 10 hours of search, and misses the serious WriteAV bug
detected by the strong combination only. For Media 2, in
contrast, the test cases generated by active checkers did not
find any new crash buckets, as shown in Figure 8.
Checker yield can vary widely. Figure 9 reports the
overall number of injected constraints of each type during all
10-hours searches, and how many of those were successfully
solved to create new test cases. It also reports the checker
yield, or percentage of test cases that led to crashes. For
Media 1, active checkers have a higher yield than test cases
generated by path exploration (type 0). For Media 2, several
checkers did inject constraints that were solvable, but their
yield is 0% as they did not find any new bugs. The yield
indicates how precise symbolic execution is. For Media 1,
symbolic execution is very precise as every checker constraint
violation for checker types 2, 4 and 5 actually leads to a
crash (as is the case with a fully sound and complete con-
straint generation and solving as shown in Section 3); even
if symbolic execution is perfect, the yield for the integer
under/overflow active checkers may be less than 100% be-

Media 1 0 2 4 5 7 8
Injected 27612 26 13 13 11153 11153
Solved 18056 22 2 3 3179 5552
Crashes 339 22 2 3 139 136
Yield 1.9% 100% 100% 100% 4.4% 2.4%

Media 2 0 1 2 4 5
Injected 13425 12 2146 1544 1551
Solved 4735 0 61 10 20
Crashes 7 0 0 0 0
Yield 1.4% N/A 0% 0% 0%

7 8 9 10 11
Injected 11158 11177 5 5 10
Solved 576 2355 0 5 0
Crashes 0 0 0 0 0
Yield 0% 0% N/A 0% N/A

Figure 9: Constraints injected by checker types,
solved, crashes, and yield for Media 1 and Media 2,
over both weak and strong combination 10-hours
searches.

cause not every integer under/overflow leads to a crash. In
contrast, symbolic execution in our current implementation
does not seem precise enough for Media 2, as yields are poor
for this benchmark.
Local and global caching are effective. Local caching
can remove a significant number of constraints during sym-
bolic execution. For Media 1, we observed a 80% or more
local cache hit rate (see Figure 6). For Media 2, the hit
rates were less impressive but still removed roughly 20% of
the constraints.

Our current implementation does not have a global cache
for query results (see Section 4). To measure the impact
of global caching on our macrobenchmark runs, we added
code that dumps to disk the SHA-1 hash of each query to
the constraint solver, and then computes the global cache
hit rate. For Media 1, all searches showed roughly a 93%
hit rate, while for Media 2 we observed 27%. This shows
that there are significant redundancies in queries made by
different test generation tasks during the same search.

7. CONCLUSIONS
The more one checks for property violations, the more

one should find software errors. In this paper, we have de-
fined and studied active property checking, a new form of
dynamic property checking based on dynamic symbolic ex-
ecution, constraint solving and test generation. We showed
how active type checking extends traditional static and dy-
namic type checking. We presented several optimizations to
implement active property checkers efficiently, and discussed
results of experiments with several large shipped Windows
applications. Active property checking was able to detect
several new bugs in those applications.

Overall, we showed that without careful optimizations,
active property checking can significantly slow down dy-
namic test generation. For the SAGE implementation, we
found caching and unrelated constraint optimization to be
the most important. While weak and strong combination did
in fact reduce the number of calls to the constraint solver,
this was not the bottleneck. Our results for Media 1 demon-
strate that active property checking can find a significant
number of bugs not discovered by path exploration alone.



At the same time, the results for Media 2 show that the cur-
rent SAGE constraints do not fully capture the execution of
some programs. Increasing constraint precision should lead
to more expensive solver calls, therefore making our weak
and strong combinations more important.

We have also performed exploratory searches on several
other applications, including two shipped as part of Office
2007 and two media parsing layers. In one of the Office ap-
plications and media layer, the division by zero checker and
the integer overflow checker each created test cases leading
to previously-unknown division by zero errors. In the other
cases, we also discovered new bugs in test cases created by
checkers, but needed to use an internal tool for runtime pas-
sive checking of memory safety violations that is more pre-
cise than AppVerifier.
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